首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
Locally, voluminous andesitic volcanism both preceded and followedlarge eruptions of silicic ash-flow tuff from many calderasin the San Juan volcanic field. The most voluminous post-collapselava suite of the central San Juan caldera cluster is the 28Ma Huerto Andesite, a diverse assemblage erupted from at least5–6 volcanic centres that were active around the southernmargins of the La Garita caldera shortly after eruption of theFish Canyon Tuff. These andesitic centres are inferred, in part,to represent eruptions of magma that ponded and differentiatedwithin the crust below the La Garita caldera, thereby providingthe thermal energy necessary for rejuvenation and remobilizationof the Fish Canyon magma body. The multiple Huerto eruptivecentres produced two magmatic series that differ in phenocrystmineralogy (hydrous vs anhydrous assemblages), whole-rock majorand trace element chemistry and isotopic compositions. Hornblende-bearinglavas from three volcanic centres located close to the southeasternmargin of the La Garita caldera (Eagle Mountain–FourmileCreek, West Fork of the San Juan River, Table Mountain) definea high-K calc-alkaline series (57–65 wt % SiO2) that isoxidized, hydrous and sulphur rich. Trachyandesitic lavas fromwidely separated centres at Baldy Mountain–Red Lake (westernmargin), Sugarloaf Mountain (southern margin) and Ribbon Mesa(20 km east of the La Garita caldera) are mutually indistinguishable(55–61 wt % SiO2); they are characterized by higher andmore variable concentrations of alkalis and many incompatibletrace elements (e.g. Zr, Nb, heavy rare earth elements), andthey contain anhydrous phenocryst assemblages (including olivine).These mildly alkaline magmas were less water rich and oxidizedthan the hornblende-bearing calc-alkaline suite. The same distinctionscharacterize the voluminous precaldera andesitic lavas of theConejos Formation, indicating that these contrasting suitesare long-term manifestations of San Juan volcanism. The favouredmodel for their origin involves contrasting ascent paths anddifferentiation histories through crustal columns with differentthermal and density gradients. Magmas ascending into the mainfocus of the La Garita caldera were impeded, and they evolvedat greater depths, retaining more of their primary volatileload. This model is supported by systematic differences in isotopiccompositions suggestive of crust–magma interactions withcontrasting lithologies. KEY WORDS: alkaline; calc-alkaline; petrogenesis; episodic magmatism; Fish Canyon system  相似文献   

2.
The clinopyroxene–plagioclase–plagioclase dihedralangle, cpp, in gabbroic cumulates records the time-integratedthermal history in the sub-solidus and provides a measure oftextural maturity. Variations in cpp through the Layered Seriesof the Skaergaard intrusion, East Greenland, demonstrate thatthe onset of crystallization of clinopyroxene (within LZa),Fe–Ti oxides (at the base of LZc) and apatite (at thebase of UZb) as liquidus phases in the bulk magma is recordedby a stepwise increase in textural maturity, related to an increasein the contribution of latent heat to the total heat loss tothe surroundings and a reduction in the specific cooling rateat the crystallization front of the intrusion. The onset ofboth liquidus Fe–Ti oxide and apatite crystallizationis marked by a transient increase in textural maturity, probablylinked to overstepping before nucleation. Textural maturationat pyroxene–plagioclase–plagioclase triple junctionseffectively ceases in the uppermost parts of the Layered Seriesas a result of the entire pluton cooling below the closure temperaturefor dihedral angle change, which is 1075°C. Solidificationof the Layered Series of the Skaergaard intrusion occurred viathe upwards propagation of a mush zone only a few metres thick. KEY WORDS: magma; partial melting; asthenosphere; olivine; mantle  相似文献   

3.
Many basaltic flood provinces are characterized by the existenceof voluminous amounts of silicic magmas, yet the role of thesilicic component in sulphur emissions associated with trapactivity remains poorly known. We have performed experimentsand theoretical calculations to address this issue. The meltsulphur content and fluid/melt partitioning at saturation witheither sulphide or sulphate or both have been experimentallydetermined in three peralkaline rhyolites, which are a majorcomponent of some flood provinces. Experiments were performedat 150 MPa, 800–900°C, fO2 in the range NNO –2 to NNO + 3 and under water-rich conditions. The sulphur contentis strongly dependent on the peralkalinity of the melt, in additionto fO2, and reaches 1000 ppm at NNO + 1 in the most stronglyperalkaline composition at 800°C. At all values of fO2,peralkaline melts can carry 5–20 times more sulphur thantheir metaluminous equivalents. Mildly peralkaline compositionsshow little variation in fluid/melt sulphur partitioning withchanging fO2 (DS 270). In the most peralkaline melt, DS risessharply at fO2 > NNO + 1 to values of >500. The partitioncoefficient increases steadily for Sbulk between 1 and 6 wt% but remains about constant for Sbulk between 0·5 and1 wt %. At bulk sulphur contents lower than 4 wt %, a temperatureincrease from 800 to 900°C decreases DS by 10%. These results,along with (1) thermodynamic calculations on the behaviour ofsulphur during the crystallization of basalt and partial meltingof the crust and (2) recent experimental constraints on sulphursolubility in metaluminous rhyolites, show that basalt fractionationcan produce rhyolitic magmas having much more sulphur than rhyolitesderived from crustal anatexis. In particular, hot and dry metaluminoussilicic magmas produced by melting of dehydrated lower crustare virtually devoid of sulphur. In contrast, peralkaline rhyolitesformed by crystal fractionation of alkali basalt can concentrateup to 90% of the original sulphur content of the parental magmas,especially when the basalt is CO2-rich. On this basis, we estimatethe amounts of sulphur potentially released to the atmosphereby the silicic component of flood eruptive sequences. The peralkalineEthiopian and Deccan rhyolites could have produced 1017 and1018 g of S, respectively, which are comparable amounts to publishedestimates for the basaltic activity of each province. In contrast,despite similar erupted volumes, the metaluminous Paraná–Etendekasilicic eruptives could have injected only 4·6 x 1015g of S in the atmosphere. Peralkaline flood sequences may thushave greater environmental effects than those of metaluminousaffinity, in agreement with evidence available from mass extinctionsand oceanic anoxic events. KEY WORDS: silicic flood eruptions; sulphur; experiment; Ethiopia; Deccan  相似文献   

4.
The near-liquidus crystallization of a high-K basalt (PST-9golden pumice, 49·4 wt % SiO2, 1·85 wt % K2O,7·96 wt % MgO) from the present-day activity of Stromboli(Aeolian Islands, Italy) has been experimentally investigatedbetween 1050 and 1175°C, at pressures from 50 to 400 MPa,for melt H2O concentrations between 1·2 and 5·5wt % and NNO ranging from –0·07 to +2·32.A drop-quench device was systematically used. AuPd alloys wereused as containers in most cases, resulting in an average Feloss of 13% for the 34 charges studied. Major crystallizingphases include clinopyroxene, olivine and plagioclase. Fe–Tioxide was encountered in a few charges. Clinopyroxene is theliquidus phase at 400 MPa down to at least 200 MPa, followedby olivine and plagioclase. The compositions of all major phasesand glass vary systematically with the proportion of crystals.Ca in clinopyroxene sensitively depends on the H2O concentrationof the coexisting melt, and clinopyroxene Mg-number shows aweak negative correlation with NNO. The experimental data allowthe liquidus surface of PST-9 to be defined. When used in combinationwith melt inclusion data, a consistent set of pre-eruptive pressures(100–270 MPa), temperatures (1140–1160°C) andmelt H2O concentrations is obtained. Near-liquidus phase equilibriaand clinopyroxene Ca contents require melt H2O concentrations<2·7–3·6 and 3 ± 1 wt %, respectively,overlapping with the maximum frequency of glass inclusion data(2·5–2·7 wt % H2O). For olivine to crystallizeclose to the liquidus, pressures close to 200 MPa are needed.Redox conditions around NNO = +0·5 are inferred fromclinopyroxene compositions. The determined pre-eruptive parametersrefer to the storage region of golden pumice melts, which islocated at a depth of around 7·5 km, within the metamorphicarc crust. Golden pumice melts ascending from their storagezone along an adiabat will not experience crystallization ontheir way to the surface. KEY WORDS: basalt; pumice; experiment; phase equilibria; Stromboli  相似文献   

5.
The Huerto Andesite is the largest of several andesite sequences interlayered with the large-volume ash-flow tuffs of the San Juan volcanic field, Colorado. Stratigraphically this andesite is between the region's largest tuff (the 27.8 Ma, 3,000 km3 Fish Canyon Tuff) and the evolved product of the Fish Canyon Tuff (the 27.4 Ma, 1,000 km3 Carpenter Ridge Tuff), and eruption was from vents located approximately 20–30 km southwest and southeast of calderas associated with these ashflow tuffs. Olivine phenocrysts are present in the more mafic, SiO2-poor samples of andesite, hence the parent magma was most likely a mantle-derived basaltic magma. The bulk compositions of the olivine-bearing andesites compared to those containing orthopyroxene phenocrysts suggest the phenocryst assemblage equilibrated at 2–5 kbar. Two-pyroxene geothermometry yields equilibrium temperatures consistent with near-peritectic magmas at 2–5 kbar. Fractionation of phenocryst phases (olivine or orthopyroxene + clinopyroxene + plagioclase + Ti-magnetite + apatite) can explain most major and trace element variations of the andesites, although assimilation of some crustal material may explain abundances of some highly incompatible trace elements (Rb, Ba, Nb, Ta, Zr, Hf) in the most evolved lavas. Despite the great distance of the San Juan volcanic field from the inferred Oligocene destructive margin, the Huerto Andesite is similar to typical plate-margin andesites: both have relatively low abundances of Nb and Ta and similar values for trace-element ratios such as La/Yb and La/Nb.Deriving the Fish Canyon and Carpenter Ridge Tuffs by crystal fractionation from the Huerto Andesite cannot be dismissed by major-element models, although limited trace-element data indicate the tuffs may not have been derived by such direct evolution. Alternatively, heat of crystallization released as basaltic magmas evolved to andesitic compositions may have caused melting of crust to produce the felsic-ash flows. Mafic magmas may have been gravitationally trapped below lighter felsic magmas; mafic magmas which ascended to the surface probably migrated upwards around the margins of silicic chambers, as suggested by the present-day outcrops of andesitic units around the margins of recognized ash-flow calderas.  相似文献   

6.
Volcán Popocatépetl has been the site of voluminousdegassing accompanied by minor eruptive activity from late 1994until the time of writing (August 2002). This contribution presentspetrological investigations of magma erupted in 1997 and 1998,including major-element and volatile (S, Cl, F, and H2O) datafrom glass inclusions and matrix glasses. Magma erupted fromPopocatépetl is a mixture of dacite (65 wt % SiO2, two-pyroxenes+ plagioclase + Fe–Ti oxides + apatite, 3 wt % H2O, P= 1·5 kbar, fO2 = NNO + 0·5 log units) and basalticandesite (53 wt % SiO2, olivine + two-pyroxenes, 3 wt % H2O,P = 1–4 kbar). Magma mixed at 4–6 km depth in proportionsbetween 45:55 and 85:15 wt % silicic:mafic magma. The pre-eruptivevolatile content of the basaltic andesite is 1980 ppm S, 1060ppm Cl, 950 ppm F, and 3·3 wt % H2O. The pre-eruptivevolatile content of the dacite is 130 ± 50 ppm S, 880± 70 ppm Cl, 570 ± 100 ppm F, and 2·9 ±0·2 wt % H2O. Degassing from 0·031 km3 of eruptedmagma accounts for only 0·7 wt % of the observed SO2emission. Circulation of magma in the volcanic conduit in thepresence of a modest bubble phase is a possible mechanism toexplain the high rates of degassing and limited magma productionat Popocatépetl. KEY WORDS: glass inclusions; igneous petrology; Mexico; Popocatépetl; volatiles  相似文献   

7.
Batholith-sized bodies of crystal-rich magmatic ‘mush’are widely inferred to represent the hidden sources of manylarge-volume high-silica rhyolite eruptive units. Occasionallythese mush bodies are ejected along with their trapped interstitialliquid, forming the distinctive crystal-rich ignimbrites knownas ‘monotonous intermediates’. These ignimbritesare notable for their combination of high crystal contents (35–55%),dacitic bulk compositions with interstitial high-silica rhyoliticglass, and general lack of compositional zonation. The 5000km3 Fish Canyon Tuff is an archetypal eruption deposit of thistype, and is the largest known silicic eruption on Earth. Ejectafrom the Fish Canyon magmatic system are notable for the limitedcompositional variation that they define on the basis of whole-rockchemistry, whereas 45 vol. % crystals in a matrix of high-silicarhyolite glass together span a large range of mineral-scaleisotopic variability (microns to millimetres). Rb/Sr isotopicanalyses of single crystals (sanidine, plagioclase, biotite,hornblende, apatite, titanite) and sampling by micromillingof selected zones within glass plus sanidine and plagioclasecrystals document widespread isotopic disequilibrium at manyscales. High and variable 87Sr/86Sri values for euhedral biotitegrains cannot be explained by any model involving closed-systemradiogenic ingrowth, and they are difficult to rationalize unlessmuch of this radiogenic Sr has been introduced at a late stagevia assimilation of local Proterozoic crust. Hornblende is theonly phase that approaches isotopic equilibrium with the surroundingmelt, but the melt (glass) was isotopically heterogeneous atthe millimetre scale, and was therefore apparently contaminatedwith radiogenic Sr shortly prior to eruption. The other mineralphases (plagioclase, sanidine, titanite, and apatite) have significantlylower 87Sr/86Sri values than whole-rock values (as much as –0·0005).Such isotopic disequilibrium implies that feldspars, titaniteand apatite are antecrysts that crystallized from less radiogenicmelt compositions at earlier stages of magma evolution, whereashighly radiogenic biotite xenocrysts and the development ofisotopic heterogeneity in matrix melt glass appear to coincidewith the final stage of the evolution of the Fish Canyon magmabody in the upper crust. Integrated petrographic and geochemicalevidence is consistent with pre-eruptive thermal rejuvenationof a near-solidus mineral assemblage from 720 to 760°C (i.e.partial dissolution of feldspars + quartz while hornblende +titanite + biotite were crystallizing). Assimilation and blendingof phenocrysts, antecrysts and xenocrysts reflects chamber-wide,low Reynolds number convection that occurred within the last10 000 years before eruption. KEY WORDS: Fish Canyon Tuff; Rb–Sr isotopes; microsampling; magmatic processes; crystal mush  相似文献   

8.
We present mineralogical, petrological and geochemical datato constrain the origin of the Harzburg mafic–ultramaficintrusion. The intrusion is composed mainly of mafic rocks rangingfrom gabbronorite to quartz diorite. Ultramafic rocks are veryrare in surface outcrops. Dunite is observed only in deepersections of the Flora I drill core. Microgranitic (fine-grainedquartz-feldspathic) veins found in the mafic and ultramaficrocks result from contamination of the ultramafic magmas bycrustal melts. In ultramafic and mafic compositions cumulatetextures are widespread and filter pressing phenomena are obvious.The order of crystallization is olivine pargasite, phlogopite,spinel plagioclase, orthopyroxene plagioclase, clinopyroxene.Hydrous minerals such as phlogopite and pargasite are essentialconstituents of the ultramafic cumulates. The most primitiveolivine composition is Fo89·5 with 0·4 wt % NiO,which indicates that the olivine may have been in equilibriumwith primitive mantle melts. Coexisting melt compositions estimatedfrom this olivine have mg-number = 71. The chemical varietyof the rocks constituting the intrusion and the mg-number ofthe most primitive melt allow an estimation of the approximatecomposition of the mantle-derived primary magma. The geochemicalcharacteristics of the estimated magma are similar to thoseof an island-arc tholeiite, characterized by low TiO2 and alkalisand high Al2O3. Geochemical and Pb, Sr and Nd isotope data demonstratethat even the most primitive rocks have assimilated crustalmaterial. The decoupling of Sr from Nd in some samples demonstratesthe influence of a fluid that transported radiogenic Sr. Leadof crustal origin from two isotopically distinct reservoirsdominates the Pb of all samples. The ultramafic rocks and thecumulates best reflect the initial isotopic and geochemicalsignature of the parent magma. Magma that crystallized in theupper part of the chamber was more strongly affected by assimilatedmaterial. Petrographic, geochemical and isotope evidence demonstratesthat during a late stage of crystallization, hybrid rocks formedthrough the mechanical mixing of early cumulates and melts withstrong crustal contamination from the upper levels of the magmachamber. KEY WORDS: Harzburg mafic–ultramafic intrusion; Sr–Nd–Pb isotopes; magma evolution; crustal contamination  相似文献   

9.
Olivine is the principal mineral of kimberlite magmas, and isthe main contributor to the ultramafic composition of kimberliterocks. Olivine is partly or completely altered in common kimberlites,and thus unavailable for studies of the origin and evolutionof kimberlite magmas. The masking effects of alteration, commonin kimberlites worldwide, are overcome in this study of theexceptionally fresh diamondiferous kimberlites of the Udachnaya-Eastpipe from the Daldyn–Alakit province, Yakutia, northernSiberia. These serpentine-free kimberlites contain large amountsof olivine (50 vol.%) in a chloride–carbonate groundmass.Olivine is represented by two populations (olivine-I and groundmassolivine-II) differing in morphology, colour and grain size,and trapped mineral and melt inclusions. The large fragmentalolivine-I is compositionally variable in terms of major (Fo85–94)and trace element concentrations, including H2O content (10–136ppm). Multiple sources of olivine-I, such as convecting andlithospheric mantle, are suggested. The groundmass olivine-IIis recognized by smaller grain sizes and perfect crystallographicshapes that indicate crystallization during magma ascent andemplacement. However, a simple crystallization history for olivine-IIis complicated by complex zoning in terms of Fo values and traceelement contents. The cores of olivine-II are compositionallysimilar to olivine-I, which suggests a genetic link betweenthese two types of olivine. Olivine-I and olivine-II have oxygenisotope values (+ 5·6 ± 0·1 VSMOW, 1 SD)that are indistinguishable from one another, but higher thanvalues (+ 5·18 ± 0·28) in ‘typical’mantle olivine. These elevated values probably reflect equilibriumwith the Udachnaya carbonate melt at low temperatures and 18O-enrichedmantle source. The volumetrically significant rims of olivine-IIhave constant Fo values (89·0 ± 0·2 mol%),but variable trace element compositions. The uniform Fo compositionsof the rims imply an absence of fractionation of the melt'sFe2+/Mg, which is possible in the carbonatite melt–olivinesystem. The kimberlite melt is argued to have originated inthe mantle as a chloride–carbonate liquid, devoid of ‘ultramafic’or ‘basaltic’ aluminosilicate components, but becameolivine-laden and olivine-saturated by scavenging olivine crystalsfrom the pathway rocks and dissolving them en route to the surface.During emplacement the kimberlite magma changed progressivelytowards an original alkali-rich chloride–carbonate meltby extensively crystallizing groundmass olivine and gravitationalseparation of solids in the pipe. KEY WORDS: kimberlite; olivine; partial melting; carbonatitic melt; oxygen isotopes; H2O  相似文献   

10.
The 230 km2 Proterozoic Bjerkreim—Sokndal layered instrusionhas a monzonoritic bulk composition and comprises a 6 km thick,broadly leuconoritic Layered Series (LS) overlain by unlayeredmangerite and quartz mangerite. In the Bjerkreim lobe the LScomprises six megacyclic units (MCU 0, IA, IB, II, 11 and IV)in a syncline. This lobe is surrounded by migmatitic gneisses;the roof to the instrusion is missing. The mg-number opx, An% and whole-rock initial 87Sr/86Sr isotope ratios (Sr0) displaybroadly parallel trends through MCUs II and III, and into MCUIV, with decreasing mg-number (75–58) and An % (50–40)accompanying increasing Sr0 (0.7050–0.7085). This correlationbreaks down in the upper part of MCU IV and mangerite; the quartzmangerite has Sr0 values of 0.7085. Abrupt reversals occur acrossthe MCU boundaries. The LS crystallized on the floor of a periodically replenishedmagma chamber that was continually assimilating country rockgneisses. Strong compositional zoning of the magma developedas a result of repeated replenishments with relatively dense,primitive ferrobasaltic magma (Sr0 = 0.7049) along the floorand the development of extensive buoyant roof melts. Assimilationtook place on a massive scale (up to 50%) in the upper partsof the chamber. KEY WORDS: assimilation; fractional crystallization; hybrid magma; layered intrusion; Sr-isolopes *Corresponding author.  相似文献   

11.
The Yanshan Fold and Thrust Belt in eastern China has been intrudedby a series of alkalic igneous rocks, ranging in compositionfrom granite and rhyolite to syenite and trachyte. Laser ablationinductively coupled plasma mass spectrometry U–Pb analysesof zircon from three alkaline suites yield Early Cretaceousages of 130–117 Ma. Three groups of rocks have been identifiedbased on their mineralogical, geochemical and Sr–Nd–Hfisotope characteristics. The alkali granites and rhyolites areferroan and have low Al2O3, MgO, CaO, Sr, Ba and Eu concentrationsand high SiO2, total Fe2O3, K2O, Nb, Ga, Ta, Th and heavy rareearth element abundances and Ga/Al ratios. Geochemical dataand Sr-, Nd- and zircon Hf-isotopic compositions [(87Sr/86Sr)i= 0·7050–0·7164, Nd(t) = –8·4to –13·6 and Hf(t) = –5·7 to –16·8]indicate that they were probably generated by shallow dehydrationmelting of biotite- or hornblende-bearing granitoid crustalsource rocks and then mixed with contemporaneous magma froma mantle and/or lower crustal source. Ferroan syenites havedistinct geochemical features from those of the alkaline granitesand rhyolites, suggesting that they were produced by clinopyroxeneand plagioclase fractionation of melt derived from an enrichedmantle source, mixed with lower and upper crustal-derived magmas.The magnesian syenites and trachytes have Sr-, Nd- and zirconHf-isotopic compositions that are distinct from those of theferroan syenites. They were mainly derived from partial meltingof lower crustal materials, mixed with enriched mantle-derivedalkali basaltic magma. The emplacement of an alkali syenite–granite–rhyolitesuite, coeval with the formation of metamorphic core complexesand pull-apart basins in eastern China, indicates they formedin an extensional setting, possibly as a result of lithosphericthinning. KEY WORDS: alkaline rocks; zircon U–Pb dating; petrogenesis; crustal extension; Yanshan Fold and Thrust Belt; North China Craton  相似文献   

12.
The Proterozoic (950 Ma) Lyngdal granodiorite of southern Norwaybelongs to a series of hornblende–biotite metaluminousferroan granitoids (HBG suite) coeval with the post-collisionalRogaland Anorthosite–Mangerite–Charnockite (AMC)suite. This granitoid massif shares many geochemical characteristicswith rapakivi granitoids, yet granodiorites dominate over granites.To constrain both crystallization (P, T, fO2, H2O in melt) andmagma generation conditions, we performed crystallization experimentson two samples of the Lyngdal granodiorite (with 60 and 65 wt% SiO2) at 4–2 kbar, mainly at fO2 of NNO (nickel–nickeloxide) to NNO + 1, and under fluid-saturated conditions withvarious H2O–CO2 ratios for each temperature. Comparisonbetween experimental phase equilibria and the mineral assemblagein the Lyngdal granodiorite indicates that it crystallized between4 and 2 kbar, from a magma with 5–6 wt % H2O at an fO2of NNO to NNO + 1. These oxidized and wet conditions sharplycontrast with the dry and reduced conditions inferred for thepetrogenesis of the AMC suite and many other rapakivi granitesworldwide. The high liquidus temperature and H2O content ofthe Lyngdal granodiorite imply that it is not a primary magmaproduced by the partial melting of the crust but is derivedby the fractionation of a mafic magma. Lyngdal-type magmas appearto have volcanic equivalents in the geological record. In particular,our results show that oxidized high-silica rhyolites, such asthe Bishop Tuff, could be derived via fractionation of oxidizedintermediate magmas and do not necessarily represent primarycrustal melts. This study underlines the great variability ofcrystallization conditions (from anhydrous to hydrous and reducedto oxidized) and petrogenetic processes among the metaluminousferroan magmas of intermediate compositions (granodiorites,quartz mangerites, quartz latites), suggesting that there isnot a single model to explain these rocks. KEY WORDS: ferroan granitoids; crystallization conditions; experiments; Norway; Sveconorwegian; Bishop Tuff  相似文献   

13.
The focus of this study is a suite of garnet-bearing mantlexenoliths from Oahu, Hawaii. Clinopyroxene, olivine, and garnetconstitute the bulk of the xenoliths, and orthopyroxene is presentin small amounts. Clinopyroxene has exsolved orthopyroxene,spinel, and garnet. Many xenoliths also contain spinel-coredgarnets. Olivine, clinopyroxene, and garnet are in major elementchemical equilibrium with each other; large, discrete orthopyroxenedoes not appear to be in major-element chemical equilibriumwith the other minerals. Multiple compositions of orthopyroxeneoccur in individual xenoliths. The new data do not support theexisting hypothesis that all the xenoliths formed at 1 6–22GPa, and that the spinel-cored garnets formed as a consequenceof almost isobaric subsolidus cooling of a spinel-bearing assemblage.The lack of olivine or pyroxenes in the spinel–garnetreaction zones and the embayed outline of spinel grains insidegarnet suggest that the spinel-cored garnets grew in the presenceof a melt. The origin of these xenoliths is interpreted on thebasis of liquidus phase relations in the tholeiitic and slightlysilica-poor portion of the CaO–MgO–Al2O3–SiO2(CMAS) system at pressures from 30 to 50 GPa. The phase relationssuggest crystallization from slightly silica-poor melts (ortransitional basaltic melts) in the depth range 110–150km beneath Oahu. This depth estimate puts the formation of thesexenoliths in the asthenosphere. On the basis of this study itis proposed that the pyroxenite xenoliths are high-pressurecumulates related to polybaric magma fractionation in the asthenosphere,thus making Oahu the only locality among the oceanic regionswhere such deep magmatic fractional crystallization processeshave been recognized. KEY WORDS: xenolith; asthenosphere; basalt; CMAS; cumulate; oceanic lithosphere; experimental petrology; mantle; geothermobarometry; magma chamber  相似文献   

14.
Phenocryst zoning patterns are used to identify open-systemmagmatic processes in the products of the 2001 eruption of ShiveluchVolcano, Kamchatka. The lavas and pumices studied are hornblende–plagioclaseandesites with average pre-eruptive temperatures of 840°Cand fO2 of 1·5–2·1 log units above nickel–nickeloxide (NNO). Plagioclase zoning includes oscillatory and patchyzonation and sieve textures. Hornblendes are commonly unzoned,but some show simple, multiple or patchy zoning. Apatite microphenocrystsdisplay normal and reverse zoning of sulphur. The textural similarityof patchy hornblende and plagioclase, together with Ba–Srsystematics in patchy plagioclase, indicate that the cores ofthese crystals were derived from cumulate material. Plagioclase–liquidequilibria suggest that the patchy texture develops by resorptionduring H2O-undersaturated decompression. When H2O-saturatedcrystallization recommences at lower pressure, reduced pH2Oresults in lower XAn in plagioclase, causing more Al-rich hornblendeto crystallize. Plagioclase cores with diffuse oscillatory zoning,and unzoned hornblende crystals, probably represent a populationof crystals resident in the magma chamber for long periods oftime. In contrast, oscillatory zoning in the rims of plagioclasephenocrysts may reflect eruption dynamics during decompressioncrystallization. Increasing Fe/Al in oscillatory zoned rimssuggests oxidation as a result of degassing of H2O during decompression.A general lack of textural overlap between phenocryst typessuggests that different phenocryst populations were spatiallyor temporally isolated during crystallization. We present evidencethat the host andesite has mixed with both more felsic and moremafic magmas. Olivine and orthopyroxene xenocrysts with reactionor overgrowth rims and strong normal zoning indicate mixingwith basalt. Sieve-textured plagioclase resulted from mixingof a more felsic magma with the host andesite. The mineralogyand mineral compositions of a mafic andesite enclave are identicalto those of the host magma, which implies efficient thermalquenching, and thus small volumes of intruding magma. Mixingof this magma with the host andesite results in phenocryst zoningbecause of differences in dissolved volatile contents. We suggestthat small magma pulses differentiated at depth and ascendedintermittently into the growing magma chamber, producing incrementalvariations in whole-rock compositions. KEY WORDS: patchy zoning; magma mixing; Shiveluch  相似文献   

15.
Okmok volcano is situated on oceanic crust in the central Aleutianarc and experienced large (15 km3) caldera-forming eruptionsat 12 000 years BP and 2050 years BP. Each caldera-forming eruptionbegan with a small Plinian rhyodacite event followed by theemplacement of a dominantly andesitic ash-flow unit, whereaseffusive inter- and post-caldera lavas have been more basaltic.Phenocryst assemblages are composed of olivine + pyroxene +plagioclase ± Fe–Ti oxides and indicate crystallizationat 1000–1100°C at 0·1–0·2 GPain the presence of 0–4% H2O. The erupted products followa tholeiitic evolutionary trend and calculated liquid compositionsrange from 52 to 68 wt % SiO2 with 0·8–3·3wt % K2O. Major and trace element models suggest that the moreevolved magmas were produced by 50–60% in situ fractionalcrystallization around the margins of the shallow magma chamber.Oxygen and strontium isotope data (18O 4·4–4·9,87Sr/ 86Sr 0·7032–0·7034) indicate interactionwith a hydrothermally altered crustal component, which led toelevated thorium isotope ratios in some caldera-forming magmas.This compromises the use of uranium–thorium disequilibria[(230Th/ 238U) = 0·849–0·964] to constrainthe time scales of magma differentiation but instead suggeststhat the age of the hydrothermal system is 100 ka. Modellingof the diffusion of strontium in plagioclase indicates thatmany evolved crystal rims formed less than 200 years prior toeruption. This addition of rim material probably reflects theremobilization of crystals from the chamber margins followingreplenishment. Basaltic recharge led to the expansion of themagma chamber, which was responsible for the most recent caldera-formingevent. KEY WORDS: Okmok; caldera; U-series isotopes; Sr-diffusion; time scales; Aleutian arc  相似文献   

16.
AUDETAT  A.; PETTKE  T. 《Journal of Petrology》2006,47(10):2021-2046
The magmatic processes leading to porphyry-Cu mineralizationat Santa Rita are reconstructed on the basis of petrographicstudies, thermobarometry, and laser-ablation inductively-coupled-plasmamass-spectrometry analyses of silicate melt and sulfide inclusionsfrom dikes ranging from basaltic andesite to rhyodacite. Combinedresults suggest that magma evolution at Santa Rita is similarto that of sulfur-rich volcanoes situated above subduction zones,being characterized by repeated injection of hot, mafic magmainto an anhydrite-bearing magma chamber of rhyodacitic composition.The most mafic end-member identified at Santa Rita is a shoshoniticbasaltic andesite that crystallized at 1000–1050°C,1–3 kbar and log fO2 = NNO + 0·7 to NNO + 1·0,whereas the rhyodacite crystallized at 730–760°C andlog fO2 = NNO + 1·3 to NNO + 1·9. Mixing betweenthe two magmas caused precipitation of 0·1–0·2wt % magmatic sulfides and an associated decrease in the Cucontent of the silicate melt from 300–500 ppm to lessthan 20 ppm. Quantitative modeling suggests that temporal storageof ore-metals in magmatic sulfides does not significantly enhancethe amount of copper ultimately available to ore-forming hydrothermalfluids. Magmatic sulfides are therefore not vital to the formationof porphyry-Cu deposits, unless a mechanism is required thatholds back ore-forming metals until late in the evolution ofthe volcanic–plutonic system. KEY WORDS: porphyry-Cu; sulfur; sulfides; magma mixing; LA-ICP-MS  相似文献   

17.
Neogene basanite lavas of Kozákov volcano, located alongthe Lusatian fault in the northeastern Czech Republic, containabundant anhydrous spinel lherzolite xenoliths that providean exceptionally continuous sampling of the upper two-thirdsof central European lithospheric mantle. The xenoliths yielda range of two-pyroxene equilibration temperatures from 680°Cto 1070°C, and are estimated to originate from depths of32–70 km, based on a tectonothermal model for basalticunderplating associated with Neogene rifting. The sub-Kozákovmantle is layered, consisting of an equigranular upper layer(32–43 km), a protogranular intermediate layer that containsspinel–pyroxene symplectites after garnet (43–67km), and an equigranular lower layer (67–70 km). Negativecorrelations of wt % TiO2, Al2O3, and CaO with MgO and clinopyroxenemode with Cr-number in the lherzolites record the effects ofpartial fusion and melt extraction; Y and Yb contents of clinopyroxeneand the Cr-number in spinel indicate 5 to 15% partial melting.Subsequent metasomatism of a depleted lherzolite protolith,probably by a silicate melt, produced enrichments in the largeion lithophile elements, light rare earth elements and highfield strength elements, and positive anomalies in primitivemantle normalized trace element patterns for P, Zr, and Hf.Although there are slight geochemical discontinuities at theboundaries between the three textural layers of mantle, theretends to be an overall decrease in the degree of depletion withdepth, accompanied by a decrease in the magnitude of metasomatism.Clinopyroxene separates from the intermediate protogranularlayer and the lower equigranular layer yield 143Nd/144Nd valuesof 0·51287–0·51307 (Nd = +4·6 to+8·4) and 87Sr/86Sr values of 0·70328–0·70339.Such values are intermediate with respect to the Nd–Srisotopic array defined by anhydrous spinel peridotite xenolithsfrom central Europe and are similar to those associated withthe present-day low-velocity anomaly in the upper mantle beneathEurope. The geochemical characteristics of the central Europeanlithospheric mantle reflect a complex evolution related to Devonianto Early Carboniferous plate convergence, accretion, and crustalthickening, Late Carboniferous to Permian extension and gravitationalcollapse, and Neogene rifting, lithospheric thinning, and magmatism. KEY WORDS: xenoliths; lithospheric mantle; REE–LILE–HFSE; Sr–Nd isotopes; Bohemian Massif  相似文献   

18.
Cretaceous melange of the Cordillera de la Costa belt, north–centralVenezuela, there are knockers of eclogite, barroisite-bearingeclogite, and pelitic glaucophane schist. These occur in a metamorphicmelange matrix that locally consists of marble, serpentinite,amphibolite, actinolite schist, feldspathic schist and gneiss,graphitic schist, chloritoid schist, and garnet-bearing micaschist. The protoliths for these various rock types exhibita wide age range (Cambrian to Early Cretaceous?). Recently discoveredknockers of pelitic glaucophane schist contain Mg-glaucophane+ paragonite + kyanite + garnet + talc + graphite + rutile +quartz. The coexistence of kyanite and Mg-glaucophane suggestsminimum P 2000 MPa at T > 600°C. Eclogite knockers fromthe same outcrop contain garnet and clinopyroxene which yield500°C for cores, 700°C for rims, and P 1200 MPa. Theassemblage garnet–biotite–phengite–albitewithin schists of the melange matrix of this locality indicatesmetamorphic conditions of T = 450–520°C at P = 1800MPa. Because all lithologies in this outcrop record high-P conditions,this metamorphic melange formed before or during peak metamorphismin a mid-Cretaceous subduction zone. KEY WORDS: geothermobarometry; high-P pelitic schist; eclogite; Puerto Cabello; Venezuela  相似文献   

19.
The Campanian Ignimbrite is a > 200 km3 trachyte–phonolitepyroclastic deposit that erupted at 39·3 ± 0·1ka within the Campi Flegrei west of Naples, Italy. Here we testthe hypothesis that Campanian Ignimbrite magma was derived byisobaric crystal fractionation of a parental basaltic trachyandesiticmelt that reacted and came into local equilibrium with smallamounts (5–10 wt%) of crustal rock (skarns and foid-syenites)during crystallization. Comparison of observed crystal and magmacompositions with results of phase equilibria assimilation–fractionationsimulations (MELTS) is generally very good. Oxygen fugacitywas approximately buffered along QFM + 1 (where QFM is the quartz–fayalite–magnetitebuffer) during isobaric fractionation at 0·15 GPa ( 6km depth). The parental melt, reconstructed from melt inclusionand host clinopyroxene compositions, is found to be basaltictrachyandesite liquid (51·1 wt% SiO2, 9·3 wt%MgO, 3 wt% H2O). A significant feature of phase equilibria simulationsis the existence of a pseudo-invariant temperature, 883 °C,at which the fraction of melt remaining in the system decreasesabruptly from 0·5 to < 0·1. Crystallizationat the pseudo-invariant point leads to abrupt changes in thecomposition, properties (density, dissolved water content),and physical state (viscosity, volume fraction fluid) of meltand magma. A dramatic decrease in melt viscosity (from 1700Pa s to 200 Pa s), coupled with a change in the volume fractionof water in magma (from 0·1 to 0·8) and a dramaticdecrease in melt and magma density acted as a destabilizingeruption trigger. Thermal models suggest a timescale of 200kyr from the beginning of fractionation until eruption, leadingto an apparent rate of evolved magma generation of about 10–3km3/year. In situ crystallization and crystal settling in density-stratifiedregions, as well as in convectively mixed, less evolved subjacentmagma, operate rapidly enough to match this apparent volumetricrate of evolved magma production. KEY WORDS: assimilation; Campanian Ignimbrite; fractional crystallization; magma dynamics; phase equilibria  相似文献   

20.
The British Tertiary Volcanic Province (BTVP) comprises within-platecentral igneous complexes associated with plateau lavas andregional dyke swarms. Lundy is the southernmost complex of theBTVP and comprises granite ({small tilde}90%) emplaced intodeformed Devonian sedimentary rocks within the Hercynian Cornubiangranite province of southwest England. The complex is intrudedby a northwest-southeast trending dyke swarm. In common withother BTVP igneous complexes, Lundy is associated with positivegravity and magnetic anomalies which are interpreted in termsof the presena of an underlying basic intrusion at shallow depth,with a volume exceeding that of the overlying granite. The Lundy intrusion is a coarse-grained megacrystic granitecontaining up to 20% alkali feldspar megacrysts in a coarse-grainedgroundmass composed of alkali feldspar, quartz, lithium-bearingmuscovite, and ‘biotite’ (lithian siderophyllite),with a range of aaxssory minerals. The main granite has a coarse-grained(locally miarolitic) pegmatitic facies and is intruded by thinsheets and veins of fine-grained aplite and microgranite. Themineralogy indicates crystallization of the Lundy granite froma highly fractionated H2O- and halogen-rich magma at a relativelyshallow crustal level. The main Lundy granite is a peraluminous leucogranite with Na2O=3–4%,K2O{small tilde}5%, low TiO2, MeO, CaO, Zr, and Sr, and highRb and Rb/Sr in comparison with many other peralurninous granites,including those from the Cornubian batholith and the BTVP. Anew Rb-Sr whole-rock isochron for the granite yields an ageof 58?7?1?6 Ma with an initial 87Sr/86Sr of 0?715?0?006. Ndvalues for the granite (–0?9 to –1?9) plot betweencontemporaneous mantle (positive Nd and Cornubian granites (Nd=ca.–11). The trace element data (Rb, Y, Nb) show affinities with syn-collisionand within-plate granites. As the Sr isotope data indicate amajor crustal component, and the Nd isotope data suggest bothmantle and crustal components, we propose that the Lundy graniteis derived from a parental magma comprising crustal components(derived from a similar source to that of the Cornubian granitebatholith) and a mantle-derived component (derived from a differentiateof contemporaneous basaltic magma This magma experienced fractionalcrystallization of plagioclase, alkai feldspar, Fe-Mg minerals,and REE-bearing accessory minerals before emplacement, and theLundy granite experienced further in situ fractional crystallization,associateded with crustal contamination by the Devonian shaleafter emplacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号