首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forced convection in a quasi-steady atmospheric boundary layer is investigated based on a large-eddy simulation (LES) model. The performed simulations show that in the upper portion of the mixed layer the dimensionless (in terms of mixed layer scales) vertical gradients of temperature, humidity, and wind velocity depend on the dimensionless height z/z i and the Reech number Rn. The peak values of variances and covariances at the top of the mixed layer, scaled in terms of the interfacial scales, are functions of the interfacial Richardson number Ri. As a result expressions for the entrainment rates, in the case when the interfacial layer has a finite depth, and a condition for the presence of moistening or drying regimes in the mixed layer, are derived. Profiles of dimensionless scalar moments in the mixed layer are proposed to be expressed in terms of two empirical similarity functions F m and F i , dependent on dimensionless height z/z i , and the interfacial Richardson number Ri. The obtained similarity expressions adequately approximate the LES profiles of scalar statistics, and properly represent the impact of stability, shear, and entrainment. They are also consistent with the parameterization proposed for free convection in the first part of this paper.  相似文献   

2.
Based on data obtained during the Hualhe River Basin Experiment (HUBEX) in 1999, this study intends to detect the quantitative discrepancies in the momentum (τ0), sensible heat (H0) and latent heat (E0) fluxes among six sets of similarity functions with the aerodynamic method. It also aims to clarify the applicability of the functions under stable conditions. The relative discrepancy was studied with the normalized transfer coefficients for τ0, H0 and E0, namely CD, CH and CQ, respectively. Except for one set of functions that adopted a rather small von Kármán's constant (0.365), the relative discrepancy in τ0 among the other functions was less than 10%, while that in H0(E0) sometimes reached 25% when the bulk Richardson number (R/B) was less than 0.07. The absolute discrepancy in the fluxes was studied with statistical computations. Among the six sets of functions, the discrepancy in τ0, H0 and E0 sometimes reached 0.03 kg m^-1 s^-2, 4 W m^-2 and 10 W m^-2, respectively, and the discrepancy in the energy balance ratio sometimes exceeded 0.1. Furthermore, when RiB exceeded the critical value (Ric) for a specific set of functions, no fluxes could be derived with the functions. It is therefore suggested that RiB be compared with Ric before computing the fluxes if RiB is less than Ric. Finally, two sets of nonlinear similarity functions are recommended, due to their unlimited applicability in terms of RiB.  相似文献   

3.
Second-order moments of the breakdown coefficients q r,l of the squared velocity derivative in plane and circular jets indicate a value of the exponent which is larger than that obtained by other methods using the same data or that previously reported by other workers using the same method on atmospheric data. The difference may be due to a failure of the present data to satisfy the first condition of scale similarity, possibly because of the relatively small Reynolds numbers of the laboratory flows. The dependence of the variance of ln q r,l on the length scale l appears to be independent of Reynolds number.  相似文献   

4.
Local Scales of Turbulence in the Stable Boundary Layer   总被引:1,自引:1,他引:0  
Local, gradient-based scales, which contain the vertical velocity and temperature variances, as well as the potential temperature gradient, but do not include fluxes, are tested using data collected during the CASES-99 experiment. The observations show that the scaling based on the temperature variance produces relatively smaller scatter of empirical points. The resulting dimensionless statistical moments approach constant values for sufficiently large values of the Richardson number Ri. This allows one to derive predictions for the Monin–Obukhov similarity functions φ m and φ h , the Prandtl number Pr and the flux Richardson number Rf in weak turbulence regime.  相似文献   

5.
We present a new model of the structure of turbulence in the unstable atmospheric surface layer, and of the structural transition between this and the outer layer. The archetypal element of wall-bounded shear turbulence is the Theodorsen ejection amplifier (TEA) structure, in which an initial ejection of air from near the ground into an ideal laminar and logarithmic flow induces vortical motion about a hairpin-shaped core, which then creates a second ejection that is similar to, but larger than, the first. A series of TEA structures form a TEA cascade. In real turbulent flows TEA structures occur in distorted forms as TEA-like (TEAL) structures. Distortion terminates many TEAL cascades and only the best-formed TEAL structures initiate new cycles. In an extended log layer the resulting shear turbulence is a complex, self-organizing, dissipative system exhibiting self-similar behaviour under inner scaling. Spectral results show that this structure is insensitive to instability. This is contrary to the fundamental hypothesis of Monin--Obukhov similarity theory. All TEAL cascades terminate at the top of the surface layer where they encounter, and are severely distorted by, powerful eddies of similar size from the outer layer. These eddies are products of the breakdown of the large eddies produced by buoyancy in the outer layer. When the outer layer is much deeper than the surface layer the interacting eddies are from the inertial subrange of the outer Richardson cascade. The scale height of the surface layer, z s, is then found by matching the powers delivered to the creation of emerging TEAL structures to the power passing down the Richardson cascade in the outer layer. It is z s = u * 3 /ks, where u * is friction velocity, k is the von Kármán constant and s is the rate of dissipation of turbulence kinetic energy in the outer layer immediately above the surface layer. This height is comparable to the Obukhov length in the fully convective boundary layer. Aircraft and tower observations confirm a strong qualitative change in the structure of the turbulence at about that height. The tallest eddies within the surface layer have height z s, so z s is a new basis parameter for similarity models of the surface layer.  相似文献   

6.
Data collected during the SHEBA and CASES-99 field programs are employed to examine the flux–gradient relationship for wind speed and temperature in the stably stratified boundary layer. The gradient-based and flux-based similarity functions are assessed in terms of the Richardson number Ri and the stability parameter z*, z being height and Λ* the local Obukhov length. The resulting functions are expressed in an analytical form, which is essentially unaffected by self-correlation, when thermal stratification is strong. Turbulence within the stably stratified boundary layer is classified into four regimes: “nearly-neutral” (0 < z* < 0.02), “weakly-stable” (0.02 < z* < 0.6), “very-stable” (0.6 < z* < 50), and “extremely-stable” (z* > 50). The flux-based similarity functions for gradients are constant in “nearly-neutral” conditions. In the “very-stable” regime, the dimensionless gradients are exponential, and proportional to (z*)3/5. The existence of scaling laws in “extremely-stable” conditions is doubtful. The Prandtl number Pr decreases from 0.9 in nearly-neutral conditions and to about 0.7 in the very-stable regime. The necessary condition for the presence of steady-state turbulence is Ri < 0.7.  相似文献   

7.
The paper describes the basic similarity in the spectral forms for velocity and temperature, and the cospectral forms for stress and heat flux in a stably stratified surface layer. A practical scheme is developed for estimating these spectra and cospectra using only height and Richardson number. From this development emerges certain simple relationships between Richardson number, turbulent dissipation rates, characteristic length scales and structure parameters. The paper also presents evidence for isotropy in the surface layer, and the dependence of the limiting wavelength for the 4/3 ratio between transverse and longitudinal velocity components on height and stability.  相似文献   

8.
An expression is derived for the height of the stationary boundary layer during stable lapse rate conditions. It satisfies the conventional limits for neutral conditions and for large values of stability. Comparison with acoustic sounder observations near the meteorological mast at Cabauw (the Netherlands) shows that the steady-state height is not attained for large stability values. The observations are also used to investigate how the similarity functions A and B in the resistance laws depend on the stability parameters 0 = u */f L and = h/L. The function B shows a clear trend as a function of stability, which can be described in terms of . The dependence of A is masked by scatter in the data points. The general conclusion leads to the concept of a non-steady boundary layer during stable lapse rate conditions.  相似文献   

9.
The impact of the Wangara experiment   总被引:1,自引:0,他引:1  
  相似文献   

10.
An expression is derived relating the critical flux Richardson number with the critical (gradient) Richardson number. In contrast to an earlier analysis by Townsend (1958), which is restricted to the atmosphere well outside the earth's boundary layer, the present treatment is intended specifically for turbulent flow in the lower atmosphere and it takes account of the effect of evaporation on the stability. The effect of radiation on the rate of destruction of the mean square of the temperature fluctuations is obtained by considering the radiative flux divergence in a stratified atmosphere and by using a simple functional relationship to represent empirical emissivity data.It was found that evaporation and radiation increase the critical Richardson number by a sensible amount depending on the atmospheric conditions, mainly temperature, humidity and the gradients. There is no definite critical Richardson number but rather a range between 0.25, below which turbulence is very likely, and somewhat higher than 0.5, above which turbulence is improbable. The value of the critical Richardson number can be expressed in terms of evaporation, radiation and the ratio ( w /u *) which also appears not to have a definite critical value. Evaporation and radiation cause the ratio ( w /u *) to be larger than unity under neutral conditions. These results, based on the assumption of Reynolds' analogy,K H =K M , are consistent with the available experimental evidence.  相似文献   

11.
Nine profiles of the temperature structure parameter C T 2 and the standard deviation of vertical velocity fluctuations ( w) in the convective boundary layer (CBL) were obtained with a monostatic Doppler sodar during the second intensive field campaign of the First ISLSCP Field Experiment in 1987. The results were analyzed by using local similarity theory. Local similarity curves depend on four parameters: the height of the mixed layer (z i ), the depth of the interfacial layer (), and the temperature fluxes at the top of the mixed layer (Q i ) and the surface (Q o). Values of these parameters were inferred from sodar data by using the similarity curve for C T 2 and observations at three points in its profile. The effects of entrainment processes on the profiles of C T 2 and wnear the top of the CBL appeared to be described well by local similarity theory. Inferred estimates of surface temperature flux, however, were underestimated in comparison to fluxes measured by eddy correlation. The measured values of wappeared to be slightly smaller than estimates based on available parmeterizations. These discrepancies might have been caused by experimental error or, more likely, by the distortion of turbulence structure above the site by flow over the nonuniform terrain at the observation site.  相似文献   

12.
Measurements of atmospheric turbulence made over the Arctic pack ice during the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) are used to determine the limits of applicability of Monin–Obukhov similarity theory (in the local scaling formulation) in the stable atmospheric boundary layer. Based on the spectral analysis of wind velocity and air temperature fluctuations, it is shown that, when both the gradient Richardson number, Ri, and the flux Richardson number, Rf, exceed a ‘critical value’ of about 0.20–0.25, the inertial subrange associated with the Richardson–Kolmogorov cascade dies out and vertical turbulent fluxes become small. Some small-scale turbulence survives even in this supercritical regime, but this is non-Kolmogorov turbulence, and it decays rapidly with further increasing stability. Similarity theory is based on the turbulent fluxes in the high-frequency part of the spectra that are associated with energy-containing/flux-carrying eddies. Spectral densities in this high-frequency band diminish as the Richardson–Kolmogorov energy cascade weakens; therefore, the applicability of local Monin–Obukhov similarity theory in stable conditions is limited by the inequalities RiRi cr and RfRf cr. However, it is found that Rf cr  =  0.20–0.25 is a primary threshold for applicability. Applying this prerequisite shows that the data follow classical Monin–Obukhov local z-less predictions after the irrelevant cases (turbulence without the Richardson–Kolmogorov cascade) have been filtered out.  相似文献   

13.
This study focuses on the behaviour of the turbulent Prandtl number, Pr t , in the stable atmospheric boundary layer (SBL) based on measurements made during the Surface Heat Budget of the Arctic Ocean experiment (SHEBA). It is found that Pr t increases with increasing stability if Pr t is plotted vs. gradient Richardson number, Ri; but at the same time, Pr t decreases with increasing stability if Pr t is plotted vs. flux Richardson number, Rf, or vs. ζ = z/L. This paradoxical behaviour of the turbulent Prandtl number in the SBL derives from the fact that plots of Pr t vs. Ri (as well as vs. Rf and ζ) for individual 1-h observations and conventional bin-averaged values of the individual quantities have built-in correlation (or self-correlation) because of the shared variables. For independent estimates of how Pr t behaves in very stable stratification, Pr t is plotted against the bulk Richardson number; such plots have no built-in correlation. These plots based on the SHEBA data show that, on the average, Pr t decreases with increasing stability and Pr t < 1 in the very stable case. For specific heights and stabilities, though, the turbulent Prandtl number has more complicated behaviour in the SBL.  相似文献   

14.
Estimates of the geostrophic drag coefficient and the Rossby similarity functions, A and B obtained from data collected by an instrumented aircraft over the sea are presented. The average value of the geostrophic drag coefficient is 0.027 and is independent of the geostrophic windspeed. The dependence of the similarity functions A and B on boundary-layer parameters is investigated. The function A is found to depend on baroclinicity parameters, while B depends on the parameter u */fh (where u * is the surface friction velocity, f is the Coriolis parameter, and h is the boundary-layer depth). Using the geostrophic drag coefficient found here and the results of surface drag coefficient studies, a relationship between geostrophic windspeed and surface windspeed is obtained which shows good agreement with empirical data.  相似文献   

15.
The stability functions for momentum and heat under a Richardson number formulation are derived from the nondimensional shear functions under a Monin-Obukhov formulation. The Prandtl number is also derived as a function of the Richardson number. Previously, this has been done only in a limited sense. Because the Richardson number formulation is expressed in closed form, iterative techniques are no longer needed in numerical models that use Monin-Obukhov similarity theory. This time-saving approach is made possible by deriving expressions for the friction velocity and temperature in terms of the Richardson-number-dependent stability functions. In addition, the Richardson number approximation in the lowest layer is made to depend explicitly upon the surface roughness.  相似文献   

16.
Profiles of wind velocity and temperature in the outer region of the atmospheric boundary layer (ABL) were used together with surface temperature measurements, to determine regional shear stress and sensible heat flux by means of transfer parameterizations on the basis of bulk similarity. The profiles were measured by means of radiosondes and the surface temperatures by infrared radiation thermometry over hilly prairie terrain in northeastern Kansas during the First ISLSCP Field Experiment (FIFE). In the analysis, the needed similarity functions were determined and tested; the main scaling variables used for the ABL were h i , the height of the convectively mixed layer, and V a and a, the wind speed and potential temperature averaged over the mixed layer. Good agreement (r = 0.80) was obtained between values of friction velocity u * determined by this ABL bulk similarity approach and those obtained by Monin-Obukhov similarity in the surface sublayer. Similarly, values of surface flux of sensible heat H determined by this method compared well (r = 0.90) with the regional means measured at six ground stations. The corresponding regional evaporation values, determined with the energy budget equation, also compared favorably (r = 0.94).  相似文献   

17.
We present results of a technique for examining the scale-dependence of the gradient Richardson number, Ri, in the nighttime residual layer. The technique makes use of a series of high-resolution, in situ, vertical profiles of wind speed and potential temperature obtained during CASES-99 in south-eastern Kansas, U.S.A. in October 1999. These profiles extended from the surface, through the nighttime stable boundary layer, and well into the residual layer. Analyses of the vertical gradients of both wind speed, potential temperature and turbulence profiles over a wide range of vertical scale sizes are used to estimate profiles of the local Ri and turbulence structure as a function of scale size. The utility of the technique lies both with the extensive height range of the residual layer as well as with the fact that the sub-metre resolution of the raw profiles enables a metre-by-metre ‘sliding’ average of the scale-dependent Richardson number values over hundreds of metres vertically. The results presented here show that small-scale turbulence is a ubiquitous and omnipresent feature of the residual layer, and that the region is dynamic and highly variable, exhibiting persistent turbulent structure on vertical scales of a few tens of metres or less. Furthermore, these scales are comparable to the scales over which the Ri is less than or equal to the critical value of Ri c of 0.25, although turbulence is also shown to exist in regions with significantly larger Ri values, an observation at least consistent with the concept of hysteresis in turbulence generation and maintenance. Insofar as the important scale sizes are comparable to or smaller than the resolution of current models, it follows that, in order to resolve the observed details of small Ri values and the concomitant turbulence generation, future models need to be capable of significantly higher resolutions.  相似文献   

18.
Flux parameters, zero-plane displancement height and roughness length of a forest canopy are determined taking into consideration a transition layer and atmospheric diabatic influences. The present study, unlike previous studies by DeBruin and Moore (1985) and Lo (1990) that accounted for the velocity profile alone, make use of information from both wind and temperature profiles in formulating the governing equations. However, only the top level measurement is assumed to be within the logarithmic regime. In addition to the mass conservation principle (e.g., Lo, 1990; DeBruin and Moore, 1985), an analytic relationship between the Monin-Obukhov length and the bulk Richardson number is employed as the closure equation for the governing system.The present method is applied to profile measurements taken at Camp Borden (den Hartog and Neumann, 1984) in and above a forest canopy with mean crown height of about 18.5 m. Profile data under neutral or near-neutral conditions yieldedd=12.69 m andz 0=0.97 m, which are realistic values. In general,z 0 increases slightly with increasing wind yet remains relatively constant with respect to small variation of stabilities. On the other hand, increases of wind speed reduced values of displacement height,d, by as much as 50%. The influence, if any, of stability ond, however, is not clear from the results of the present study. The validity of using profile data of limited height is also carefully examined. At least for neutral or near-neutral stabilities, the present method can yield realistic results even though the profile heights are substantially below the transition layer height suggested by Garratt (1978).  相似文献   

19.
In order to investigate effects of interactions between turbulence and gravity waves in the stable boundary layer on similarity theory relationships, we re-examined a dataset, collected during three April nights in 1978 and in 1980 on the 300-m tower of the Boulder Atmospheric Observatory (BAO). The BAO site, located in Erie, Colorado, USA, 30 km east of the foothills of the Rocky Mountains, has been known for the frequent detection of wave activities. The considered profiles of turbulent fluxes and variances were normalized by two local, gradient-based scaling systems, and subsequently compared with similarity functions of the Richardson number, obtained based on data with no influence of gravity currents and topographical factors. The first scaling system was based on local values of the vertical velocity variance $\sigma _\mathrm{w}$ and the Brunt–Väisäla frequency $ N,$ while the second one was based on the temperature variance $\sigma _{\theta }$ and $N.$ Analysis showed some departures from the similarity functions (obtained for data with virtually no influence of mesoscale motions); nonetheless the overall dependency of dimensionless moments on the Richardson number was maintained.  相似文献   

20.
Experimental data of C T 2, determined during various experiments in the surface layer, are compared with several functions giving the stability dependence of the temperature structure parameter. The universal function of the dimensionless temperature gradient by Skeib (1980) follows very well the experimental data and the empirical function by Wyngaard et al. (1971). This function can be used in an inertial-dissipation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号