首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, herbaceous species such as Deyeuxia angustifolia(Kom.) Y. L. Chang has invaded alpine tundra regions of the western slope of the Changbai Mountains. Because atmospheric nitrogen deposition is predicted to increase under a warming climate and D. angustifolia is sensitive to nitrogen addition, field experiments were conducted from 2010 to 2013 to determine the effect of increased nitrogen deposition on the mechanisms of D. angustifolia invasion. The goal of this study is to evaluate the impact of increased nitrogen deposition on the changes in alpine tundra vegetation(consisting mostly of Rhododendron chrysanthum Pall. and Vaccinium uliginosum Linn.). The results showed that: 1) simulated nitrogen deposition affected overall characteristics and structure of R. chrysanthum and V. uliginosum communities and had a positive impact on the growth of tundra vegetation invaded by D. angustifolia; 2) R. chrysanthum was more resistant to invasion by D. angustifolia than V. uliginosum; 3) simulated nitrogen deposition could improve the growth and enhance the competitiveness of D. angustifolia, which was gradually replacing R. chrysanthum and V. uliginosum and might become the dominant species in the system in future, transforming alpine tundra into alpine meadow in the Changbai Mountains.  相似文献   

2.
The Changbai Mountains,located in the temperate monsoon climate zone of East Asia,is an ideal loca-tion for the research on timberline response to global changes.In this study,the topsoils were collected from different vertical vegetation zones on the northern slope of the Changbai Mountains,Northeast China in August 2009,and phytoliths in the soil samples were extracted by using wet oxidation method and identified with Motic 2.0 microscope in laboratory.The results show that phytoliths are abundant in the ...  相似文献   

3.
The vegetation of alpine tundra in the Changbai Mountains has experienced great changes in recent decades. Narrowleaf small reed(Deyeuxia angustifolia), a perennial herb from the birch forest zone had crossed the tree line and invaded into the alpine tundra zone. To reveal the driven mechanism of D. angustifolia invasion, there is an urgent need to figure out the effective seed distribution pattern, which could tell us where the potential risk regions are and help us to interpret the invasion process. In this study, we focus on the locations of the seeds in the soil layer and mean to characterize the effective seed distribution pattern of D. angustifolia. The relationship between the environmental variables and the effective seed distribution pattern was also assessed by redundancy analysis. Results showed that seeds of D. angustifolia spread in the alpine tundra with a considerable number(mean value of 322 per m2). They were mainly distributed in the low elevation areas with no significant differences in different slope positions. Effective seed number(ESN) occurrences of D. angustifolia were different in various plant communities. Plant communities with lower canopy cover tended to have more seeds of D. angustifolia. Our research indicated reliable quantitative information on the extent to which habitats are susceptible to invasion.  相似文献   

4.
The Changbai Mountains and the Appalachian Mountains have similar spatial contexts. The elevation, latitude, and moisture gradients of both mountain ranges offer regional insight for investigating the vegetation dynamics in eastern Eurasia and eastern North America. We determined and compared the spatial patterns and temporal trends in the normalized difference vegetation index (NDVI) in the Changbai Mountains and the Appalachian Mountains using time series data from the Global Inventory Modeling and Mapping Studies 3rd generation dataset from 1982 to 2013. The spatial pattern of NDVI in the Changbai Mountains exhibited fragmentation, whereas NDVI in the Appalachian Mountains decreased from south to north. The vegetation dynamics in the Changbai Mountains had an insignificant trend at the regional scale, whereas the dynamics in the Appalachian Mountains had a significant increasing trend. NDVI increased in 55% of the area of the Changbai Mountains and in 95% of the area of the Appalachian Mountains. The peak NDVI occurred one month later in the Changbai Mountains than in the Appalachian Mountains. The results revealed a significant increase in NDVI in autumn in both mountain ranges. The climatic trend in the Changbai Mountains included warming and decreased precipitation, and whereas that in the Appalachian Mountains included significant warming and increased precipitation. Positive and negative correlations existed between NDVI and temperature and precipitation, respectively, in both mountain ranges. Particularly, the spring temperature and NDVI exhibited a significant positive correlation in both mountain ranges. The results of this study suggest that human actives caused the differences in the spatial patterns of NDVI and that various characteristics of climate change and intensity of human actives dominated the differences in the NDVI trends between the Changbai Mountains and the Appalachian Mountains. Additionally, the vegetation dynamics of both mountain ranges were not identical to those in previous broader-scale studies.  相似文献   

5.
Herbaceous plants are widely distributed on islands and where they exhibit spatial heterogeneity. Accurately identifying the impact factors that drive spatial heterogeneity can reveal typical island biodiversity patterns. Five southern islands in the Miaodao Archipelago, North China were studied herein. The spatial distribution of herbaceous plant diversity on these islands was analyzed, and the impact factors and their degree of impact on spatial heterogeneity were identified using CCA ordination and ANOVA. The results reveal 114 herbaceous plant species, belonging to 94 genera from 34 families in the 50 plots sampled. The total species numbers on different islands were significantly positively correlated with island area, and the average α diversity was correlated with human activities, while the β diversity among islands was more affected by island area than mutual distances. Spatial heterogeneity within islands indicated that the diversities were generally high in areas with higher altitude, slope, total nitrogen, total carbon, and canopy density, and lower moisture content, pH, total phosphorus, total potassium, and aspect. Among the environmental factors, pH, canopy density, total K, total P, moisture content, altitude, and slope had significant gross effects, but only canopy density exhibited a significant net effect. Terrain affected diversity by restricting plantation, plantation in turn influenced soil properties and the two together affected diversity. Therefore, plantation was ultimately the fundamental driving factor for spatial heterogeneity in herbaceous plant diversity on the five islands.  相似文献   

6.
Distribution patterns of plant species are believed to be impacted by small-scale habitat heterogeneity. However, there have been few comparative studies examining how woody vegetation composition and diversity varies with aspects of different orientations in the Trans-Himalayan region at a local scale. Here, we examined the effects of incoming solar radiation on variation in woody species composition and compared the diversity between the northeast- and southwest-facing slopes in a Trans-Himalayan valley of Nepal. We also examined the implicit interactions between slope orientation and land use in determining the compositional variations between the slopes. We selected two pairs of northeast- and southwest-facing slopes where the first pair has a similar land use and differs in exposure only(Pisang site) while the other pair has clear differences in land use in addition to slope exposure(Braka site). In each site, we sampled 72 plots(36 on each slope) in which the presence and absence of woody species, environmental variables, and disturbance were recorded. Correspondence Analysis(CA) results suggested that the woody species composition significantly varied between northeast- and southwest-facing slopes at both sites, and was significantly correlated with measured environmental variables such as radiation index, altitude, and canopy openness. In the Braka site,mean alpha diversity was significantly higher on southwest-facing slopes. In contrast, beta diversity and gamma diversity were greater on northeast-facing slopes at both sites. Our results suggest that topographic variables(e.g., radiation index) affect species composition between the slopes, likely due to their influence on small scale abiotic environmental variables. However, the effects of land use, such as livestock browsing/grazing may interact with the effects of slope exposure, effectively reducing differences in species composition within slopes but enhancing the differences in beta diversity between contrasting slopes in the Br  相似文献   

7.
The investigation of distribution patterns of species diversity is significant for successful biodiversity conservation. The spatial patterns of vegetation and different life-forms species diversity along an elevation gradient in the middle section of the southern slope of the Tianshan Mountains in Xinjiang, China were explored, using the detrended canonical correspondence analysis(DCCA) and the generalized additive model(GAM) methods based on a field survey of 53 sampling plots. In this work 158 species of seed plants were recorded, including 141 herbaceous, 14 shrub, and 2 tree species, in which the woody plants are very limited. 53 sampling plots were classified into 9 major plant communities. The results indicate that the herb communities were the most sensitive to changes in elevation gradient. The diversity indices of the community as a whole presented bimodal patterns. The peak values for the species diversities were found in the transition region between mountain steppe desert and mountain desert steppe(2,200–2,300m), and in the alpine grassland region(2,900–3,100m), while maximum species diversities were in the areas of intermediate environmental gradient. The main environmental factors on the distribution patterns in plant diversity were the elevation, soil water, total nitrogen, available nitrogen, organic matter, and total salt. The response tendency of the four diversity indices for the whole community to the soil environment was the same as that of the herb layers.  相似文献   

8.
The present study highlights the rich species diversity of higher plants in the Bhabha Valley of western Himalaya in India. The analysis of species diversity revealed that a total of 313 species of higher plants inhabit the valley with a characteristic of moist alpine shrub vegetation. The herbaceous life forms dominate and increase with increasing altitude. The major representations are from the families Asteraceae, Rosaceae, Lamiaceae and Poaceae, suggesting thereby the alpine meadow nature of the study area. The effect of altitude on species diversity displays a hump-shaped curve which may be attributed to increase in habitat diversity at the median ranges and relatively less habitat diversity at higher altitudes. The anthropogenic pressure at lower altitudes results in low plant diversity towards the bottom of the valley with most of the species being exotic in nature. Though the plant diversity is less at higher altitudinal ranges, the uniqueness is relatively high with high species replacement rates. More than 90 % of variability in the species diversity could be explained using appropriate quantitative and statistical analysis along the altitudinal gradient. The valley harbours 18 threatened and 41 endemic species, most of which occur at higher altitudinal gradients due to habitat specificity.  相似文献   

9.
Response of Vegetation in the Qinghai-Tibet Plateau to Global Warming   总被引:3,自引:1,他引:2  
Using satellite-observed Normalized Difference Vegetation Index (NDVI) dada and station-observed surface air temperature anomalies for the Northern Hemisphere (NH), we analyze the spatio-temporal characteristics of vege- tation variations in the Qinghai-Tibet Plateau and their correlations with global warming from 1982 to 2002. It is found that the late spring and early summer (May-June) are the months with the strongest responses of vegetation to global warming. Based on the Rotated Empirical Orthogonal Function (REOF) method, the study shows that the first REOF spatial pattern of average NDVI for May-June reveals the northern and southern zones with great inter-annual variations of vegetation, the northern zone from the eastern Kunlun Mountains to the southwestern Qilian Mountain and southern zone from the northern edge of the Himalayas eastward to the Hengduan Mountains. The vegetation, especially grassland, in the two zones increases significantly with global warming, with a correlation coefficient of 0.71 between the first REOF of May-June vegetation and the April-May surface air temperature anomaly in the NH during 1982-2002. A long-term increasing trend in May-June vegetation for the plateau region as a whole is also attributed mainly to global warming although there are considerable regional differences. The areas with low NDVI (grassland and shrubland) usually respond more evidently to global warming, especially since the 1990s, than those with moderate or high NDVI values.  相似文献   

10.
Based on data from 22 sample plots and applying the Canonical Correspondence Analysis (CCA),this paper discusses the vegetation-environment relationships between the northern slope of Karlik Mountain and Naomaohu Basin,which is situated in the easternmost end of the Tianshan Mountains,Xinjiang Uygur Autonomous Region,China.For the zonal vegetation,community diversity of mountain vegetation is higher than that of the desert vegetation due to environmental factors.The CCA ordination diagram revealed that the composition and distribution of vegetation types are mainly determined by altitude,soil pH and soil salt content.With increasing elevation,the soil pH and total salt content decrease but the contents of soil organic matter,soil water,total nitrogen and total phosphorus increase gradually.In the CCA ordination diagrams,the sample plots and main species can be divided into five types according to their adaptations to the environmental factors.Type I is composed of desert vegetation distributed on the low mountains,hills,plains and deserts below an elevation of 1900 m;type II is distributed in the mountain and desert ecotone with an elevation of 1900-2300 m,and includes steppe desert,desert steppe and wetland meadow;type III is very simply composed of only salinized meadow;type IV is distributed above an elevation of 2300 m,containing mountain steppe,meadow steppe,subalpine meadow and alpine meadow;type V only contains salinized meadow.The results show that with increasing elevation,species combination changes from the xerophytic shrubs,semi-shrubs and herbs distributed in the low altitude zone with arid climate to the cold-tolerant perennial herbs growing in the high altitudinal zone with cold climate.  相似文献   

11.
Elevation is one of key factors to affect changes in the environment, particularly changes in conditions of light, water and heat. Studying the soil physicochemical properties and vegetation structure along an elevation gradient is important for understanding the responses of alpine plants andtheir growing environment to climate change. In this study, we studied plant coverage, plant height, species richness, soil water-holding capacity, soil organic carbon(SOC) and total nitrogen(N) on the northern slopes of the Qilian Mountains at elevations from2124 to 3665 m. The following conclusions were drawn:(1) With the increase of elevation, plant coverage and species richness first increased and then decreased, with the maximum values being at 3177 m.Plant height was significantly and negatively correlated with elevation(r=–0.97, P0.01), and the ratio of decrease with elevation was 0.82 cm·100 m-1.(2) Both soil water-holding capacity and soil porosity increased on the northern slopes of the Qilian Mountains with the increase of elevation. The soil saturated water content at the 0-40 cm depth first increased and then stabilized with a further increase of elevation, and the average ratio of increase was2.44 mm·100 m-1. With the increase of elevation, the average bulk density at the 0-40 cm depth first decreased and then stabilized at 0.89 g/cm3.(3) With the increase of elevation, the average SOC content at the 0-40 cm depths first increased and then decreased,and the average total N content at the 0-40 cm depth first increased and then stabilized. The correlation between average SOC content and average total N content reached significant level. According to the results of this study, the distribution of plants showed a mono-peak curve with increasing elevation on the northern slopes of the Qilian Mountains. The limiting factor for plant growth at the high elevation areas was not soil physicochemical properties, and therefore,global warming will likely facilitate the development of plant at high elevation areas in the Qilian Mountains.  相似文献   

12.
新疆NDVI时空特征及气候变化影响研究   总被引:1,自引:0,他引:1  
基于新疆50个气象测站2003-2010年逐日降水、气温资料,结合逐月归一化植被覆盖影像资料,利用趋势分析、R/S分析、模糊C均值聚类、图像处理等方法,系统分析了全疆NDVI时空变化特征及其可持续性,并探究NDVI与气候因子(气温、降水)之间的相关性。研究表明:植被覆盖及气象因子年际间差异不大,呈现出整体稳定的态势,但年内变化明显。北疆/天山北坡水热条件优良、植被长势最好,且植被长势对气候因子的滞后效应并不明显且滞后时间短。天山南坡/天山东段次之,而南疆植被覆盖程度最差,南疆/天山南坡植被长势对气候因子(降水、气温)存在明显的滞后效应,植被生长受气温、降水限制性更大,且气温作为主要因子,对天山南坡植被生长的限制作用表现得更为突出。总体上,新疆植被覆盖呈持续性变化,现有植被覆盖情况基本保持不变,但呈退化趋势的面积大于得到改善的面积,在一定程度上与人类活动有很大关系,探查植被长势的变化趋势并及时做出相应调整,不仅能为新疆地区的植被保护以及植被恢复工作提供一定的科学依据,更能够为合理有效地安排农作物生产提供重要的理论指导。  相似文献   

13.
In arid regions, mountains fulfill important ecological and economic functions for the surrounding lowlands. In the scenario of global warming, mountain ecosystems change rapidly, especially in the arid region of northwestern China. This paper provides an assessment of the changes in temperature and precipitation in the historical records of climate on the northern slopes of the eastern Tianshan Mountains. A Mann-Kendall nonparametric trend and Sen's tests are employed to analyze the interannual changes and innerannual variability in temperature and precipitatiofi in the regions of low to high altitude. The present study finds that the largest increases in annual temperature are observed at stations in the low altitude regions. The significant increasing trends in temperature tend to occur mainly in late winter and early spring at stations from middle to high altitude, but in summer and autumn at stations of low altitudes. The increasing trends in annual precipitation are found from the middle to high altitude areas, but decreasing trends are found in the low altitude areas. The significant increasing trends in precipitation occur mostly in winter and earlier spring at stations from the middle to high altitudes, while the increasing and decreasing trend coexists at stations of low altitude with most of the significant trend changes occurring in March, June and August.  相似文献   

14.
本文基于Landsat影像数据获取天山博格达自然遗产地土地覆盖分类,结合归一化植被指数(NDVI)和数字高程模型(DEM)构建“DEM-NDVI-土地覆盖分类”散点图分析研究区植被受海拔和坡向的水热空间变化影响的分布特征,通过概率统计分析提取博格达遗产地山地垂直带,并结合研究区的气温、降水数据和NDVI变化特征分析垂直带变化的原因。研究结果表明:① 本文利用“DEM-NDVI-土地覆盖分类”散点图,揭示了研究区1989年和2016年的NDVI值和分类类别随着海拔上升的变化特征,其中NDVI值随着海拔上升呈现“倒U形”变化,而不同分类类别在一定的海拔区间内呈现出聚集效应,且不同分类类别有明显的高程界限。② 1989年和2016年博格达遗产地山地垂直带分带上限分别为:1278 m和1185 m(温带荒漠草原带)、1784 m和1759 m(山地草原带)、2706 m和2730 m(山地针叶林带)、3272 m和3293 m(高山草甸带)、3636 m和3690 m(高山垫状植被带)。③ 博格达遗产地1989年和2016年山地垂直带受区域气温升高和降雨增加的影响有较为明显的改变,其中温带荒漠草原带最为敏感,其上限变化最大,向下收缩93 m;山地针叶林带的分布范围则向两侧扩张49 m;山地草甸带带宽基本保持不变,但整体上移了约20 m;冰雪带则受到全球气候变暖的影响向上退缩54 m。  相似文献   

15.
秦巴山地是中国的南北分界线,也是黄河和长江的分水岭,其山体效应的定量化影响秦巴山地山体垂直带的分布格局、非地带性因素的作用强度和机理,以及中国暖温带和北亚热带的具体位置的确定。山体基面高度是影响山体效应最重要和关键的地形因子,其定量化和数字化提取是秦巴山地山体效应定量化研究的重要内容。本研究针对秦巴山地山体效应的定量化研究,使用30 m分辨率的STRM-1数据,分别基于山体特征线和流域分区2种方法提取了秦巴山地的山体基面高度分区,并根据地形起伏度和坡度,确定基面范围,计算了山体基面高度值。结果表明:① 基于山体特征线的方法将秦巴山地分为93个基面高度分区,基于流域分区的方法将秦巴山地分为209个基面高度分区,根据2种分区结果提取的基面高度值相差不大且均体现了秦巴山地地势的特点;② 秦巴山地山体基面高度从东向西呈阶梯状递增的趋势;③ 从南到北,秦巴山地的东段和中段均呈先增高后降低的趋势,即从大巴山向北至汉江谷地降低,再向北至秦岭升高;④ 山地的不同侧翼的山体基面高度不同,秦岭南坡的基面高度(1000~1809 m)明显高于北坡(850~1300 m)。秦巴山地山体基面高度与其植被带分布上限联系密切,实现山体基面高度的数字化提取,为山体效应的定量化研究提供了重要的技术支持。  相似文献   

16.
《山地科学学报》2020,17(3):588-601
Variations in phytogeography of Jal Al-Zor wadi system in Sabah Al Ahmad Nature Reserve, an arid national park in Kuwait, in relation to physiographic and edaphic conditions were investigated using alpha diversity and multivariate analyses. A total of 66 plant species were recorded at low-relief and high-relief wadis. Altitude and slope gradients, grain size distribution and soil texture properties had a significant relationship with plant cover and plant diversity. There was a high diversity of life-forms along the wadi system with a dominant of therophytes(annuals) particularly in spring after winter rainfalls. Chamaephytes and hemicryptophytes were the dominant perennial life-forms. A chorological analysis documents the strong effect of Saharo-Arabian chorotype on the vegetation of the study area. Cluster analysis clarified eight vegetation assemblages along altitude and slope gradients within the wadi system. Alpha diversity of plant species was greater in plant assemblages at low-relief wadis than at high-relief wadis. Vegetation structure in this study showed that phytogeographically, wadis of Jal Al-Zor were closely related to the wadis in the Arabian deserts. The slope gradient pattern and edaphic conditions of plant assemblages and plant diversity in the conserved wadis of Jal Al-Zor may be suggested as a reference model for restoration strategy of disturbed low elevated wadis in the surrounding desert regions.Restoration would include propagation of suitable plants such as Stipagrostis plumosa-Haloxylon salicornicum-Rhanterium epapposum.  相似文献   

17.
Vegetation in slopes can effectively improve slope stability.However,it is difficult to estimate the effects of vegetation on slope stability because of variations in plant species and environmental conditions.Moreover,influences of plant growth on slope stability change with time,resulting in changes in the safety factor.This study was conducted to evaluate the stability of vegetated slopes with time and investigate the effects of different layouts of plant species on slope stability.Here,we used a plant growth model and slope stability analysis to build an evaluation model.To accomplish this,one species of tree,shrub and grass was chosen to set six layout patterns.A slope with no vegetation served as a control.The safety factors of the seven slopes were then calculated using the developed evaluation model and differences in the safety factors of slopes were compared and discussed.The slope vegetated with Platycladus orientalis reached the most stable state at the age of 60 years.Shrub slope(Vitex negundo)had the maximum safety factor after 20 years.Overall,the safety factor of vegetated slopes increased from 12.1%to 49.6% compared to the slope with no vegetation.When wind force was considered,the safety factor value of the slope changed from 3.5%to 43.5%.Vegetation mixtures of trees and grasses resulted in the best slope stability.Planting grasses on slopes can improve slope stability of trees to a greater degree than that of slopes with shrubs in the early stage of growth.  相似文献   

18.
Remotely sensing images are now available for monitoring vegetation dynamics over large areas.In this paper,an improved logistic model that combines double logistic model and global function was developed.Using this model with SPOT/NDVI data,three key vegetation phenology metrics,the start of growing season (SOS),the end of growing season (EOS) and the length of growing season (LOS),were extracted and mapped in the Changbai Mountains,and the relationship between the key phenology metrics and elevation were ...  相似文献   

19.
利用依兰-伊通断裂带北部地区1977年、1991年和2015年3期精密水准数据,采取伪逆基准下的线性动态运动模型进行平差,并归算到选取的基准点,分别获取该区域2期相对速率场(1977~1991年和1991~2015年)。前一期速率场表明,大致以依兰-伊通断裂带为界,该区域长白山北部相对于小兴安岭南段隆升,最大相对速率为7.51 mm/a;后一期速率场表明,整个依兰-伊通断裂带北部地区相对速率较小,最大相对速率仅为3.4 mm/a,该区域趋向于整体性的继承性运动,断裂带两侧相对运动明显减弱。  相似文献   

20.
The control mechanisms of topography on alpine treeline pattern are critical to understanding treeline dynamics and future changes. These mechanisms have not been understood quite well enough because of increasing human disturbance and low data resolution. In this study, the relationship between the treeline pattern and topography was analyzed based on high spatial resolution remote sensing data and a digital elevation model in an area in Changbai Mountain with little human disturbance. Future treeline patterns were also predicted. The results showed that(a) aspects with high solar radiation and low snow cover have a high coverage rate of trees,(b) the peak coverage rate of trees switches from low slopes(5°) to medium slopes(5°~25°) as the elevation rises because of the extreme environment,(c) the coverage rate of trees is a function that depends on environmental factors controlled by topography,(d) the future treeline pattern is controlled by new temperature mechanisms, new environmental factors and the reallocation effect of topography. Our research implies that topography controls the treeline pattern and changes in the treeline pattern associated with global warming, due to the effect of global warming on environmental factors. This study may well explain the causes of heterogeneous changes in the treeline pattern in the horizontal direction as well as differences in treeline response to climate warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号