首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
西天山两侧前陆盆地晚新生代沉积特征及构造意义   总被引:5,自引:1,他引:4  
天山两侧前陆盆地晚新生代地层发育,沉积厚度较大。盆地沉积序列的韵律性反映了天山造山带的构造演化历史。晚新生代沉积特征及孢粉组合表明,中新世一上新世一早更新世碎屑岩不稳定组分明显增加,阔叶植物花粉含量减少、耐干地喜早的蒿、藜等显著增加,反映天山活动性增强,上新世晚期天山强烈隆升,天山两侧前陆盆地上新世晚期开始出现磨拉石建造,由于山体隆升造成的大气环流改变,天山两侧盆地封闭性增强,大陆性气候流改变,天  相似文献   

2.
中吉天山隆升时代对比——裂变径迹年代学证据   总被引:2,自引:1,他引:1       下载免费PDF全文
中吉天山成矿带境内外天山在成矿时代、矿产种类、矿床规模等多方面存在重大差异。它们的成矿条件基本类似,是否因为保存条件的不同而产生这种差异值得关注。文章对采自吉尔吉斯斯坦北天山(境外西天山)的磷灰石样品进行了裂变径迹测试分析和温度-时间反演模拟研究,表明吉尔吉斯斯坦北天山在中新生代发生了四期抬升剥露作用,分别为晚侏罗世、晚白垩世、始新世和渐新世,且不同区域其抬升剥露史也不相同:晚侏罗世的抬升局限于伊塞克湖南岸的泰尔斯山脉,始新世的抬升主要发生在伊塞克湖南北两侧的泰尔斯山脉和昆格山脉,晚白垩世和渐新世的抬升为吉尔吉斯斯坦北天山整体抬升。与东部境内西天山对比表明,境内西天山整体隆升时间较早,历时较长,有可能隆升剥蚀程度超过境外西天山,从而造成了成矿方面的重大差异。  相似文献   

3.
天山地区碰撞后构造与盆山演化   总被引:48,自引:0,他引:48  
研究表明,近东西向的天山造山带基本格架在古生代晚期已经初步形成;平行造山带广泛分布的二叠纪红色磨拉石证明当时造山隆升作用非常强烈,导致前陆盆地普遍发育。三叠纪,天山造山带遭受区域剥蚀夷平,盆山高差缩小,盆地规模进一步扩大。侏罗纪—古近纪,由于板内伸展作用,在准平原化的天山地区形成了一系列伸展盆地,呈近东西向分布。新近纪以来,受南面印度—欧亚陆—陆碰撞的影响,天山地区发生强烈陆内变形,以逆冲推覆和褶皱堆叠为特征;节理统计表明新生代的主压应力为南北方向。晚新生代,由印度和欧亚大陆碰撞产生的强烈挤压作用对大陆腹地的天山地区影响很大:前中生代块体发生剧烈隆升和褶皱,伴随大规模新生代坳陷的形成,导致盆山高差急剧增大;脆性剪切与挤压变形构造叠加在韧性变形的古生代岩层之上。同时,中生代拉伸盆地发生构造反转,形成新生代挤压盆地,盆山交接带变形以台阶状逆断层和断层相关褶皱为特征。由于盆地朝造山带的下插作用,使古生代的岩层呈构造岩片方式逆冲推覆在盆地边缘的中新生代岩层之上,当穿越不同地质构造单元时表现出不同的运动学特征。强烈挤压褶皱冲断是晚新生代盆山交接带的基本特征和最普遍的盆-山耦合方式,局部伴有小规模近东西向的走滑断层。中生代沉积岩的褶皱与断裂、侏罗纪煤层自燃及烧结岩的形成、强烈地震与断层活动、以及新疆独特的镶嵌状盆山格局,都是新近纪以来构造作用的产物。  相似文献   

4.
循化-化隆盆地新生代沉积及盆地基底和周缘山系磷灰石裂变径迹年代学分析揭示了青藏高原东北缘晚白垩世以来经历过3期隆升剥露事件: (1)盆地基底及拉脊山和西秦岭北缘构造带磷灰石裂变径迹年龄分析普遍记录了晚白垩世-始新世中期相对快速的区域性的隆升剥露事件, 西秦岭北缘快速抬升的起始时间为84Ma, 受控于向北的逆冲抬升; 向北到循化-化隆盆地中部的拉目峡抬升的起始时间为69Ma; 更北的拉脊山一带快速抬升期主要为40~50Ma, 从而反映晚白垩世-始新世中期的快速抬升由南向北逐渐扩展.这一期构造隆升事件导致循化-化隆盆地和临夏盆地缺失了北部西宁-民和盆地古近纪所具有的西宁群沉积.隆升剥露结束于31Ma左右, 此时化隆-循化盆地向东与同时期的临夏盆地相连为一个统一的大型西秦岭山前盆地, 两者具有相同的构造、沉积演化史, 因此循化-化隆盆地他拉组底部地层年龄最老不会超过临夏盆地最老地层的古地磁年龄, 即29Ma.(2)渐新世晚期约26Ma拉脊山开始双向逆冲隆升, 并可能延续到中新世早期约21Ma, 隆升作用使循化-化隆盆地成为挟持于拉脊山逆冲带和西秦岭构造带之间的山前挤压型前陆盆地, 循化-化隆盆地开始大规模沉积巨厚的他拉组冲积扇相粗碎屑岩.(3)通过循化-化隆盆地咸水河组和临夏组的沉积相分析、古流方向和砾石成分分析, 揭示出拉脊山构造带在中新世8Ma左右发生的最大规模的双向逆冲隆升事件, 这次事件直接导致循化-化隆盆地由前陆挤压盆地转变为山间盆地, 形成现今青藏高原东北缘的盆山地貌基本格局.   相似文献   

5.
中新生代天山地区隆升历史的裂变径迹证据   总被引:23,自引:1,他引:22  
杜治利  王清晨 《地质学报》2007,81(8):1081-1101
本文对天山及其两侧盆地的8条典型地质剖面进行了大量的磷灰石裂变径迹测试,重点分析了天山地区不同区域的抬升历史的差异。结果表明天山主要经历4次构造抬升过程,每次抬升的范围并不相同,且存在东西差异:①早白垩世抬升,在天山南北两侧都有发生,且南边抬升早,北边抬升晚。本次抬升导致早中侏罗世天山地区准平原化状态开始解体,盆山分异开始出现;②晚白垩世抬升,从约96Ma开始,天山南侧为盆山同升的区域性隆升,天山北侧的抬升主要发生在东部地区;③古近纪抬升,从约46Ma开始,主要发生在中天山和南天山,造成天山两侧盆地物源区的重大变化,本次抬升为印度-亚洲碰撞在天山地区产生的最早的远程效应;④中新世以来的抬升,从约25Ma开始,主要发生在库车盆地北缘和北天山—准噶尔南缘。从抬升剥蚀量来看,从东向西逐渐变大。  相似文献   

6.
中、新生代天山隆升过程及其与准噶尔、阿尔泰山比较研究   总被引:49,自引:4,他引:45  
根据穿越天山地质剖面观察、系统裂变径迹(FT)测年年龄与热演化模拟结果分析,并综合前人研究结果,天山陆内造山带中、新生代主要经历2次明显的隆升事件,分别为晚侏罗世—早白垩世和中新世以来(25~0Ma)。从天山地区磷灰石FT年龄结果来看,主要记录了早期隆升年龄,但热演化模拟结果显示普遍经历了中新世以来的快速隆升。在天山北缘从盆山边缘的近25Ma开始隆升到前缘带的现今活动,表明天山陆内造山带在隆升的同时还逐渐“增生”扩展。系统研究和分析表明,东西准噶尔和阿尔泰地区则主要记录了晚中生代以来的持续隆升过程,新生代构造活动不明显或强度相对天山要弱。上述事实表明,天山及其中亚地区新生代的陆内活动是受喜马拉雅碰撞与青藏高原隆升的影响,具有向北渐弱的特征。  相似文献   

7.
中新生代天山隆升及其南北盆地分异与沉积环境演化   总被引:5,自引:2,他引:3  
明确中生代以来天山隆升的时间顺序、隆升范围,及其与南北两侧盆地的沉积环境演化之间的关系,是天山两侧准噶尔盆地、吐哈盆地与塔里木等盆地原型恢复研究的重要需求。通过分析天山南北主要盆地类型、沉积充填、古气候变化,物源属性、边缘相带迁移反映的物源区远近变化与古水流特征,以及大量磷灰石裂变径迹测年数据认为,中新生代天山主要存在晚三叠世-早侏罗世、晚侏罗世-早白垩世、晚白垩世-始新世、中新世-第四纪的四期阶段隆升。在此基础上,编制了早侏罗世早期-第四纪的天山隆升范围及其南北盆地的沉积环境演化图,表明天山的四阶段隆升控制了北疆与南疆盆地由早、中侏罗世统一泛湖盆至晚侏罗-早白垩世盆地开始分异,再到新近纪以来彻底分割成独立盆地的沉积演化过程。同时,明确了天山南北两侧各盆地储层、烃源岩及盖层的重要形成期与天山隆升的关系,对有效拓展油气勘探范围有所启示。  相似文献   

8.
中新生代南北天山差异性抬升历史的磷灰石裂变径迹证据   总被引:1,自引:0,他引:1  
堆积于天山山前坳陷内部的巨厚新生代地层不仅记录所在沉积区的热历史信息,还记录了物源区的信息。本文选择天山南北两侧山前坳陷中3条地质剖面进行了大量的磷灰石裂变径迹测试和部分样品的热历史模拟分析,来揭示上新世以来天山在南北方向上隆升过程的差异性。采样剖面的选取较前人更加靠近前陆盆地方向,样品所在地层年代更新。结果显示,东秋里塔格背斜剖面中的样品记录了中天山、南天山和背斜区分别在55~65Ma、20~25Ma和5Ma经历了构造隆升。玛纳斯背斜剖面中的样品记录了北天山的三次构造隆升事件分别发生于55~65Ma、20~25Ma和5Ma,其中距今5Ma为玛纳斯背斜带起始隆升的时代。结合前人在相同区域的研究成果,分析得出天山的不同部分经历了不同的构造演化历史,自150Ma以来经历了三期差异性隆升。中生代时期(150~125Ma)表现为山体整体抬升,中生代晚期-新生代早期(100~50Ma)北天山明显早于南天山开始构造隆升,新生代以来(~50Ma)的构造运动以向前陆盆地方向扩展为特征,而隆升起始时间南北差异变小。虽然在南北方向上天山山体隆起时间上存在明显的差异,但是中新生代以来山体物源区的剥蚀速率大体相同。因此,隆升起始时间与隆升量之间并不存在必然的定量关系。天山的不同块体具有不同的构造演化历史的事实提示在研究大范围构造隆升作用时,应将构造作用作为一个过程来对待。变形在传递的过程中,在时间和空间上存在一定的滞后现象。  相似文献   

9.
沉积学研究和古流向统计分析表明,侏罗纪时期后峡坳陷不是一个独立的盆地,而是与准噶尔南缘相连的同一盆地。后峡南缘侏罗系底部发育边缘相的冲积扇,表明当时的侏罗纪盆地范围至少达到后峡一带,比现今山前侏罗系分布范围大很多。煤岩镜质体反射率(Ro)分析表明,中侏罗统西山窑组(J2x)的埋深至少在3 km以上。根据磷灰石裂变径迹年龄并结合构造分析资料,提出是晚新生代以来的天山快速隆升过程和前陆冲断推覆构造,分隔了后峡坳陷和天山北缘侏罗系。  相似文献   

10.
介于复活的天山造山带与稳定的准噶尔克拉通之间的准噶尔盆地南缘前陆冲断带,是印度板块与欧亚大陆碰撞的远距离效应产物,也是新近纪以来青藏高原隆升并向北推挤的直接结果。前陆冲断带吸收了来自造山带的水平缩短构造位移量后,克拉通一侧构造趋于稳定。准噶尔盆地南缘与世界上多数前陆冲断带构造地质特征相似,通过区域地震剖面的精细构造几何学和运动学解析,发现其中的楔形构造非常典型,是前陆冲断带内部冲断构造位移量消减的主要方式之一,控制着前陆冲断带分布范围和变形方式。准噶尔盆地南缘构造变形主要由南侧的天山造山带向北逆掩冲断,但是大部分冲断构造位移量是通过楔形构造反向传递后消减。紧邻天山北麓的齐古-喀拉扎-昌吉等构造带,山前深部的楔形体沿侏罗系西山窑组煤层向北扩展过程中,部分位移量沿构造楔顶部的反冲断层向南消减,并切割上覆地层形成第一排背斜带,另一部分位移量则继续向北传递,在断坡位置引发褶皱变形,形成霍-玛-吐第二排构造带和安集海-呼图壁第三排背斜带。准噶尔盆地南缘第二、三排构造带中-新生界内部发育多个小型的构造楔型体,这些互相叠置的楔型构造横向延伸不大,加大了构造变形的复杂性和构造圈闭识别的难度。  相似文献   

11.
新疆库车盆地东秋里塔格构造带新生代的构造演化   总被引:1,自引:15,他引:1       下载免费PDF全文
东秋里塔格构造带位于库车前陆盆地的南缘,新生代经历了强烈的构造挤压和构造沉降。平衡剖面分析、生长地层识别和重点井沉降史的数值模拟表明:古新-始新世库姆格列木群沉积期间构造活动微弱并沉降缓慢。渐新世苏维依组沉积期间,构造活动开始加强,沉降速度加快,并形成了一些小断距的逆断层。中新世构造活动进一步加强,沉降加速,沉积了厚层的吉迪克组膏盐层;康村组沉积时期,构造挤压使得膏盐层发生塑性流动,形成盐枕,康村组发育生长地层。随后的上新世库车组沉积期间,研究区先发生快速沉降,然后,随着南天山急剧隆升,冲断作用迅速向南扩展。约在早更新世,库车褶皱冲断带前锋到达东秋里塔格构造带,并最终定型,使得该区发生强烈的构造变形,形成大量的逆冲断裂构造带,膏盐层表现出明显的塑性流动,形成盐推覆构造。  相似文献   

12.
The modern Tianshan Mountains and their surrounding basins have mainly been shaped by the far field effects of the Cenozoic India-Asia collision. However, precollision topographic evolution of the Tianshan Mountains and its impacts on the Junggar and Turpan Basins remain unclear due to the scarcity of data. Detrital zircon U-Pb dating of 14 new and 23 published samples from Permian to Neogene strata in the northern Western Tianshan Mountains, northern and southern Bogda Mountains and Central Turpan Basin, are combined with sedimentary characteristics (lithofacies, petrofacies and paleocurrent data) to investigate the temporal and spatial changes in sediment provenances. Based on the age characteristics of the source rocks in the Tianshan Mountains, the detrital zircons are divided into three groups: pre-Carboniferous zircons, mainly from the Central Tianshan Mountains; Carboniferous to Permian zircons, mainly from the North Tianshan and Bogda Mountains; and Mesozoic zircons, mainly from syn-depositional volcanic activity. The topographic evolution of the Tianshan Mountains and their relation to the Junggar and Turpan Basins can be generally divided into six stages. (1) Positive-relief Tianshan and Bogda Mountains and a rifted marine basin formed during the Early Permian to early Middle Permian following late Carboniferous orogenesis, as evidenced by interbedded alluvial fan conglomerates and postcollisional extension-related volcanic rocks along the basin margins, by marine deposits far from the basin margins and by the predominance of Carboniferous to Permian detrital zircons. (2) Fluvial to lacustrine deposits in the modern southern Junggar and Turpan Basins are characterized by abundant pre-Carboniferous zircons and consistently northward-flowing paleocurrents, indicating the submergence of the Bogda Mountains and a contiguous Junggar-Turpan continental depression basin during the late Middle Permian to the Triassic. (3) The Bogda Mountains began to uplift in the Early Jurassic, resulting in opposing paleocurrent directions, a sudden increase in sedimentary lithic detritus and the dominance of Carboniferous to Permian detrital zircons along the southern and northern margins of this range. (4) In contrast to the uplift of the Bogda Mountains, the other parts of the Tianshan Mountains experienced gradual peneplanation from the Early Jurassic to the Middle Jurassic, as confirmed by widespread fluvial to lacustrine deposits, even inside the modern Tianshan Mountains, and by the dominance of pre-Carboniferous detrital zircons. (5) The dominance of Carboniferous to Permian zircons in the southern Junggar Basin suggests the West Tianshan Mountains were uplifted during the Late Jurassic, while the dominance of pre-Carboniferous zircons in the Central Turpan Basin indicates continuous peneplanation in the Eastern Tianshan Mountains. (6) The initial shape of the Tianshan Mountains-Junggar Basin-Turpan Basin system was constructed in the Late Jurassic but was modified in the Cenozoic by the India-Asia collision, resulting in much higher Western Tianshan and Bogda Mountains, low Eastern Tianshan Mountains and well-developed foreland basins. These Cenozoic changes were recorded by the rapid cooling of apatites, the dominance of Carboniferous to Permian zircons in the southern Junggar Basin and northern Turpan Basin, and the dominance of pre-Carboniferous zircons in the Central Turpan Basin.  相似文献   

13.
塔西南坳陷侏罗系断陷盆地沉积特征   总被引:9,自引:1,他引:8  
塔西南坳陷自中生代早期以来进入陆相沉积发育阶段,由于天山隆升及昆仑山的俯冲,塔西南地区侏罗地区侏罗系表现出西岸陡、东岸缓的断陷盆地特征。研究表明,侏罗纪断陷湖盆共发育Gms,Gm,Gt,Gpb,Gp,等19种岩石相类型和冲积扇相、扇三角洲相、辫状三角洲相、正常三角洲相及湖泊相等5种沉积相类型。西岸陡坡带以冲积扇和扇三角洲沉积为主,东岸缓坡带以河流三角洲、辫状三角洲占优势,盆地中心为湖相沉积。不同的  相似文献   

14.
中国西天山南缘盆山构造转换解析   总被引:15,自引:4,他引:11  
李向东  王克卓 《新疆地质》2000,18(3):211-219
在西天山南缘,天山造山带向塔里木盆地北缘的盆山过渡,是以前陆褶皱冲断构造形式向库车一拜城前陆盆地渐变,表现为一系列褶皱冲断组合的构造样式。根据独库公路南段构造变形分析,可组合成6个部分:库尔干一铁力买提达坂根带褶皱系、南天山南缘逆冲断裂带、前陆逆冲推覆构造带、前陆双冲褶皱构造带、前陆隐伏逆冲前缘构造带、沙雅一轮台前缘叠加变形构造带。前陆盆地的发展可以划分为晚二叠一早三叠世、中三叠世一侏罗纪、白垩一  相似文献   

15.
北大巴山凤凰山基底隆起晚中生代构造隆升历史   总被引:8,自引:0,他引:8  
对采自于北大巴山凤凰山基底隆起8个样品的磷灰石裂变径迹年代学分析和热历史模拟表明,凤凰山基底隆起陆内造山运动结束后的隆升历史大致可以划分为2个阶段:早白垩世中晚期(135±5~95±5 Ma)缓慢隆升,晚白垩世(95±5~65±5 Ma)快速隆升。大巴山北缘韧性剪切带黑云母40Ar/39Ar坪年龄证实大巴山北缘中晚侏罗世(165.7±1.9 Ma~161.2 Ma)存在快速隆升剥蚀,其与大巴山强烈陆内造山作用阶段有关; 早白垩世中晚期缓慢隆升代表了陆内造山结束后的稳定阶段; 晚白垩世快速隆升为一次区域性隆升事件,在秦岭、大别和武当等地区均有反映,隆升过程中伴随着强烈的伸展垮塌作用,沿秦岭造山带发育一系列伸展断陷盆地。区域对比分析表明,凤凰山基底隆起隆升历史与黄陵、汉南地块接近,但与武当地块存在明显区别,反映了秦岭造山带的不均一隆升过程。南大巴山前陆带1个样品的热史模拟结果显示,南大巴山前陆带自早白垩世以来与凤凰山基底隆起经历了一致的隆升过程。  相似文献   

16.
川西龙门山前陆盆地构造沉降初步分析   总被引:7,自引:0,他引:7       下载免费PDF全文
研究表明,龙门山冲断带是川西前陆盆地的主要物源区,它的逆冲推覆活动直接控制着川西前陆盆地的沉积类型和沉积物供给量,晚三叠世诺利期,瑞替期和晚侏罗世早中期是川西前陆盆地构造沉降速率较高时期,反映龙门山冲断带在这些时期的逆冲推覆速率较大,是逆冲推覆作用构造抬升的强烈时期;而早侏罗世是该地区构造沉降时,估算龙门山逆冲推覆体在各个不同时期的抬升高度和抬升速率。  相似文献   

17.
Apatite fission‐track analyses on samples from eastern Sardinia document a complex tectonic history, whose reconstruction is problematic because of the reactivation of faults and structures at different times from Jurassic to Miocene. The oldest ages (150–154 Ma) have been detected on the southern margin of the Gulf of Orosei and are related to the extensional tectonics that characterize the European passive margin during Early and Middle Jurassic times. Thermal modelling of these data allows reconstruction of the burial history of the Mesozoic basin and estimation of a sedimentary thickness of 2000 m. Part of these sediments was eroded during the following uplift, documented by mid‐Cretaceous fission‐track ages. A further exhumation episode of Eocene age has been revealed by fission‐track data on granite samples, and has been inferred to be related to the Alpine orogenic phase. This tectonic episode caused the exhumation of crustal blocks bound by faults that were finally reactivated during the Late Oligocene–Early Miocene.  相似文献   

18.
为了揭示长约2500 km的天山山脉中新生代隆升特征,本文系统梳理分析了已发表的磷灰石裂变径迹数据和本次野外采样测得磷灰石裂变径迹数据约460个,岩性以花岗岩和砂岩为主。结果显示整个天山山脉隆升具有明显的时空差异性。白垩纪以前记录的径迹数据约占14%,白垩纪以来的数据约占86%,晚古生代末天山已有径迹年龄记录,到晚侏罗世天山部分地区发生隆升,整体隆升不明显,早白垩世以来整个天山普遍隆升,且存在多期隆升事件,但隆升剥蚀速率存在明显差异。南北方向上,自南向北径迹年龄有减小的趋势,揭示山脉隆升自南天山向北天山扩展;东西方向上,西天山隆升时限较东天山隆升早,但白垩纪以来东、西天山均有隆升记录。天山山脉差异性隆升是不同陆块对亚洲板块南缘碰撞增生作用的共同结果,其内部块体的结构特征和力学性质是差异隆升的基础和前提。  相似文献   

19.
通过对库车前陆盆地的2条MT测线和3条地震剖面的重力二维模拟与综合解释,提高了在复杂变形带进行的构造建模的可靠性。模拟结果表明,库车前陆盆地是以断层相关褶皱作为滑动机制的前陆冲断带。沿下第三系膏盐岩和膏泥岩、侏罗系一三叠系煤系地层发育的滑脱层控制了断层相关褶皱的变形模式,并导致浅层背斜与深部圈闭的位置不一致。在盆地北面,南天山古生界楔入了北部单斜带的中生代地层,导致剩余重力异常值升高;盆地南面,新生界沉积厚度的增加使剩余重力值逐渐降低,局部盐体的堆积可形成重力异常低谷。此外,拜城凹陷基底的密度较高,可能是凹陷形成初期岩浆底侵的结果。推覆变形自天山向塔里木盆地推移,反映了中新世以来逐渐增强的南北向挤压应力和地壳缩短,是印度板块与欧亚板块碰撞的远距离效应。  相似文献   

20.
Studies show that the Tianshan orogenic belt was built in the late stage of the Paleozoic, as evidenced by the Permian red molasses and foreland basins, which are distributed in parallel with the Tianshan belt, indicating that an intense folding and uplifting event took place. During the Triassic, this orogenic belt was strongly eroded, and basins were further developed. Starting from the Jurassic, a within-plate regional extension occurred, forming a series of Jurassic-Paleogene extensional basins in the peneplaned Tianshan region. Since the Neogene, a collision event between the Indian and the Eurasian plates that took place on the southern side of the Tianshan belt has caused a strong intra-continental orogeny, which is characterized by thrusting and folding. Extremely thick coarse conglomerate and sandy conglomerate of the Xiyu Formation of Neogene System were accumulated unconformably on the Tianshan piedmont. Studies have revealed that the strong compression caused by the Indian-Eurasian collision  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号