首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bedform geometry is widely recognized to be a function of transport stage. Bedform aspect ratio (height/length) increases with transport stage, reaches a maximum, then decreases as bedforms washout to a plane bed. Bedform migration rates are also linked to bedform geometry, in so far as smaller bedforms in coarser sediment tend to migrate faster than larger bedforms in finer sediment. However, how bedform morphology (height, length and shape) and kinematics (translation and deformation) change with transport stage and suspension have not been examined. A series of experiments is presented where initial flow depth and grain size were held constant and the transport stage was varied to produce bedload dominated, mixed‐load dominated and suspended‐load dominated conditions. The results show that the commonly observed pattern in bedform aspect ratio occurs because bedform height increases then decreases with transport stage, against a continuously increasing bedform length. Bedform size variability increased with transport stage, leading to less uniform bedform fields at higher transport stage. Total translation‐related and deformation‐related sediment fluxes all increased with transport stage. However, the relative contribution to the total flux changed. At the bedload dominated stage, translation‐related and deformation‐related flux contributed equally to the total flux. As the transport stage increased, the fraction of the total load contributed by translation increased and the fraction contributed by deformation declined because the bedforms got bigger and moved faster. At the suspended‐load dominated transport stage, the deformation flux increased and the translation flux decreased as a fraction of the total load, approaching one and zero, respectively, as bedforms washed out to a plane bed.  相似文献   

2.
Open‐framework gravel (OFG) in river deposits is important because of its exceptionally high permeability, resulting from the lack of sediment in the pore spaces between the gravel grains. Fluvial OFG occurs as planar strata and cross strata of varying scale, and is interbedded with sand and sandy gravel. The origin of OFG has been related to: (1) proportion of sand available relative to gravel; (2) separation of sand from gravel during a specific flow stage and sediment transport rate (either high, falling or low); (3) separation of sand from gravel in bedforms superimposed on the backs of larger bedforms; (4) flow separation in the lee of dunes or unit bars. Laboratory flume experiments were undertaken to test and develop these theories for the origin of OFG. Bed sediment size distribution (sandy gravel with a mean diameter of 1·5 mm) was kept constant, but flow depth, flow velocity and aggradation rate were varied. Bedforms produced under these flow conditions were bedload sheets, dunes and unit bars. The fundamental cause of OFG is the sorting of sand from gravel associated with flow separation at the crest of bedforms, and further segregation of grain sizes during avalanching on the steep lee side. Sand in transport near the bed is deposited in the trough of the bedform, whereas bed‐load gravel avalanches down the leeside and overruns the sand in the trough. The effectiveness of this sorting mechanism increases as the height of the bedform increases. Infiltration of sand into the gravel framework is of minor importance in these experiments, and occurs mainly in bedform troughs. The geometry and proportion of OFG in fluvial deposits are influenced by variation in height of bedforms as they migrate, superposition of small bedforms on the backs of larger bedforms, aggradation rate, and changes in sediment supply. If the height of a bedform increases as it migrates downstream, so does the amount of OFG. Changes in the character of OFG on the lee‐side of unit bars depend on grain‐size sorting in the superimposed bedforms (dunes and bedload sheets). Thick deposits of cross‐stratified OFG require high bedforms (dunes, unit bars) and large amounts of aggradation. These conditions might be expected to occur during high falling stages in the deeper parts of river channels adjacent to compound‐bar tails and downstream of confluence scours. Increase in the amount of sand supplied relative to gravel reduces the development of OFG. Such increases in sand supply may be related to falling flow stage and/or upstream erosion of sandy deposits.  相似文献   

3.
The development of bedforms under unidirectional, oscillatory and combined‐flows results from temporal changes in sediment transport, flow and morphological response. In such flows, the bedform characteristics (for example, height, wavelength and shape) change over time, from their initiation to equilibrium with the imposed conditions, even if the flow conditions remain unchanged. These variations in bedform morphology during development are reflected in the sedimentary structures preserved in the rock record. Hence, understanding the time and morphological development in which bedforms evolve to an equilibrium stage is critical for informed reconstruction of the ancient sedimentary record. This article presents results from a laboratory flume study on bedform development and equilibrium development time conducted under purely unidirectional, purely oscillatory and combined‐flow conditions, which aimed to test and extend an empirical model developed in past work solely for unidirectional ripples. The present results yield a unified model for bedform development and equilibrium under unidirectional, oscillatory and combined‐flows. The experimental results show that the processes of bedform genesis and growth are common to all types of flows, and can be characterized into four stages: (i) incipient bedforms; (ii) growing bedforms; (iii) stabilizing bedforms; and (iv) fully developed bedforms. Furthermore, the development path of bedform; growth exhibits the same general trend for different flow types (for example, unidirectional, oscillatory and combined‐flows), bedform size (for example, small versus large ripples), bedform shape (for example, symmetrical or rounded), bedform planform geometry (for example, two‐dimensional versus three‐dimensional), flow velocities and sediment grain sizes. The equilibrium time for a wide range of bed configurations was determined and found to be inversely proportional to the sediment transport flux occurring for that flow condition.  相似文献   

4.
Preliminary results are reported from an experimental study of the interaction between turbulence, sediment transport and bedform dynamics over the transition from dunes to upper stage plane beds. Over the transition, typical dunes changed to humpback dunes (mean velocity 0–8 ms-1, depth 01 m, mean grain size 0.3 mm) to nominally plane beds with low relief bed waves up to a few mm high. All bedforms had a mean length of 0.7–0.8 m. Hot film anemometry and flow visualization clearly show that horizontal and vertical turbulent motions in dune troughs decrease progressively through the transition while horizontal turbulence intensities increase near the bed on dune backs through to a plane bed. Average bedload and suspended load concentrations increase progressively over the transition, and the near-bed transport rate immediately downstream of flow reattachment increases markedly relative to that near dune crests. This relative increase in sediment transport near reattachment appears to be due to suppression of upward directed turbulence by increased sediment concentration, such that velocity close to the bed can increase more quickly downstream of reattachment. Low-relief bedwaves on upper-stage plane beds are ubiquitous and give rise to laterally extensive, mm-thick planar laminae; however, within such laminae are laminae of more limited lateral extent and thickness, related to the turbulent bursting process over the downstream depositional surface of the bedwaves.  相似文献   

5.
《Sedimentology》2018,65(1):191-208
The formative conditions for bedform spurs and their roles in bedform dynamics and associated sediment transport are described herein. Bedform spurs are formed by helical vortices that trail from the lee surface of oblique segments of bedform crest lines. Trailing helical vortices quickly route sediment away from the lee surface of their parent bedform, scouring troughs and placing this bed material into the body of the spur. The geometric configuration of bedform spurs to their parent bedform crests is predicted by a cross‐stream Strouhal number. When present, spur‐bearing bedforms and their associated trailing helical wakes exert tremendous control on bedform morphology by routing enhanced sediment transport between adjacent bedforms. Field measurements collected at the North Loup River, Nebraska, and flume experiments described in previous studies demonstrate that this trailing helical vortex‐mediated sediment transport is a mechanism for bedform deformation, interactions and transitions between two‐dimensional and three‐dimensional bedforms.  相似文献   

6.
The dynamics of large isolated sand dunes moving across a gravel lag layer were studied in a supply‐limited reach of the River Rhine, Germany. Bed sediments, dune geometry, bedform migration rates and the internal structure of dunes are considered in this paper. Hydrodynamic and sediment transport data are considered in a companion paper. The pebbles and cobbles (D50 of 10 mm) of the flat lag layer are rarely entrained. Dunes consist of well‐sorted medium to coarse sand (D50 of 0·9 mm). Small pebbles move over the dunes by ‘overpassing’, but there is a degree of size and shape selectivity. Populations of ripples in sand (D50 < 0·6 mm), and small and large dunes are separated by distinct breaks in the bedform length data in the regions of 0·7–1 m and 5–10 m. Ripples and small dunes may have sinuous crestlines but primarily exhibit two‐dimensional planforms. In contrast, large dunes are primarily three‐dimensional barchanoid forms. Ripples on the backs of small dunes rarely develop to maximum steepness. Small dunes may achieve an equilibrium geometry, either on the gravel bed or as secondary dunes within the boundary layer on the stoss side of large dunes. Secondary dunes frequently develop a humpback profile as they migrate across the upper stoss slope of large dunes, diminishing in height but increasing in length as they traverse the crestal region. However, secondary dunes more than 5 m in length are rare. The dearth of equilibrium ripples and long secondary dunes is probably related to the limited excursion length available for bedform development on the parent bedforms. Large dunes with lengths between 20 m and 100 m do not approach an equilibrium geometry. A depth limitation rather than a sediment supply limitation is the primary control on dune height; dunes rarely exceed 1 m high in water depths of ≈4 m. Dune celerity increases as a function of the mean flow velocity squared, but this general relationship obscures more subtle morphodynamics. During rising river stage, dunes tend to grow in height owing to crestal accumulation, which slows downstream progression and steepens the dune form. During steady or falling stage, an extended crestal platform develops in association with a rapid downstream migration of the lee side and a reduction in dune height. These diminishing dunes actually increase in unit volume by a process of increased leeside accumulation fed by secondary dunes moving past a stalled stoss toe. A six‐stage model of dune growth and diminution is proposed to explain variations in observed morphology. The model demonstrates how the development of an internal boundary layer and the interaction of the water surface with the crests of these bedload‐dominated dunes can result in dunes characterized by gentle lee sides with weak flow separation. This finding is significant, as other studies of dunes in large rivers have attributed this morphological response to a predominance of suspended load transport.  相似文献   

7.
A quantitative, three‐dimensional depositional model of gravelly, braided rivers has been developed based largely on the deposits of the Sagavanirktok River in northern Alaska. These deposits were described using cores, wireline logs, trenches and ground‐penetrating radar profiles. The origin of the deposits was inferred from observations of: (1) channel and bar formation and migration and channel filling, interpreted from aerial photographs; (2) water flow during floods; and (3) the topography and texture of the river bed at low‐flow stage. This depositional model quantitatively represents the geometry of the different scales of strataset, the spatial relationships among them and their sediment texture distribution. Porosity and permeability in the model are related to sediment texture. The geometry of a particular type and scale of strataset is related to the geometry and migration of the bedform type (e.g. ripples, dunes, bedload sheets, bars) associated with deposition of the strataset. In particular, the length‐to‐thickness ratio of stratasets is similar to the wavelength‐to‐height ratio of associated bedforms. Furthermore, the wavelength and height of bedforms such as dunes and bars are related to channel depth and width. Therefore, the thickness of a particular scale of strataset (i.e. medium‐scale cross‐sets and large‐scale sets of inclined strata) will vary with river dimensions. These relationships between the dimensions of stratasets, bedforms and channels mean that this depositional model can be applied to other gravelly fluvial deposits. The depositional model can be used to interpret the origin of ancient gravelly fluvial deposits and to aid in the characterization of gravelly fluvial aquifers and hydrocarbon reservoirs.  相似文献   

8.
Bedform climbing in theory and nature   总被引:7,自引:0,他引:7  
Where bedforms migrate during deposition, they move upward (climb) with respect to the generalized sediment surface. Sediment deposited on each lee slope and not eroded during the passage of a following trough is left behind as a cross-stratified bed. Because sediment is thus transferred from bedforms to underlying strata, bedforms must decrease in cross-sectional area or in number, or both, unless sediment lost from bedforms during deposition is replaced with sediment transported from outside the depositional area. Where sediment is transported solely by downcurrent migration of two-dimensional bedforms, the mean thickness of cross-stratified beds is equal to the decrease in bedform cross-sectional area divided by the migration distance over which that size decrease occurs; where bedforms migrate more than one spacing while depositing cross-strata, bed thickness is only a fraction of bedform height. Equations that describe this depositional process explain the downcurrent decrease in size of tidal sand waves in St Andrew Bay, Florida, and the downwind decrease in size of transverse aeolian dunes on the Oregon coast. Using the same concepts, dunes that deposited the Navajo, De Chelly, and Entrada Sandstones are calculated to have had mean heights between several tens and several hundreds of metres.  相似文献   

9.
Wet aeolian systems, in which the water table or its capillary fringe are in contact with the accumulation surface, such that moisture influences sedimentation, are well‐known from modern aeolian systems and several ancient preserved successions are recognized from outcrop. One common mechanism by which accumulation of wet aeolian system deposits occurs is via a progressive rise in the relative water‐table level that is coincident with ongoing dune and interdune migration, the angle of dune climb being determined by the ratio between the rate of relative water‐table rise and the rate of downwind migration of the bedforms. Accumulations of wet aeolian system deposits tend to be characterized by units of climbing dune strata separated by units of damp or wet interdune strata. For simple geometric configurations, where the size of the dune and interdune units, the rate of bedform migration and the rate of aggradation all remain constant over space and time, the resulting accumulation has a simple architecture characterized by sets of uniform thickness inclined at a constant angle. However, the dynamic nature of most aeolian dune systems means that such simple configurations are unlikely in nature. The complexity inherent in these systems is accounted for here by a numerical model in which key controlling parameters, including dune and interdune wavelength and spacing, migration rate and aggradation rate, are allowed to vary systematically both spatially (from a dune‐field centre to its margin) and temporally (in response to changes in sediment availability or water‐table level). The range of synthetic stratigraphic architectures generated by the model accounts for all the best‐known examples of aeolian dune and interdune stratigraphic configurations documented from the stratigraphic record. Modelling results have enabled the erection of a scheme for the classification of dune system type whereby the many elaborate stratal architectures known to exist in nature can effectively be accounted for by only four parameters that are allowed to vary over space and time: dune and interdune wavelength and spacing, rate of bedform migration and rate of accumulation. Results have applied implications, including the modelling of reservoir heterogeneity and the prediction of fluid flow pathways of hydrocarbons, water, CO2 and contaminants in subsurface reservoirs and aquifers, in which low permeability interdune units might act as baffles or barriers.  相似文献   

10.
Aeolian dune fields characterized by partly vegetated bedforms undergoing active construction and with interdune depressions that lie at or close to the water table are widespread on Skei?arársandur, Southern Iceland. The largest aeolian dune complex on the sandur covers an area of 80 km2 and is characterized by four distinct landform types: (i) spatially isolated aeolian dunes; (ii) extensive areas of damp and wet (flooded) interdune flat with small fluvial channels; (iii) small aeolian dune fields composed of assemblages of bedforms with simple morphologies and small, predominantly damp, interdune corridors; and (iv) larger aeolian dune fields composed of assemblages of complex bedforms floored by older aeolian dune deposits that are themselves raised above the level of the surrounding wet sandur plain. The morphology of each of these landform areas reflects a range of styles of interaction between aeolian dune, interdune and fluvial processes that operate coevally on the sandur surface. The geometry, scale, orientation and facies composition of sets of strata in the cores of the aeolian dunes, and their relationship to adjoining interdune strata, have been analysed to explain the temporal behaviour of the dunes in terms of their mode of initiation, construction, pattern of migration, style of accumulation and nature of preservation. Seasonal and longer‐term flooding‐induced changes in water table level have caused episodic expansion and contraction of the wet interdune ponds. Most of the dunes are currently undergoing active construction and migration and, although sediment availability is limited because of the high water table, substantial aeolian transport must occur, especially during winter months when the surface of the wet interdune ponds is frozen and sand can be blown across the sandur without being trapped by surface moisture. Bedforms within the larger dune fields have grown to a size whereby formerly damp interdune flats have been reduced to dry enclosed depressions and dry aeolian system accumulation via bedform climb is ongoing. Despite regional uplift of the proximal sandur surface in response to glacial retreat and unloading over the past century, sediment compaction‐induced subsidence of the distal sandur is progressively placing aeolian deposits below the water table and is enabling the accumulation of wet aeolian systems and increasing the likelihood of their long‐term preservation. Wet, dry and stabilizing aeolian system types all co‐exist on Skei?arársandur and the dunes are variously undergoing coeval construction, accumulation, bypass, stabilization and destruction as a result of interactions between localized factors.  相似文献   

11.
12.
The links between large‐scale turbulence and the suspension of sediment over alluvial bedforms have generated considerable interest in the last few decades, with past studies illustrating the origin of such turbulence and its influence on flow resistance, sediment transport and bedform morphology. In this study of turbulence and sediment suspension over large sand dunes in the Río Paraná, Argentina, time series of three‐dimensional velocity, and at‐a‐point suspended sediment concentration and particle‐size, were measured with an acoustic Doppler current profiler and laser in situ scattering transmissometer, respectively. These time series were decomposed using wavelet analysis to investigate the scales of covariation of flow velocity and suspended sediment. The analysis reveals an inverse relationship between streamwise and vertical velocities over the dune crest, where streamwise flow deceleration is linked to the vertical flux of fluid towards the water surface in the form of large turbulent fluid ejections. Regions of high suspended sediment concentration are found to correlate well with such events. The frequencies of these turbulent events have been assessed from wavelet analysis and found to concentrate in two zones that closely match predictions from empirical equations. Such a finding suggests that a combination and interaction of vortex shedding and wake flapping/changing length of the lee‐side separation zone are the principal contributors to the turbulent flow field associated with such large alluvial sand dunes. Wavelet analysis provides insight upon the temporal and spatial evolution of these coherent flow structures, including information on the topology of dune‐related turbulent flow structures. At the flow stage investigated, the turbulent flow events, and their associated high suspended sediment concentrations, are seen to grow with height above the bed until a threshold height (ca 0·45 flow depth) is reached, above which they begin to decay and dissipate.  相似文献   

13.
Mountney  & Howell 《Sedimentology》2000,47(4):825-849
Sets of aeolian cross‐strata within the Cretaceous Etjo Formation of NW Namibia are bounded by a hierarchy of surfaces, the origin of which are ascribed to one of four processes related to aeolian bedform and erg behaviour. The base of the main aeolian succession is characterized by a basin‐wide erosional supersurface that formed in response to a period of aeolian deflation before the onset of the main phase of erg building. Interdune migration surfaces formed by draa migration are planar in sections parallel to the palaeowind and are inclined at up to 5° in an upwind direction (SW). Perpendicular to the palaeowind, interdune surfaces form 500‐m‐wide troughs, signifying crestline sinuosity within the original bedforms. Superimposition surfaces are inclined at 5–10° in a downwind direction and indicate the migration of crescentic oblique dunes over larger, slipfaceless transverse draa. Reactivation surfaces associated with minor changes in dune slipface orientation are distinct from other bounding surface types because overlying cross‐strata lie parallel to them, rather than downlap onto them. Analysis of the geometry of these bounding surfaces, together with the orientation of the cross‐strata within the sets that they bound, has enabled the detailed morphology of the original bedforms to be reconstructed. The maximum preserved thickness of individual aeolian sets varies systematically across the basin, from 52 m in the basin depocentre to only 8 m at the basin margin. The set architecture indicates that this spatial variation is primarily the result of decreased angles of bedform climb at the basin margin, rather than the presence of smaller bedforms. Similarly, a temporal reduction in the angle‐of‐climb, rather than a reduction in bedform size, is considered to be responsible for an upward decrease in preserved set thickness. Reductions in bedform climb angle reflect progressive loss of accommodation space as the accumulating erg filled the basin.  相似文献   

14.
Current understanding of bedform dynamics is largely based on field and laboratory observations of bedforms in steady flow environments. There are relatively few investigations of bedforms in flows dominated by unsteadiness associated with rapidly changing flows or tides. As a consequence, the ability to predict bedform response to variable flow is rudimentary. Using high‐resolution multibeam bathymetric data, this study explores the dynamics of a dune field developed by tidally modulated, fluvially dominated flow in the Fraser River Estuary, British Columbia, Canada. The dunes were dominantly low lee angle features characteristic of large, deep river channels. Data were collected over a field ca 1·0 km long and 0·5 km wide through a complete diurnal tidal cycle during the rising limb of the hydrograph immediately prior to peak freshet, yielding the most comprehensive characterization of low‐angle dunes ever reported. The data show that bedform height and lee angle slope respond to variable flow by declining as the tide ebbs, then increasing as the tide rises and the flow velocities decrease. Bedform lengths do not appear to respond to the changes in velocity caused by the tides. Changes in the bedform height and lee angle have a counterclockwise hysteresis with mean flow velocity, indicating that changes in the bedform geometry lag changes in the flow. The data reveal that lee angle slope responds directly to suspended sediment concentration, supporting previous speculation that low‐angle dune morphology is maintained by erosion of the dune stoss and crest at high flow, and deposition of that material in the dune trough.  相似文献   

15.
《Sedimentology》2018,65(1):96-122
This paper characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground‐based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross‐stratification to determine palaeocurrents. On the basis of bedset geometry and inclination, grain‐size distribution and bedform migration direction, this study concludes that the Shaler outcrop probably records the accretion of a fluvial barform. The majority of the outcrop consists of large‐scale trough cross‐bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the north‐east, across the surface of a bar that migrated south‐east. Stacked cosets of dune cross‐bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggest that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.  相似文献   

16.
17.
18.
Subaqueous dunes are formed on the KwaZulu-Natal outer-shelf due to sediment transport by the Agulhas Current (geostrophic current). These dunes occur within two dune fields at depths of ? 35 to ? 70 m. The net sediment transport direction is south, but short-period reversals form northward-migrating bedforms. The dune fields are physically bounded by late Pleistocene beachrock and aeolianite ledges. A bedform hierarchy has been recognized in the dune fields comprising a system of three generations of climbing bedforms. The outer dunefield has given rise to a sand ridge (H=12 m; L=4 km; W=1.1 km; and an 8° lee slope) whereas the inner dune fields have achieved large-scale dune status. Bedload parting zones within the dune fields occur where the sediment transport direction switches from north to south due to reversals in the geostrophic flow; these zones occur at depths of ? 60, ? 47 and ? 45 m. An interpretative stratigraphic model is presented on what such geostrophite deposits would look like in the ancient sedimentary record.  相似文献   

19.
Pattern formation is a fundamental aspect of self‐organization in fields of bedforms. Time‐series aerial photographs and airborne light detection and ranging show that fully developed, crescentic aeolian dunes at White Sands, New Mexico, interact and the dune pattern organizes in systematically similar ways as wind ripples and subaqueous dunes and ripples. Documented interactions include: (i) merging; (ii) lateral linking; (iii) defect repulsion; (iv) bedform repulsion; (v) off‐centre collision; (vi) defect creation; and (vii) dune splitting. Merging and lateral linking are constructive interactions that give rise to a more organized pattern. Defect creation and bedform splitting are regenerative interactions that push the system to a more disorganized state. Defect/bedform repulsion and off‐centre collision cause significant pattern change, but appear to be neutral in overall pattern development. Measurements of pattern parameters (number of dunes, crest length, defect density, crest spacing and dune height), dune migration rates, and the type and frequency of dune interactions within a 3500 m box transect from the upwind margin to the core of the dune field show that most pattern organization occurs within the upwind field. Upwind dominance by constructive interactions yields to neutral and regenerative interactions in the field centre. This spatial change reflects upwind line source and sediment availability boundary conditions arising from antecedent palaeo‐lake topography. Pattern evolution is most strongly coupled to the pattern parameters of dune spacing and defect density, such that spatially or temporally the frequency of bedform interactions decreases as the dunes become further apart and have fewer defects.  相似文献   

20.
This experimental investigation examined the controls on the geometry of cross‐sets formed by subaqueous dunes. A range of steady, unidirectional flow conditions spanning the field of dune existence was investigated, and aggradation rate ranged from 0 mm s?1 to 0·014 mm s?1. Data from an ultrasonic depth profiler consist of high‐resolution temporal and spatial series of bed profiles from which dune height and length, migration rate and the depth of trough scour were measured. Cross‐set thickness and length were measured from sediment peels. The size and shape of dunes from an equilibrium assemblage change continuously. Individual dunes commonly increase in height by trough scouring and, occasionally, by being caught‐up by the upstream dune. Both types of behaviour occur suddenly and irregularly in time and, hence, do not appear to depend on dunes further upstream. However, dune climbing or flattening is a typical response of dunes that disappear under the influence of the upstream dune. All types of behaviour occur at any flow velocity or aggradation rate. Successive dune‐trough trajectories, defined by dunes showing various behaviours, affect the geometry of the preserved cross‐sets. Mean cross‐set thickness/mean dune height averages 0·33 (±0·7), and mean cross‐set length/mean dune length averages 0·49 (±0·08), and both show no systematic variation with aggradation rate or flow velocity. Mean cross‐set thickness/mean cross‐set length tends to decrease with increasing flow velocity and Froude number, therefore allowing a qualitative estimation of flow conditions. Quantitative analysis of the temporal changes in the geometry and migration rate of individual dunes allows the development of a two‐dimensional stochastic model of dune migration and formation of cross‐sets. Computer realizations produced stacks of cross‐sets of comparable shape and thickness to laboratory flume observations, indicating a good empirical understanding of the variability of dune‐trough trajectories. However, interactions among dunes and aggradation rates of the order of 10?2 mm s?1 should be considered in future improved models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号