首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Teleseismic data have been collected with temporary seismograph stations on two profiles in southern Norway. Including the permanent arrays NORSAR and Hagfors the profiles are 400 and 500 km long and extend from the Atlantic coast across regions of high topography and the Oslo Rift. A total of 1071 teleseismic waveforms recorded by 24 temporary and 8 permanent stations are analysed. The depth-migrated receiver functions show a well-resolved Moho for both profiles with Moho depths that are generally accurate within ±2 km.
For the northern profile across Jotunheimen we obtain Moho depths between 32 and 43 km (below sea level). On the southern profile across Hardangervidda, the Moho depths range from 29 km at the Atlantic coast to 41 km below the highland plateau. Generally the depth of Moho is close to or above 40 km beneath areas of high mean topography (>1 km), whereas in the Oslo Rift the crust locally thins down to 32 km. At the east end of the profiles we observe a deepening Moho beneath low topography. Beneath the highlands the obtained Moho depths are 4–5 km deeper than previous estimates. Our results are supported by the fact that west of the Oslo Rift a deep Moho correlates very well with low Bouguer gravity which also correlates well with high mean topography.
The presented results reveal a ca . 10–12 km thick Airy-type crustal root beneath the highlands of southern Norway, which leaves little room for additional buoyancy-effects below Moho. These observations do not seem consistent with the mechanisms of substantial buoyancy presently suggested to explain a significant Cenozoic uplift widely believed to be the cause of the high topography in present-day southern Norway.  相似文献   

2.
自第4个国际极地年2007/2008开始至2013年,中国南极内陆冰盖科考队相继在自南极大陆边缘的中山站至东南极地形最高点昆仑站(Dome A)一线进行了低温甚宽频地震观测。本文对7个天然地震台站数据进行了分析,提取了这些台站的S波接收函数,据此反演获得了这些台站下的地壳厚度分布。结果显示:随着纬度的升高,地壳厚度由大陆边缘的中山站下的约38 km逐渐增加至CHNB台下的58 km,随后又于CHNA台站下方减薄至47 km,然后快速增大到南极地形最高点昆仑站(Dome A)下的62 km。昆仑站或Dome A是南极大陆地壳最厚的地方。从中山站至昆仑站之间地壳厚度的变化与冰下地貌变化存在明显的相关性,它们都说明了从中山站至CHNB之间地壳构造相对均匀。在距昆仑站约200 km的CHNA台下的地壳厚度(约47 km)明显比临近台站地壳偏薄,这可能说明了甘伯采夫山脉地壳侧向变化较大,即其形成时所遭受的构造作用较复杂。  相似文献   

3.
Gravity studies of the Rockall and Exmouth Plateaux using SEASAT altimetry   总被引:1,自引:0,他引:1  
Abstract SEASAT altimetric measurements are used to determine the gravity anomalies across two passive continental margins: the western margin of the Rockall Plateau, UK, and the Exmouth Plateau off north-west Australia. The small gravity anomalies observed over the starved western margin of the Rockall Plateau require the existence of a major density contrast within the crust, as well as the Moho, and show that the elastic thickness is less than 5 km at the time of rifting. The gravity anomaly over the Exmouth Plateau is compared with the gravity anomaly calculated from the sediment loading of a thin elastic plate, taking account of the variation in crustal thickness. This comparison shows that the Exmouth Plateau also has a small effective elastic thickness of 5 km, even for loads emplaced between 60 and 120 Myr after rifting. Elastic thicknesses of about 5 km have also been reported for other sedimentary basins, and are to be expected if the rheological properties of the crust and mantle depend on the ratio of the present temperature to the melting temperature. Flexural effects are therefore likely to be of minor importance in sedimentary basins.  相似文献   

4.
We report the crustal structure for two locations in Iraq estimated by joint inversion of P -wave receiver functions (RFs) and surface (Rayleigh) wave group velocity dispersion. RFs were computed from teleseismic recordings at two temporary broad-band seismic stations located in Mosul (MSL) in the Zagros Fold Belt and Baghdad (BHD) in the Mesopotamian Foredeep. Group velocity dispersion curves at the sites were derived from continental-scale tomography. The inversion results show that the crustal thicknesses are 39 km at MSL and 43 km at BHD. We observe a strong Ps Moho at BHD consistent with a sharp Moho discontinuity. However, at MSL we observe a weak Ps Moho suggesting a transitional Moho where crustal thickening is likely to be occurring in the deep crust. Both sites reveal low velocity surface layers consistent with sedimentary thickness of about 3 km at station MSL and 7 km at BHD and agreeing well with the previous reports. Ignoring the sediments, the crystalline crustal velocities and thicknesses are remarkably similar at both stations. The similarity of crustal structure suggests that the crust of the northeastern proto-Arabian Platform was uniform before subsidence and deposition of the sediments in the Cenozoic. If crystalline crustal structure is uniform across the northern Arabian Platform then crustal thickness variations in the Zagros Fold Belt and Thrust Zone should reveal the history of deformation and crustal shortening in the Arabian–Eurasian collision zone and not reflect pre-existing crustal thickness variations in the Arabian Plate.  相似文献   

5.
The onshore crustal and upper mantle velocity structure of the British Isles has been investigated by teleseismic receiver function analysis. The results of the study augment the dense offshore and sparse onshore models of the velocity structure beneath the area. In total almost 1500 receiver functions have been analysed, which have been calculated using teleseismic data from 34 broadband and short-period, three-component seismic recording instruments. The crustal structure has primarily been investigated using 1-D grid search and forward modelling techniques, returning crustal thicknesses, bulk crustal Vp / Vs ratio and velocity-depth models. H −κ stacking reveals crustal thicknesses between 25 and 36 km and Vp / Vs ratios between 1.6 and 1.9. The crustal thicknesses correlate with the results of previous seismic reflection and refraction profiles to within ±2 km. The significant exceptions are the stations close to the Iapetus Suture where the receiver function crustal thicknesses are up to 5 km less than the seismic refraction Moho. This mismatch could be linked to the presence of underplated magmatic material at the base of the crust. 1-D forward modelling has revealed subcrustal structures in northern Scotland. These correlate with results from other UK receiver function studies, and correspond with the Flannan and W-reflectors. The structures are truncated or pinch out before they reach the Midland Valley of Scotland. The isolated subcrustal structure at station GIM on the Isle of Man may be related to the closure of the Iapetus Ocean.  相似文献   

6.
Summary. Six gravity and bathymetry profiles perpendicular to the Kane fracture zone, each more than 300 km long, were gathered to study the variation in crustal structure in the vicinity of a major fracture zone and the gravitational edge effect at the contact between lithosphere of two different ages. A spectral analysis of the gravity and bathymetric series as a function of wavelength shows that the gravitational edge effect is only significant at the longest wavelengths. For remaining wavelengths the admittance, the ratio of the amplitude of the gravity anomaly to the amplitude of the bathymetry, is best explained by a model of isostasy in which topographic loads are partially supported by the flexural rigidity of an elastic plate, about 6 km in thickness. After subtracting the gravitational attraction of the bathymetry and its compensation, substantial isostatic anomalies remain. We interpret these anomalies as being caused by variations in crustal thickness which have little correlation with surface topography, except at very long wavelengths. The apparent crustal thickness varies by as much as a factor of 2, but there is no evidence indicating systematic thinning of the crust beneath the fracture zone. Our data do suggest that such density variations within the plate are also compensated by the isostatic response of an elastic plate but with very different effect from those at the surface. This indicates that there are two different modes of crustal formation with different gravity and topographic signatures: effusive volcanism which loads the surface of the elastic plate producing both topographic relief and coherent gravity anomalies, and intrusive volcanism or underplating producing gravity anomalies but little topographic relief.  相似文献   

7.
Summary. Spectral analysis of eight marine gravity profiles and seven SEASAT profiles, combined with corresponding bathymetric data over the Northern Bay of Biscay origin, yield identical admittance functions for wavelengths greater than 120 km. the resulting admittance function has been interpreted in terms of an Airy model of compensation for wavelengths greater than 250 km and in terms of an elastic plate model of compensation for shorter wavelengths. the Airy model corresponds to a crustal thickness variation across the margin. the plate model with an elastic thickness of 8 km is associated with the regional compensation of a sedimentary load which was probably emplaced during and just after rifting.  相似文献   

8.
本文用IGY/IGC期间全球地磁台网的资料计算出地磁太阳日变化(S)和太阴日变化(L)的电流体系,对比分析了南极区与北极区电流体系的特点。分析表明:(1)两极区的外源电流体系存在明显差别,这反映了产生该电流系的发电机过程(对S和L)和场向电流(对S)的不同。两极区磁场结构的特征可能是导致这一差异的根本原因。(2)两极区内源电流存在明显差异,这一方面归因于外源施感场(电流)的差异,另一方面也反映了两极区地下电导率的不同。分析表明,从总体来看,南极区地下电导率高于北极区  相似文献   

9.
10.
本文根据OSU91A地球重力场模型和地形资料,计算了南极洲的空间重力异常和布格重力异常,分析了空间重力异常变化剧烈的原因及其与高程的相关性,同时根据布格重力异常用两层界面的反演方法计算了冰盖厚度和地壳厚度,冰盖厚度较大的地区位于极区的东南部,而极区周围和西南部地区厚度较小。地壳较厚的地区位于极区的东南部,最大达56km,西南部地区地壳较薄,最小值为8km。  相似文献   

11.
We study the crustal structure of eastern Marmara region by applying the receiver function method to the data obtained from the 11 broad-band stations that have been in operation since the 1999 İzmit earthquake. The stacked single-event receiver functions were modelled by an inversion algorithm based on a five-layered crustal velocity model to reveal the first-order shear-velocity discontinuities with a minimum degree of trade-off. We observe crustal thickening from west (29–32 km) to east (34–35 km) along the North Anatolian Fault Zone (NAFZ), but we observe no obvious crustal thickness variation from north to south while crossing the NAFZ. The crust is thinnest beneath station TER (29 km), located near the Black Sea coast in the west and thickest beneath station TAR (35 km), located inland in the southeast. The average crustal thickness and S -wave velocity for the whole regions are  31 ± 2  km and  3.64 ± 0.15 km s−1  , respectively. The eastern Marmara region with its average crustal thickness, high heat flow value (101 ± 11 mW m−2) and with its remarkable extensional features seems to have a Basin and Range type characteristics, but the higher average shear velocities (∼3.64 km s−1) and crustal thickening from 29 to 35 km towards the easternmost stations indicate that the crustal structure shows a transitional tectonic regime. Therefore, we conclude that the eastern Marmara region seems to be a transition zone between the Marmara Sea extensional domain and the continental Anatolian inland region.  相似文献   

12.
i
The intervals between the arrivals of the same body wave phases from distant earthquakes at a close network of stations are compared with those expected from the known surface speeds of the phases. The arrival at the station on the island of Barbados is shown to be
2.94 = 0.34 s
later than expected relative to the other stations.
This is believed to be due to differences in crustal structure associated with the belt of negative gravity anomalies east of the West Indian arc.
A crustal section consistent with the seismic delays, gravity anomalies and seismic refraction profiles is presented.  相似文献   

13.
Several years of broad-band teleseismic data from the GRSN stations have been analysed for crustal structure using P -to- S converted waves at the crustal discontinuities. An inversion technique was developed which applies the Thomson-Haskell formalism for plane waves without slowness integration. The main phases observed are Moho conversions, their multiples in the crust, and conversions at the base of the sediments. The crustal thickness derived from these data is in good agreement with results from other studies. For the Gräfenberg stations, we have made a more detailed comparison of our model with a previously published model obtained from refraction seismic experiments. The refraction seismic model contains boundaries with strong velocity contrasts and a significant low-velocity zone, resulting in teleseismic waveforms that are too complicated as compared to the observed simple waveforms. The comparison suggests that a significant low-velocity zone is not required and that internal crustal boundaries are rather smooth.  相似文献   

14.
We develop a method for spatio-spectral localization of harmonic data on a sphere and use it to interpret recent high-resolution global estimates of the gravity and topography of Venus in the context of geodynamical models. Our approach applies equally to the simple spatial windowing of harmonic data and to variable-length-scale analyses, which are analogous to a wavelet transform in the Cartesian domain. Using the variable-length-scale approach, we calculate the localized RMS amplitudes of gravity and topography, as well as the spectral admittance between the two fields, as functions of position and wavelength. The observed admittances over 10 per cent of the surface of Venus (highland plateaus and tessera regions) are consistent with isostatic compensation of topography by variations in crustal thickness, while admittances over the remaining 90 per cent of the surface (rises, plains and lowlands) indicate that long-wavelength topography is dominantly the result of vertical convective tractions at the base of the lithosphere. The global average crustal thickness is less than 30 km, but can reach values as large as 40 km beneath tesserae and highland plateaus. We also note that an Earth-like radial viscosity structure cannot be rejected by the gravity and topography data and that, without a mechanical model of the lithosphere, admittance values cannot constrain the thickness of the thermal boundary layer of Venus. Modelling the lithosphere as a thin elastic plate indicates that at the time of formation of relief in highland plateaus and tesserae, the effective elastic plate thickness, Te , was less than 20 km. Estimates of Te at highland rises are consistently less than 30 km. Our inability to find regions with Te > 30 km is inconsistent with predictions made by a class of catastrophic resurfacing models.  相似文献   

15.
Summary. The major objective of the Central Australian seismic experiment is to investigate the structural evolution of the Arunta Block and the Ngalia and Amadeus Basins. A regional north-south reflection line of 420 km length from the Northern Arunta Province to the southern part of the Amadeus Basin was recorded in 1985. The most significant basement features are prominent bands of reflectors from beneath the Northern Arunta Province and the Ngalia Basin at times of between 4 and 10 s that dip towards the north. Deep crustal features south of the Ngalia Basin are less clear except in the Redbank Zone. Bands of deep reflectors similar to those observed in the north occur at times of between 5 and 10 s beneath the southern part of the Amadeus Basin. Additional seismic profiling included a reflection line of 40 km length recorded across the northern margin of the Redbank Zone, three expanding spread reflection profiles and a tomographic experiment. An east-west seismic refraction profile of 400 km length was recorded within the Arunta Block, and suggests an average crustal thickness of 55 km.  相似文献   

16.
A wide-angle seismic profile across the western peninsulas of SW Ireland was performed. This region corresponds to the northernmost Variscan thrust and fold deformation. The dense set of 13 shots and 109 stations along the 120  km long profile provides a detailed velocity model of the crust.
  The seismic velocity model, obtained by forward and inverse modelling, defines a five-layer crust. A sedimentary layer, 5–8  km thick, is underlain by an upper-crustal layer of variable thickness, with a base generally at a depth of 10–12  km. Two mid-crustal layers are defined, and a lower-crustal layer below 22  km. The Moho lies at a depth of 30–32  km. A low-velocity zone, which coincides with a well-defined gravity low, is observed in the central part of the region and is modelled as a Caledonian granite which intruded upper-crustal basement. The granite may have acted as a buffer to northward-directed Variscan thrusting. The Dingle–Dungarvan Line (DDL) marks a major change in sedimentary and crustal velocity and structure. It lies immediately to the north of the velocity and gravity low, and shows thickness and velocity differences in many of the underlying crustal layers and even in the Moho. This suggests a deep, pre-Variscan control of the structural development of this area. The model is compatible with thin-skinned tectonics, which terminated at the DDL and which incorporated thrusts involving the sedimentary and upper-crustal layers.  相似文献   

17.
Gravity anomalies and flexure of the lithosphere at Ascension Island   总被引:1,自引:0,他引:1  
Ascension Island, in the northern South Atlantic, forms the summit of a volcanic edifice 60 km in diameter which places a substantial load on the underlying young oceanic lithosphere. An analysis of a combined data set of recent and historical surface-gravity and bathymetry measurements on and around the island suggests that the lithosphere responds to this load by flexure equivalent to that of an elastic plate only ≈ 3 km thick, and that the mean density of the volcanic edifice is ≈ 2500 kg m-3. A steep gravity gradient across the island cannot be explained by a simple flexural model and must be attributed to lateral density variations within the volcano itself. The effective elastic thickness is considerably less than the expected ≈ 12 km mechanical thickness of the ≈ 6 Ma lithosphere loaded by the volcano, and less even than zero-age elastic thicknesses commonly observed at slow-spreading ridges with axial rift valleys. The unusually small elastic thickness may be attributed to the combined effects of the high curvature beneath the island, which produces bending stresses that are limited by the yield stress envelope, localized heating of the lithosphere during emplacement of the island, and crustal thickening. When these factors are taken into account, the observed flexure is consistent with rheological models based on experimental rock mechanics.  相似文献   

18.
Large Igneous Provinces (LIP) are of great interest due to their role in crustal generation, magmatic processes and environmental impact. The Agulhas Plateau in the southwest Indian Ocean off South Africa has played a controversial role in this discussion due to unclear evidence for its continental or oceanic crustal affinity. With new geophysical data from seismic refraction and reflection profiling, we are able to present improved evidence for its crustal structure and composition. The velocity–depth model reveals a mean crustal thickness of 20 km with a maximum of 24 km, where three major units can be identified in the crust. In our seismic reflection records, evidence for volcanic flows on the Agulhas Plateau can be observed. The middle crust is thickened by magmatic intrusions. The up to 10 km thick lower crustal body is characterized by high seismic velocities of 7.0–7.6 km s−1. The velocity–depth distribution suggests that the plateau consists of overthickened oceanic crust similar to other oceanic LIPs such as the Ontong-Java Plateau or the northern Kerguelen Plateau. The total volume of the Agulhas Plateau was estimated to be 4 × 106 km3 of which about 10 per cent consists of extruded igneous material. We use this information to obtain a first estimate on carbon dioxide and sulphur dioxide emission caused by degassing from this material. The Agulhas Plateau was formed as part of a larger LIP consisting of the Agulhas Plateau itself, Northeast Georgia Rise and Maud Rise. The formation time of this LIP can be estimated between 100 and 94 (± 5) Ma.  相似文献   

19.
Summary. As part of integrated marine geophysical studies in the Western Somali Basin, we performed 118 sonobuoy experiments to define better the crustal structure of the margins and basin created by the separation of Madagascar and Africa. After using T 2/ X 2, conventional slope-intercept methods, and slant-stacked t-p techniques to analyse the data, we combined our solutions with all previous velocity information for the area. Velocity functions were derived for the sediment coiumn, and we detected a high-velocity (4.58 ± 0.29 km s–1) sediment layer overlying acoustic basement. We confirmed that the crust is indeed seismically oceanic, and that it may be considered either in terms of a layered model – layers 2B (5.42 ± 0.19 km s–1), 2C (6.23 ± 0.22 km s–1), 3 (7.03 ± 0.25 km s–1), and mantle (7.85 ± 0.32 km s–1) were identified – or a more complex gradient model in which layer 2 is marked by a steeper velocity gradient than underlying layer 3. Integrated igneous crustal thicknesses (1.62 ± 0.22 s, 5.22 ± 0.64 km) are significantly less than what is considered normal. We present a revised seismic transect across the East African margin, as well as total sediment thickness, depth to basement and crustal thickness maps.  相似文献   

20.
We infer the lithospheric structure in eastern Turkey using teleseismic and regional events recorded by 29 broad-band stations from the Eastern Turkey Seismic Experiment (ETSE). We combine the surface wave group velocities (Rayleigh and Love) with telesesimic receiver functions to jointly invert for the S -wave velocity structure, Moho depth and mantle-lid (lithospheric mantle) thickness. We also estimated the transverse anisotropy due to Love and Rayleigh velocity discrepancies. We found anomalously low shear wave velocities underneath the Anatolian Plateau. Average crustal thickness is 36 km in the Arabian Plate, 44 km in Anatolian Block and 48 km in the Anatolian Plateau. We observe very low shear wave velocities at the crustal portion (30–38 km) of the northeastern part of the Anatolian Plateau. The lithospheric mantle thickness is either not thick enough to resolve it or it is completely removed underneath the Anatolian Plateau. The shear velocities and anisotropy down to 100 km depth suggest that the average lithosphere–asthenosphere boundary in the Arabian Plate is about 90 and 70 km in Anatolian block. Adding the surface waves to the receiver functions is necessary to constrain the trade-off between velocity and the thickness. We find slower velocities than with the receiver function data alone. The study reveals three different lithospheric structures in eastern Turkey: the Anatolian plateau (east of Karliova Triple Junction), the Anatolian block and the northernmost portion of the Arabian plate. The boundary of lithospheric structure differences coincides with the major tectonic boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号