首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary ?Simultaneous flight measurements with the research aircraft Do 128 and the helicopter-borne turbulence probe Helipod were performed on 18 June 1998 during the LITFASS-98 field experiment. The area-averaged turbulent vertical fluxes of momentum, sensible, and latent heat were determined on a 15 km × 15 km and a 10 km × 10 km flight pattern, respectively. The flights were carried out over heterogeneous terrain at different altitudes within a moderately convective boundary layer with Cumulus clouds. Co-spectra-analysis demonstrated that the small scale turbulent transport was completely sampled, while the comparatively small flight patterns were possibly of critical size regarding the large-scale turbulence. The phygoide of the airplane was identified as a significant peak in some co-spectra. The turbulent fluxes of momentum and sensible heat at 80 m above the ground showed systematic dependence on the location of the flight legs above the heterogeneous terrain. This was not observed for the latent heat flux, probably due to the vertical distribution of humidity in the boundary layer. Statistical error analysis of the fluxes F showed that the systematic statistical error ΔF was one order of magnitude smaller than the standard deviation σ F . The difference between area-averaged fluxes derived from simultaneous Helipod and Do 128 measurements was much smaller than σ F , indicating that the systematic statistical error was possibly over-estimated by the usual method. In the upper half of the boundary layer the airborne-measured sensible heat flux agreed well with windprofiler/RASS data. A linear fit was the best approximation for the height dependence of all three fluxes. The linear extrapolations of the latent and sensible heat fluxes to the ground were in good agreement with tower, scintillometer, and averaged ground-station measurements on various surface types. Systematic discrepancies between airborne and ground-based measurements were not found. Received June 18, 2001; revised December 21, 2001; accepted June 3, 2002  相似文献   

2.
不同下垫面大孔径闪烁仪观测数据处理与分析   总被引:6,自引:0,他引:6       下载免费PDF全文
大孔径闪烁仪是近年兴起的测量大尺度(500 m~10 km)地表通量的仪器。北京师范大学等单位分别于2002年、2004年在北京昌平小汤山开展了大孔径闪烁仪短期观测实验, 2006年6月又在北京密云建立了长期观测站。利用这些数据, 对大孔径闪烁仪观测数据进行处理与分析, 结果表明:闪烁仪光径高度和风速是影响观测显热通量的关键因子。当地表粗糙元的高度变化相对于光径高度不可忽略时, 零平面位移需要精确确定。波文比在湿润地表需要准确确定, 而气温、气压和动力学粗糙度则为不敏感因子。计算中所需的大气稳定度可用理查孙数判断, 也可借助日出日落时间或净辐射观测值确定。稳定条件下的普适函数目前无统一表达式, 可采用仪器说明书推荐的函数。通过几个站点闪烁仪观测显热通量与涡动相关仪测量值的比较表明:大孔径闪烁仪在均匀和非均匀地表都能得到合理的显热通量观测值。  相似文献   

3.
Summary ?Progress in technology as well as signal processing has promoted Wind Profiler Radar (WPR) or sodar with RASS additions to become standard tools in profiling of the atmospheric boundary layer. Apart from these instruments’ basic abilities in profiling mean winds and temperature, this paper will give an emphasis on the profiling of ABL height as well as the turbulent fluxes of sensible heat and momentum both, with respect to methods as well as with respect to realization. The special focus will thereby be laid on the demands for vertical profiling, which were defined within the LITFASS-project of the German Meteorological Service. In the frame of this project, some special measuring campaigns have been performed where remote-sensing systems were used to assess their abilities in profiling ABL parameters. On the base of some case studies from these campaigns comparisons are shown, where results from sodar/RASS and WPR/RASS measurements are compared to measurements from airborne sensor systems and results from numerical models. Regarding turbulent heat fluxes, we found excellent agreement for remotely-sensed flux profiles from WPR/RASS with both, numerical models and airborne in-situ measurements. However, as the inherent errors of the remotely-sensed fluxes are in the order of ± 20 ⋯ 30 W/m2 typically, current signal processing does not allow to interpret small-scale vertical structures in the profiles with respect to surface inhomogeneities yet. Received June 16, 2001; revised February 20, 2002; accepted May 30, 2002  相似文献   

4.
Summary  High resolution aircraft observations made along flight tracks over inhomogeneous surface in the late wintertime boreal zone are described and compared to 2D mesoscale model simulations with surface properties defined at 2 km resolution from maps. All observations displayed the expected small-scale turbulence. On top of that, the near-surface wind speeds (but not directions) showed mesoscale variations related to local topography and roughness. Upward (but not downward) SW and LW radiative fluxes and ground temperature also displayed mesoscale variability; in SW radiation this was clearly due to local albedo changes. In the sensible heat flux there was strong horizontal variation near the surface in correlation with surface types. The above observed mesoscale along-track variations were reasonably well represented by the mesoscale model simulation. The track-averaged observed sensible and latent heat flux profiles were in rough agreement with a mixing length approach, which used the track-averaged wind, temperature and moisture profiles as input (mimicking a first-order turbulence closure scheme of a GCM). Received September 20, 1999 Revised January 21, 2000  相似文献   

5.
Summary Water vapour flux profiles in the atmospheric boundary layer have been derived from measurements of water vapour density fluctuations by a ground-based Differential Absorption Lidar (DIAL) and of vertical wind fluctuations by a ground-based Doppler lidar. The data were collected during the field experiment LITFASS-2003 in May/June 2003 in the area of Lindenberg, Germany. The eddy-correlation method was applied, and error estimates of ±50 W/m2 for latent heat flux were found. Since the sampling error dominates the overall measurement accuracy, time intervals between 60 and 120 min were required for a reliable flux calculation, depending on wind speed. Rather large errors may occur with low wind speed because the diurnal cycle restricts the useful interval length. In the lower height range, these measurements are compared with DIAL/radar-RASS fluxes. The agreement is good when comparing covariance and error values. The lidar flux profiles are well complemented by tower measurements at 50 and 90 m above ground and by area-averaged near surface fluxes from a network of micrometeorological stations. Water vapour flux profiles in the convective boundary layer exhibit different structures mainly depending on the magnitude of the entrainment flux. In situations with dry air above the boundary layer a positive entrainment flux is observed which can even exceed the surface flux. Flux profiles which linearly increase from the surface to the top of the boundary layer are observed as well as profiles which decrease in the lower part and increase in the upper part of the boundary layer. In situations with humid air above the boundary layer the entrainment flux is about zero in the upper part of the boundary layer and the profiles in most cases show a linear decrease.  相似文献   

6.
Summary An aircraft-based experimental investigation of the atmospheric boundary layer (ABL) structure and of the energy exchange processes over heterogeneous land surfaces is presented. The measurements are used for the validation of the mesoscale atmospheric model “Lokal-Modell” (LM) of the German Weather Service with 2.8 km resolution. In addition, high-resolution simulations using the non-hydrostatic model FOOT3DK with 250 m resolution are performed in order to resolve detailed surface heterogeneities. Two special observation periods in May 1999 show comparable convective boundary layer (CBL) conditions. For one case study vertical profiles and area averages of meteorological quantities and energy fluxes are investigated in detail. The measured net radiation is highly dependent on surface albedo, and the latent heat flux exhibits a strong temporal variability in the investigation area. A reduction of this variability is possible by aggregation of multiple flight patterns. To calculate surface fluxes from aircraft measurements at low altitude, turbulent energy fluxes were extrapolated to the ground by the budget method, which turned out to be well applicable for the sensible heat flux, but not for the latent flux. The development of the ABL is well captured by the LM simulation. The comparison of spatiotemporal averages shows an underestimation of the observed net radiation, which is mainly caused by thin low-level clouds in the LM compared to observed scattered CBL clouds. The sensible heat flux is reproduced very well, while the latent flux is highly overestimated especially above forests. The realistic representation of surface heterogeneities in the investigation area in the FOOT3DK simulations leads to improvements for the energy fluxes, but an overestimation of the latent heat flux still persists. A study of upscaling effects yields more structures than the LM fields when averaged to the same scale, which are partly caused by the non-linear effects of parameter aggregation on the LM scale.  相似文献   

7.
Turbulent fluxes of sensible and latent heat were measured with the helicopter-borne turbulence probe Helipod over a heterogeneous landscape around the Meteorological Observatory Lindenberg during the STINHO-2 and LITFASS-2003 field experiments. Besides the determination of area-averaged heat fluxes, the analysis focused on different aspects of the response of the turbulent structure of the convective boundary layer (CBL) on the surface heterogeneity. A special flight pattern was designed to study flux profiles both over quasi-homogeneous sub-areas of the study region (representing the major land use types—forest, farmland, water) and over a typical mixture of the different surfaces. Significant differences were found between the heat fluxes over the individual surfaces along flight legs at about 80 m above ground level, in agreement with large-aperture scintillometer measurements. This flux separation was still present during some flights at levels near the middle of the CBL. Different scales for the blending height and horizontal heterogeneity were calculated, but none of them could be identified as a reliable indicator of the mixing state of the lower CBL. With the exception of the flights over water, the latent heat flux measurements generally showed a larger statistical error when compared with the sensible heat flux. Correlation coefficients a nd integral length scales were used to characterise the interplay between the vertical transport of sensible and latent heat, which was found to vary between ‘fairly correlated’ and ‘decoupled’, also depending on the soil moisture conditions.  相似文献   

8.
大孔径闪烁仪测量戈壁地区感热通量   总被引:3,自引:1,他引:2       下载免费PDF全文
利用2008年6月11~30日在金塔开展的"绿洲系统非均匀下垫面能量水分交换和边界层过程观测与理论研究"期间第一阶段戈壁下垫面大孔径闪烁仪(LAS)的观测资料,用混合对流方法和自由对流方法分别计算了戈壁感热通量。结果表明,对于利用LAS资料计算地表感热通量的方法中,混合对流方法相对于自由对流方法更加适用,且混合对流方法中Andreas给出的参数相对于DeBruin的参数更加适用于戈壁下垫面。此外,LAS测得的感热通量相对涡动相关方法的值较大,提高了地表能量闭合度。  相似文献   

9.
Summary In one of the first micrometeorological experiments at a tropical site in West Africa, direct measurements of all surface energy balance components were carried out. The experiment NIMEX-1 in Ile-Ife, Nigeria (7°33′ N, 4°33′ E), was conducted from February 19, 2004 to March 9, 2004, during the transition from the dry to the wet season. Three typical weather situations could be observed: firstly, monsoonal winds from the southwest blew over desiccated soils. Almost 100% of the available energy at the surface was transformed into sensible heat flux. Secondly, after several thundershowers, monsoonal winds swept over soils of increased water content, which led to a partitioning of the available energy corresponding to Bowen ratios between 0.3 and 0.5. Thirdly, harmattan winds advected dry dusty air from northern directions, which reduced the incoming shortwave radiation. Again, Bowen ratios range from 0.3 to 0.5 during daytime, whereas latent heat fluxes are still high during the night due to the advection of very dry air. No systematic non-closure of the surface energy balance could be found for the NIMEX-1 dataset. Unlike other experiments in Europe, most of the ogives for the sensible and latent heat flux were found to be convergent during NIMEX-1 in Ile-Ife. This can be attributed to the homogeneity of the surrounding bush, which lacks the defined borders found in agriculturally cultivated landscapes.  相似文献   

10.
A large-aperture scintillometer (LAS) was operated continuouslyduring a period of more than one year over a heterogeneous land surface in Central Europeat the transition between marine and continental climates. The LAS measurements of the refractiveindex structure parameter, CN 2, were used to estimate the sensible heat flux. Thiswas possible for about 60to 80% of the time under daytime conditions during thesummer, with lower values obtained for the cold season (October to March). Using datafrom a three-week long field experiment, the LAS-based heat flux was compared with a weighedaverage of local heat flux measurements over the main land use classes (forest, agriculture,water) in the area, resulting in reasonable agreement. LAS-based heat fluxes were then used forcomparison with the heat flux values of a numerical weather prediction model. An over-predictionof the model heat flux was found in summer but the modelled values were lower than the LASderived data during the cold season.  相似文献   

11.
 Using atmospheric forcing data generated from a general circulation climate model, sixteen land surface schemes participating in the Project for the Intercomparison of Land-surface Parametrization Schemes (PILPS) were run off-line to equilibrium using forcing data from a GCM representative of a tropical forest and a mid-latitude grassland grid point. The values for each land surface parameter (roughness length, minimum stomatal resistance, soil depth etc.) were provided. Results were quality controlled and analyzed, focusing on the scatter simulated amongst the models. There were large differences in how the models’ partitioned available energy between sensible and latent heat. Annually averaged, simulations for the tropical forest ranged by 79 1 3;W m-2 for the sensible heat flux and 80 W m-2 for the latent heat flux. For the grassland, simulations ranged by 34 W m-2 for the sensible heat flux and 27 W m-2 for the latent heat flux. Similarly large differences were found for simulated runoff and soil moisture and at the monthly time scale. The models’ simulation of annually averaged effective radiative temperature varied with a range, between all the models, of 1.4 K for tropical forest and 2.2 K for the grassland. The simulation of latent and sensible heat fluxes by a standard ‘bucket’ models was anomalous although this could be corrected by an additional resistance term. These results imply that the current land surface models do not agree on the land surface climate when the atmospheric forcing and surface parameters are prescribed. The nature of the experimental design, it being offline and with artificial forcing, generally precludes judgements concerning the relative quality of any specific model. Although these results were produced de-coupled from a host model, they do cast doubt on the reliability of land surface schemes. It is therefore a priority to resolve the disparity in the simulations, understand the reasons behind the scatter and to determine whether this lack of agreement in de-coupled tests is reproduced in coupled experiments. Received: 15 October 1997 / Accepted: 22 April 1999  相似文献   

12.
A new method for deduction of the sensible heat flux is validated with three sets of published SODAR (sound detection and ranging) data. Although the related expressions have previously been confirmed by the author with surface layer data, they have not yet been validated with observations from the boundary layer before this work. In the study, selected SODAR data are used to test the method for the convective boundary layer. The sensible heat flux (SHF) retrieved from SODAR data is found to decrease linearly with height in the mixed layer. The surface sensible heat fluxes derived from the deduced sensible heat flux profiles under convective conditions agree well with those measured by the eddy correlation method. The characteristics of SHF profiles deduced from SODAR data in different places reflect the background meteorology and terrain. The upper part of the SHF profile (SHFP) for a complicated terrain is found to have a different slope from the lower part. It is suggested that the former reflects the advective characteristic of turbulence in upwind topography. A similarity relationship for the estimation of SHFP in a well mixed layer with surface SHF and zero-heat-flux layer height is presented.  相似文献   

13.
The performance of a combined large aperture scintillometer (LAS) and a millimetre wave scintillometer (MWS) for estimating surface fluxes of sensible and latent heat over natural landscape is investigated, using data gathered during LITFASS-2003. For this purpose the LAS–MWS system was installed in a moderate heterogeneous landscape over a path length of 4.7 km with an effective beam height of 43 m. The derived surface fluxes have been compared with aggregated eddy-covariance (EC) measurements. The fluxes of sensible and latent heat from the LAS–MWS combination, as well as sensible heat fluxes of the single LAS, agreed fairly well with the EC-based fluxes, considering the uncertainties of the similarity stability functions and observed energy imbalance.  相似文献   

14.
Abtract Sensible heat flux estimated by Large Aperture Scintillometry (LAS) has been tested against the more traditional eddy covariance technique over Marseille city centre, a reasonably homogeneous surface. Over the 3 week test period fluxes were found to be similar, yet less noisy for the LAS due to the spatial integration. No systematic bias between the estimates was found as a function of wind direction, indicating the homogeneity of the site. Sensitivity analysis of the required aerodynamic parameters shows that careful attention must be paid to the displacement height along the measurement path. Spatial variability of surface sensible heat flux is studied via a second LAS measurement path over the city.  相似文献   

15.
The potential of the LAS (large aperture scintillometry) method for measuring sensible heat flux (H) directly integrated over a two-field composite surface is evaluated. We describe a field experiment performed within the Alpilles/ReSeDa project in the south-east of France over a composite surface made up of wheat and bare soil (451 and 216 m long respectively) using two 0.15-m diameter scintillometers mounted at heights of 2.05 and 4.54 m. When compared against reference values obtained by the eddy correlation technique, LAS-measured sensible heat flux reveals a systematic overestimation of about 10%. A simple model describing the integration of the scintillometer signal along the beam for a two-field composite surface is described. A simulation of the experiment confirms that the bias observed isrelated to non-linearities in the integration process in relation with thebell-shape sensitivity curve of the instrument to the structure parameter for the refractive index it measures. The model is used to test the sensitivity of the LAS-derived H values to the composition of the pathlength (ratio of both surfaces) and to the contrast in sensible heat flux and roughness length between the two fields. Sensitivity tests to the aggregation scheme for roughness length (two of them are tested) and to the measurement height are also presented. The composition of the surface in combination with the contrast in sensible heat flux (in direct relation with the contrast in latent heat flux) explains most of the bias, with possible deviations ranging from -50 up to 80 W m-2. A tentative semi-empirical method for correcting the bias is suggested, which only requires a crude estimate of the contrast in component sensible heat fluxes along the pathlength.  相似文献   

16.
Summary This study concentrates on measurements of ground heat fluxes within a porous urban ballast layer that were conducted from June to September 2002 at the goods station in Osnabrück, Germany. To account for the limitation of accurately installing sensors within the heterogeneous and porous ballast bulk, the heat fluxes were calculated from four different methods to compare their variability, dynamics and shortcomings. Ground heat fluxes were gathered from 1) a heat flux plate with the inclusion of heat storage between the soil surface and the heat flux plate, 2) temperature gradient measurements with correction for heat storage, 3) temperature gradient measurements with a modelled surface temperature and a laboratory derived thermal conductivity, 4) as residual from the surface energy balance equation. The results show a distinct deviation of the four methods for absolute values of the ground heat flux as well as for temporal dynamics on the diurnal cycle. As indicated by the temporal dynamics of the ground heat flux times series and a simple error analysis of the four methods, the most plausible estimates for an urban application in a heterogeneous ballast layer were obtained by temperature gradient measurements between the surface and −0.05 m. Overall, the results indicate that accurate ground heat flux measurements in urban applications still prove difficult to acquire.  相似文献   

17.
Increased heat fluxes near a forest edge   总被引:1,自引:0,他引:1  
Summary ?Observations of sensible and latent heat flux above forest downwind of a forest edge show these fluxes to be larger than the available energy over the forest. The enhancement averages to 56 W m−2, or 16% of the net radiation, at fetches less than 400 m, equivalent to fetch to height ratios less than 15. The enhancement of turbulent energy fluxes is explained by advection and increases with the difference in temperature and humidity of the air over the upwind area as compared to the forest. The relatively high temperature and humidity of the upwind air are not caused by high surface heat fluxes, but are explained by the relatively low aerodynamic roughness of the upwind surface. Although the heat fluxes over forest are enhanced, the momentum fluxes are almost adjusted to the underlying forest. The different behaviour of heat and momentum fluxes is explained by absorption of momentum by pressure gradients near the forest edge. It is concluded that fetch requirements to obtain accurate surface fluxes from atmospheric observations need to be more stringent for scalar fluxes as compared to momentum fluxes. Received November 23, 2001; accepted May 13, 2002  相似文献   

18.
Summary  We compared two one-dimensional simulation models for heat and water fluxes in the soil-snow-atmosphere system with respect to their mathematical formulations of the surface heat exchange and the snow pack evolution. They were chosen as examples of a simple one-layer snow model and a more detailed multiple-layer snow model (SNTHERM). The snow models were combined with the same one-dimensional model for the heat and water balance of the underlying soil (CoupModel). Data from an arable field in central Sweden (Marsta), covering two years (1997–1999) of soil temperature, snow depth and eddy-correlation measurements were successfully compared with the models. Conditions with a snow pack deeper or shallower than 10 cm and bare soil resulted in similar discrepancies. The simulated net radiation and sensible heat flux were in good agreement with that measured during snow-covered periods, except for situations with snowmelt when the downward sensible heat flux was overestimated by 10–20 Wm−2. The results showed that the uncertainties in parameter values were more important than the model formulation and that both models were useful in evaluating the limitations and uncertainties of the measurements. Received November 1, 1999 Revised April 20, 2000  相似文献   

19.
Scintillometers are becoming increasingly popular for the validation of satellite remote sensing sensible heat-flux estimates due to the comparable spatial resolutions. However, it is important to gain confidence in the accuracy of the sensible heat-flux measurements obtained by the scintillometer. Large aperture scintillometer (LAS) and eddy-covariance (EC) measurements were collected over a homogeneous, dry and semi-arid region near Las Cruces, New Mexico, USA, where the homogeneity allowed direct comparison of the two instruments despite their differences in footprint sizes. The differences between the sensible heat-flux measured by both LAS and EC systems fall within the differences between two EC systems. We conclude that the large aperture scintillometer is a reliable system for measuring sensible heat flux in a dry semiarid region.  相似文献   

20.
The sensible heat flux (H) is determined using large-aperture scintillometer (LAS) measurements over a city centre for eight different computation scenarios. The scenarios are based on different approaches of the mean rooftop-level \((z_{H})\) estimation for the LAS path. Here, \(z_{H}\) is determined separately for wind directions perpendicular (two zones) and parallel (one zone) to the optical beam to reflect the variation in topography and building height on both sides of the LAS path. Two methods of \(z_{H}\) estimation are analyzed: (1) average building profiles; (2) weighted-average building height within a 250 m radius from points located every 50 m along the optical beam, or the centre of a certain zone (in the case of a wind direction perpendicular to the path). The sensible heat flux is computed separately using the friction velocity determined with the eddy-covariance method and the iterative procedure. The sensitivity of the sensible heat flux and the extent of the scintillometer source area to different computation scenarios are analyzed. Differences reaching up to 7% between heat fluxes computed with different scenarios were found. The mean rooftop-level estimation method has a smaller influence on the sensible heat flux (?4 to 5%) than the area used for the \(z_{H}\) computation (?5 to 7%). For the source-area extent, the discrepancies between respective scenarios reached a similar magnitude. The results demonstrate the value of the approach in which \(z_{H}\) is estimated separately for wind directions parallel and perpendicular to the LAS optical beam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号