首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
大气加权平均温度(Tm)是全球导航卫星系统(GNSS)水汽监测的关键参数。针对中国区域地形起伏较大的特点,本文构建了顾及精细季节变化的Tm垂直递减率函数模型,在此基础上,利用2007—2014年的Global Geodetic Observing System(GGOS)atmosphere格网数据建立了中国区域的Tm格网新模型(简称为CTm模型)。以2015年GGOS格网数据和无线电探空资料为参考值,对CTm模型进行精度检验,并与常用的Bevis公式和GPT2w模型进行比较分析。结果表明:①以GGOS格网数据为参考值,CTm模型的年均偏差和均方根误差(RMS)分别为-0.52 K和3.28 K,相比于GPT2w-5和GPT2w-1模型,精度(RMS值)分别提高了27%和13%;②以探空数据为参考值,CTm模型的年均偏差和RMS误差分别为0.26 K和3.75 K,相对于GPT2w-5和GPT2w-1模型,精度分别提高了21%和16%,尤其在中国西部地区,CTm模型表现出更为显著的优势。此外,将CTm模型用于GNSS水汽计算,其引起的水汽计算RMS误差和相对误差分别为0.29 mm和1.36%。CTm模型不需要实测气象参数,因此,在中国区域的GNSS实时高精度水汽探测中具有重要的应用。  相似文献   

2.
黄良珂  莫智翔  刘立龙  谢劭峰 《测绘学报》2021,50(10):1320-1330
大气可降水量(PWV)在研究全球气候变化和数值天气预报中扮演着关键角色.然而,目前PWV的垂直改正主要依靠简单的经验改正模型,在一定程度上限制了多源水汽产品的高精度融合及不同水汽产品相互比较的可靠性.本文针对中国地区地形起伏大、气候多变等特点,利用2012—2017年欧洲中期天气预报中心提供的ERA 5再分析资料,按全国、地理分区方法分别构建了顾及时变递减因子的中国大陆地区PWV垂直改正模型(简称为C-PWVC1模型和C-PWVC2模型).以2017年中国地区86个探空站数据为参考值,分别将ERA 5和MERRA-2再分析资料格网数据插值到探空站来对新建立的模型进行精度评估.结果表明:①C-PWV C1和C-PWV C2模型在PWV垂直改正中的性能相当;②C-PWV C模型相比于未顾及垂直改正的情况,对ERA5和MERRA-2的修正精度(RMS值)整体分别提高了16% 和8%,与常用的PWV垂直改正模型相比,对ERA5改善不够显著,而对MERRA-2则提高了12%;③C-PWV C模型在两种PWV高差较大时,表现出显著的优势,对MERRA-2的改正效果比ERA5更明显;④C-PWVC模型在不同空间分辨率的ERA5上,相比于常用的PWV垂直改正模型具有更好的插值精度和稳定性,尤其在中国南部和西部地区表现出显著的优势.因此,C-PWVC模型在中国大陆地区有较好的PWV垂直改正性能,可为中国区域的多源水汽产品比较、融合提供重要应用.  相似文献   

3.
GGOS Atmosphere提供了时间分辨率为6 h、空间分辨率为2.5°×2°的全球大气加权平均温度格网数据,该数据是利用ECMWF的相关资料计算得到的。利用全球的无线电探空资料和COSMIC掩星资料对该格网数据进行了验证和分析。检验结果表明,在全球范围内,该格网数据具有很高的精度,与无线电探空资料比较,年均RMS为1.96 K,与COSMIC掩星资料比较,年均RMS为1.91 K,与中国区域的无线电探空资料比较,年均RMS为2.24 K。此外,该格网数据在不同季节的精度有差异,但较小,不同纬度区域的精度也存在着一定的差异。  相似文献   

4.
大气加权平均温度(Tm)是全球导航卫星系统(global navigation satellite system, GNSS)反演大气水汽(precipitation water vapor, PWV)的关键参数。当前已有Tm模型提供的Tm信息难以捕获其日周期变化,因此限制了其在高时间分辨率GNSS PWV估计中的精度。大气再分析资料可提供高时空分辨率的Tm格点产品,但是在使用时需要对其进行空间插值,且Tm在高程上的变化远大于其在水平方向上变化。同时,针对中国区域地形起伏大等特点,提出顾及垂直递减率的中国区域Tm格点产品空间插值方法,以分布于中国区域的2015年89个探空站资料为参考值,验证了提出的方法在全球大地测量观测系统大气中心Tm格点产品和美国国家航空和太空管理局提供的MERRA-2的Tm格点产品中的空间插值精度。结果表明:(1)在顾及垂直递减率的Tm格点产品空间插值中,反距离加权法的...  相似文献   

5.
对流层延迟是GNSS导航定位的主要误差源之一.针对已有对流层天顶湿延迟(ZWD)垂直剖面模型存在建模仅采用单一格网点数据以及使用月均剖面数据等不足,本文提出了一种基于滑动窗口的ZWD垂直剖面格网模型构建方法,建立了一种顾及精细季节变化的高精度全球ZWD垂直剖面模型(GZWD-H模型).同时,联合2017年全球321个探空站资料,对GZWD-H模型的垂直插值及其在全球大地观测系统(GGOS)大气格网ZWD空间插值中的应用进行了精度检验,并与全球性能优异的GPT2w模型进行对比.结果表明:① 以全球探空站数据积分计算的ZWD分层剖面信息为参考值,GZWD-H模型在全球ZWD的垂直插值中均表现出了最优的精度和稳定性,相对于GPT2w-1和GPT2w-5模型分别提升了4% 和7%;②以全球探空站数据计算的地表ZWD信息为参考值,GZWD-H模型在GGOS大气格网ZWD产品空间插值中的精度相对于GPT2w-1和GPT2w-5模型分别提升了17% 和35%;③相对于GPT2w-1模型,GZWD-H模型进一步减少和优化了模型参数.因此,GZWD-H模型在全球GNSS大气探测和GNSS精密定位中具有重要的应用.  相似文献   

6.
针对广西地区探空站稀少,难以获得精确的T_m问题,GGOS atmosphere提供了利用ECMWF的相关资料计算而得到的时间分辨率为6h(UTC 00:00:00,06:00:00,12:00:00,18:00:00)、空间分辨率为2.5°×2°的全球T_m格网数据可以在没有气象数据的情况下获得较高时空分辨率的T_m,该文利用GGOS atmosphere T_m格网数据对广西地区4个探空站插值T_m,并用无线电探空数据计算的T_m检验其精度;对误差进行分析后,选取最优小波基与尺度对其残差去噪,利用去噪后得到的曲线建立T_m的改正模型。实验结果表明,插值T_m经基于小波去噪的模型改正后,其RMSE为1.29K;Bevis模型的RMSE为10.71K;GPT2_1W模型的RMSE为3.56K;改正模型精度优于传统模型,可以达到地基GPS反演GNSS-PWV的精度要求。  相似文献   

7.
加权平均温度(Tm)是将天顶湿延迟转换为大气可降水量的关键参数,针对青藏高原地区海拔高、地形起伏大、水汽高度分布复杂的特点,本文利用2010—2014年GGOS Atmosphere Tm格网数据和地表高程数据建立Tm垂直递减率函数,进而建立一种顾及Tm垂直递减率变化的适合青藏高原地区的新模型(QTm模型)。此外,利用2015年青藏高原地区14个探空站和GGOS Atmosphere Tm格网数据评估模型精度和适用性。试验结果表明,与GGOS Atmosphere Tm相比,QTm模型的年均Bias和RMSE分别为0.29和2.49 K,相对于GPT2w-1和GPT2w-5模型,RMSE分别提升了38.97%、67.06%;与探空数据相比,QTm模型的年均Bias和RMSE分别为0.16和2.90 K,相对于GPT2w-1和GPT2w-5模型分别提升了31.12%、39.46%。新模型的构建为青藏高原地区提供了可靠的Tm值,进而提供实时、高精度GNSS水汽信息。  相似文献   

8.
大气加权平均温度(T m)的精度直接影响全球导航卫星系统(GNSS)水汽反演的结果。针对现有T m模型的参数、建模数据源有待优化及模型构建时仅依赖于单个探空站点或单一格网点数据等问题,本文提出融合FY-4A GIIRS数据与ERA5再分析资料,在此基础上引入滑动窗口算法对融合数据进行处理同时顾及经度、纬度和高程因子构建空间分辨率为0.5°×0.5°的T m经验模型(FY-ET m模型)。采用偏差(Bias)和均方根误差(RMS)作为精度评定指标,联合未参与建模的2020年探空数据、ERA5再分析资料及天顶对流层延迟产品,对FY-ET m模型及其反演的大气可降水量进行精度评定。结果表明:以探空数据为参考值,FY-ET m模型的年均Bias、RMS分别为-0.02、5.79 K,相比较于Bevis和GPT3模型分别提高了3.62(Bias)、0.8(RMS)和2.54(Bias)、0.63 K(RMS);以ERA5再分析资料为参考值,FY-ET m模型的年均Bias、RMS分别为0.01、3.32 K,相比较于Bevis和GPT3模型分别提高了0.97(Bias)、0.13(RMS)和2.94(Bias)、1.71 K(RMS),同精度优异的GPT3模型相比,FY-ET m模型在中国西部和北部地区也表现出了明显的精度改善;以GNSS站点得到的PWV为参考值,FY-ET m模型反演的PWV与GNSS站得到的PWV值精度相当,Bias变化范围为-0.5~0.5 mm。FY-ET m模型准确度高稳定性良好,只需输入位置和时间信息就能获取目标点的T m,能够在GNSS水汽反演中发挥重要的作用。  相似文献   

9.
由于日本区域易受自然灾害频发、水汽特征变化复杂、探空站点分布稀疏的问题,进而制约了高精度水汽的获取,因此缺少此区域的高精度加权平均温度(Tm)模型. 鉴于此,采用2009—2016年全球大地测量观测系统(GGOS) Atmosphere Tm和ERA-Interim 2 m Ts格网数据新建立一种考虑Tm残差季节性变化和周日变化的适合日本区域的Tm模型 (JQTm模型). 同时,利用2017年日本区域13个探空站和110个GGOS Atmosphere Tm格网数据,对新建立的JQTm模型在日本区域的精度进行评估. 研究发现:与GGOS Atmosphere Tm格网数据对比,JQTm模型的偏差(bias)和均方根误差(RMSE)分别为0.15 K和1.92 K,RMSE分别比GPT2w-1模型、GPT2w-5模型提升41.16% (1.33 K)、44.41% (1.53 K);与探空资料对比,JQTm模型的bias和RMSE分别为–0.66 K和2.14 K,RMSE分别比GPT2w-1模型、GPT2w-5模型提升28.43% (0.85 K)、29.61% (0.90 K). JQTm模型能够为日本区域提供高精度的Tm值,为研究此区域大气水汽和极端天气提供重要依据.   相似文献   

10.
MERRA-2是当前最新发布的大气再分析资料,其提供的格网水汽产品具有较高的时空分辨率,但尚无文献对MERRA-2水汽产品在青藏高原地区的适用性予以评价. 因此,亟需开展青藏高原地区MERRA-2水汽产品的适用性分析. 根据MERRA-2格网水汽数据和格网点位势数据,建立了青藏高原地区的水汽垂直剖面函数,并利用水汽垂直剖面函数将格网点水汽值插值计算到临近探空站点或全球卫星导航系统(GNSS)站点上,再利用双线性插值法进行水平方向上的水汽插值计算,进行精度分析. 研究表明:高原地区测站间日均偏差(bias)多数分布在2 mm以内,月均偏差均小于1 mm,MERRA-2水汽产品在高原中部和北部精度较高,南部精度较低.   相似文献   

11.
高精度的对流层天顶湿延迟(ZWD)在GNSS高精度定位及大气水汽监测中具有重要作用。中国区域具有疆域辽阔、地形多变等特点,垂直方向存在规律难循的气流变化,而大多数ZWD模型仅采用单一函数对大气高度范围内变化进行拟合,或未考虑季节变化因素,因此在中国区域适用性较差。本文以中国区域MERRA-2大气再分析资料为数据源对ZWD展开深入研究,建立了一种顾及分段表达的中国区域ZWD模型(CZWD模型);并以中国区域89个探空站积分计算的ZWD数据为参考值检验模型的精度。结果表明,CZWD模型的年均偏差(Bias)和年均均方根值(RMS)误差分别为-2.9、21.9 mm,精度优于目前应用较广的GPT3模型,且提高了5%,在中国区域总体上显示出较优的精度和适用性。因此,CZWD模型对于中国区域GNSS导航定位及水汽监测具有重要意义。  相似文献   

12.
大气水汽是对流层中的重要参数之一,已被广泛应用于短临天气预警和长期气候监测等领域。我国风云三号(FY-3)系列卫星搭载的中分辨率光谱成像仪可用于大气水汽监测,但反演大气可降水量(PWV)时存在大气透过率参数低估、水汽与大气透过率回归系数经验选取的缺陷,无法满足在短临降雨监测、数值同化等高精度PWV应用方面的需求。针对该问题,本文提出一种GNSS辅助FY-3卫星的高精度PWV反演方法。本文方法引入高精度实测GNSS PWV作为大气透过率计算模型的回归拟合参数,辅助FY-3 L1级数据精确估计PWV和大气透过率的模型回归系数;同时,该方法顾及季节和高程因素对FY-3-L1 PWV反演的影响,分季节反演PWV并引入数字高程模型修正由于部分大气透过率参数低估导致的FY-3 L1 PWV相对不准确的现象。选取中国区域2013—2014年FY-3A卫星的L1数据和中国地壳运动观测网络的260个GNSS测站数据进行试验。结果表明,本文提出的GNSS辅助FY-3系列卫星PWV反演方法优于传统方法(FY-3A-L2 PWV),其整体精度改善率为74.5%,可得到更加可靠、稳健性更强的PWV格网产品,对于...  相似文献   

13.
对流层延迟是影响高精度定位与导航的主要误差之一,也是全球导航卫星系统(global navigation satellite system,GNSS)水汽探测的关键参数。美国航空航天局发布了最新一代的大气再分析资料(MERRA-2资料),其可用于计算高时空分辨率的对流层延迟产品,但是目前尚无文献对利用MERRA-2资料计算天顶对流层延迟(zenith tropospheric delay,ZTD)和天顶湿延迟(zenith wet delay,ZWD)的精度进行分析。因此,联合2015年中国陆态网214个GNSS站ZTD产品和分布于中国区域的87个探空站资料,对利用MERRA-2资料在中国区域计算ZTD/ZWD的精度进行评估。结果表明:(1)以陆态网ZTD为参考值,利用MERRA-2资料积分计算ZTD的年均偏差和均方根误差(root mean square error,RMSE)分别为0.32 cm和1.21 cm,且偏差和RMSE均表现出一定的季节变化,总体上呈现为夏季精度低、冬季精度高;在空间分布上,偏差随纬度和高程的变化趋势并不明显,但RMSE随纬度和高程的增加总体上呈现递减的趋...  相似文献   

14.
大气加权平均温度Tm是计算水汽转换因子和大气可降水量的重要参数。利用2007—2017年全球大地观测系统(global geodetic observing system, GGOS) Atmosphere Tm格网数据和欧洲中尺度天气预报中心(European centre for medium-range weather forecasts, ECMWF) 2 m温度数据,建立一种适合澳大利亚区域、顾及Tm残差季节性和日周期变化的Tm模型——qTm。此外,采用2018年的GGOS Atmosphere Tm格网数据和探空资料对该模型进行评估。结果表明,qTm模型在澳大利亚区域具有较高的精度和适用性,与GGOS Atmosphere Tm相比,qTm模型的年均偏差(Bias)和均方根误差(root mean square error, RMSE)分别为-0.31 K和1.97 K,相对于GPT2w-1和GPT2w-5模型,RMSE分别提高21.8%和25.9%;qTm模型值与探空积分值更符合,模型的年均Bias和RMSE分别为-0.44 K和2.45 K,相比GPT2w-1和GPT2w-5模型分别提高10.2% 和11.8%。qTm模型可为澳大利亚区域提供精确的Tm值,为该区域大气水汽分析和厄尔尼诺现象研究提供基础。  相似文献   

15.
利用GPT2w模型计算加权平均温度T_m值,以新疆地区9个探空站2013-2015年实测气象数据积分计算的T_m值为参考,通过时空序列分析1°×1°和5°×5°两种格网分辨率下G1-T_m和G5-T_m的精度分布情况,进而检验利用GPT2w模型在新疆地区进行地基GNSS大气水汽反演的适用性。结果表明:①G1-T_m和G5-T_m均存在-3~-4 K的年均偏差;②G5-T_m存在精度异常突出区域,影响整个新疆地区T_m值的计算精度,而G1-T_m具有较好的稳定性;③G1-T_m模型的年均Bias、MAE和RMS分别为-3.17 K、4.12 K和5.17 K,总体上优于G5-T_m模型,因此运用G1-T_m进行地基GNSS大气水汽反演具有较好的精度保障。  相似文献   

16.
李森  陈积旭  李刚 《北京测绘》2017,(5):73-76,87
利用GNSS技术可以得到大地高,要想得到正常高必须精确已知高程异常.对于垂直变形监测,人们关心的是高程变化量而非高程本身.本文对利用GNSS大地高的变化量取代水准高的变化量的可行性,基准点选取及精度分析,参考框架的建立,大气改正模型的确定等内容进行分析研究.并通过2012年和2015年两期北京市实测GNSS观测数据得到的沉降量与精密水准结果比较分析,验证了GNSS监测地面沉降方案的可行性.  相似文献   

17.
联合多代卫星测高数据确定中国近海稳态海面地形模型   总被引:3,自引:0,他引:3  
联合多代测高卫星(Geosat GM和ERS-1/168,TOPEX/Poseidon(简称T/P)、变轨T/P,ERS-2,GFO)数据,基于强制改正法得到中国近海2'×2'格网分辨率的平均海面高模型;然后以EIGEN-GL04C重力场模型为参考模型,基于测高垂线偏差法精化得到中国近海2'×2'格网分辨率的测高大地水准面模型;最后联合移去一恢复技术和Gauss滤波技术,采用几何域法得到中国近海2'×2'格网分辨率的测高海面地形.利用中国沿岸长期验潮站平均海面高程信息,由直接推算法与平差法得出1985国家高程基准相对于所建测高大地水准面的垂直偏差分别为23.62±5.38 cm与22.33±1.07cm,与海洋学方法和GPS/水准方法得到的近期结果相近[1~2];扣除各自垂直偏差后的比较表明,由上述两种方法得到的海面地形模型的精度分别为±5.38cm与±5.23 cm.  相似文献   

18.
湿延迟与可降水量转换系数的全球经验模型   总被引:1,自引:0,他引:1  
利用2005~2011年的全球大地测量观测系统(global geodetic observing system,GGOS)Atmosphere提供的2.5°×2°(经度×纬度)的天顶湿延迟(zenith wet delay,ZWD)格网数据和欧洲中尺度天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)提供的2.5°×2°可降水量(precipitable water vapor,PWV)格网数据,在全球范围内计算得到各格网点的地基GPS水汽反演关键参数Π-1的时间序列,分析了其时空分布特征,建立了一种转换系数Π的全球经验模型。该模型无需站点气象数据,仅与站点经纬度、年积日和海拔相关。利用未参与建模的2012年的GGOS Atmosphere和ECMWF格网数据、2012年661个无线电探空站的探空资料对模型进行精度检验。结果显示,采用格网数据检验,其偏差的平均值(Bias)为-0.179mm,均方根误差(root mean square error,RMS)的平均值为1.806mm;采用无线电探空资料进行检验,其Bias为0.465mm,RMS为0.789mm。结果都表现出了较小的系统性偏差与较高的精度,说明所建立的湿延迟与可降水量转换系数模型在全球范围内具有较高的精度与稳定性。  相似文献   

19.
黄良珂 《测绘学报》2023,(9):1609-1609
对流层在全球水循环、灾害天气形成与演变中扮演着极为重要的角色。大气加权平均温度(Tm)、对流层天顶延迟(ZTD)和天顶湿延迟(ZWD)等均属于对流层关键参量,其中ZWD/ZTD是影响GNSS等空间技术高精度导航定位的重要因素,而Tm是GNSS水汽探测的关键参数。随着GNSS导航定位及水汽探测对实时高精度对流层关键参量的要求日趋增强,对流层关键参量的实时高精度全球精化模型构建成为近年来的研究热点。论文针对已有对流层关键参量全球经验模型存在的问题,联合最新的MERRA-2资料和GGOS大气格网产品等多源数据,开展了对流层关键参量的实时高精度全球模型构建研究。论文主要工作和贡献如下。  相似文献   

20.
卫星导航定位中,电离层延迟是影响用户实时定位精度的重要因素之一。利用全球电离层格网(global ionosphere maps,GIM)提供电离层延迟改正是较为常用的方法,而GIM格网的精度受限于地面GNSS(global navigation satellite system)跟踪站的分布密度。利用区域内少量或1个GNSS跟踪站建立实时区域电离层总电子含量(total electron content,TEC)模型,生成高精度的实时区域电离层格网,为用户提供区域电离层延迟改正显得尤为重要。基于CODE(Center for Orbit Determination in Europe)分析中心2016—2018年995 d的GIM格网数据,分析了相邻格网点TEC的变化范围以及不同时间间隔同一格网点TEC的变化范围。结果表明,GIM在经度方向上分辨率为5°变化的均值范围为0.2~1.0 TECU,在纬度方向上分辨率为2.5°变化的均值范围为0.4~1.4 TECU,在经度和纬度分辨率均小于1°时,电离层TEC的变化小于1.0 TECU;1 h内同一格网点电离层TEC的变化均值约为1.28 TECU,30 min内同一格网点电离层TEC的变化小于1.0 TECU。该研究为小范围内(半径小于100 km)实时区域电离层TEC模型的建立及电离层格网的时间适用范围提供了有效的数据支撑和理论验证,同时对区域电离层TEC时空变化的研究、电离层TEC预报、电离层异常监测和磁暴监测等具有一定的参考意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号