首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 998 毫秒
1.
This study used a quadratic programming sector model to assess the integrated impacts of climate change on the agricultural economy of Egypt. Results from a dynamic global food trade model were used to update the Egyptian sector model and included socio-economic trends and world market prices of agricultural goods. In addition, the impacts of climate change from three bio-physical sectors – water resources, crop yields, and land resources – were used as inputs to the economic model. The climate change scenarios generally had minor impacts on aggregated economic welfare (sum of Consumer and Producer Surplus or CPS), with the largest reduction of approximately 6 percent. In some climate change scenarios, CPS slightly improved or remained unchanged. These scenarios generally benefited consumers more than producers, as world market conditions reduced the revenue generating capacity of Egyptian agricultural exporters but decreased the costs of imports. Despite increased water availability and only moderate yield declines, several climate change scenarios showed producers being negatively affected by climate change. The analysis supported the hypothesis that smaller food importing countries are at a greater risk to climate change, and impacts could have as much to do with changes in world markets as with changes in local and regional biophysical systems and shifts in the national agricultural economy.  相似文献   

2.
Agricultural GHG mitigation policies are important if ambitious climate change goals are to be achieved, and have the potential to significantly lower global mitigation costs [Reisinger, A., Havlik, P., Riahi, K., van Vliet, O., Obersteiner, M., & Herrero, M. (2013). Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture. Climatic Change, 117, 677–690]. In the post-Paris world of ‘nationally determined contributions’ to mitigation, the prospects for agricultural mitigation policies may rest on whether they are in the national economic interest of large agricultural producers. New Zealand is a major exporter of livestock products; this article uses New Zealand as a case study to consider the policy implications of three global policy scenarios at the global, national and farm levels. Building on global modelling, a model dairy farm and a model sheep and beef farm are used to estimate the changes in profit when agricultural emissions are priced and mitigated globally or not, and priced domestically or not, in 2020. Related to these scenarios is the metric or GHG exchange rate. Most livestock emissions are non-CO2, with methane being particularly sensitive to the choice of metric. The results provide evidence that farm profitability is more sensitive to differing international policy scenarios than national economic welfare. The impact of the choice of metric is not as great as the impact of whether other countries mitigate agricultural emissions or not. Livestock farmers do best when agricultural emissions are not priced, as livestock commodity prices rise significantly due to competition for land from forestry. However, efficient farmers may still see a rise in profitability when agricultural emissions are fully priced worldwide.

Policy relevance

Exempting agricultural emissions from mitigation significantly increases the costs of limiting warming to 2 °C, placing the burden on other sectors. However, there may be a large impact on farmers if agricultural emissions are priced domestically when other countries are not doing the same. The impacts of global and national climate policies on farmers need to be better understood in order for climate policies to be politically sustainable. Transitional assistance that is not linked to emission levels could help, as long as the incentives to mitigate are maintained. In the long run, efficient farmers may benefit from climate policy; international efforts should focus on mitigation options and effective domestic policy development, rather than on metrics.  相似文献   

3.
A global map of drought risk has been elaborated at the sub-national administrative level. The motivation for this study is the observation that little research and no concerted efforts have been made at the global level to provide a consistent and equitable drought risk management framework for multiple regions, population groups and economic sectors. Drought risk is assessed for the period 2000–2014 and is based on the product of three independent determinants: hazard, exposure and vulnerability. Drought hazard is derived from a non-parametric analysis of historical precipitation deficits at the 0.5°; drought exposure is based on a non-parametric aggregation of gridded indicators of population and livestock densities, crop cover and water stress; and drought vulnerability is computed as the arithmetic composite of high level factors of social, economic and infrastructural indicators, collected at both the national and sub-national levels. The performance evaluation of the proposed models underlines their statistical robustness and emphasizes an empirical resemblance between the geographic patterns of potential drought impacts and previous results presented in the literature. Our findings support the idea that drought risk is driven by an exponential growth of regional exposure, while hazard and vulnerability exhibit a weaker relationship with the geographic distribution of risk values. Drought risk is lower for remote regions, such as tundras and tropical forests, and higher for populated areas and regions extensively exploited for crop production and livestock farming, such as South-Central Asia, Southeast of South America, Central Europe and Southeast of the United States. As climate change projections foresee an increase of drought frequency and intensity for these regions, then there is an aggravated risk for global food security and potential for civil conflict in the medium- to long-term. Since most agricultural regions show high infrastructural vulnerability to drought, then regional adaptation to climate change may begin through implementing and fostering the widespread use of irrigation and rainwater harvesting systems. In this context, reduction in drought risk may also benefit from diversifying regional economies on different sectors of activity and reducing the dependence of their GDP on agriculture.  相似文献   

4.
This article illustrates the main difficulties encountered in the preparation of GHG emission projections and climate change mitigation policies and measures (P&M) for Kazakhstan. Difficulties in representing the system with an economic model have been overcome by representing the energy system with a technical-economic growth model (MARKAL-TIMES) based on the stock of existing plants, transformation processes, and end-use devices. GHG emission scenarios depend mainly on the pace of transition in Kazakhstan from a planned economy to a market economy. Three scenarios are portrayed: an incomplete transition, a fast and successful one, and even more advanced participation in global climate change mitigation, including participation in some emission trading schemes. If the transition to a market economy is completed by 2020, P&M already adopted may reduce emissions of CO2 from combustion by about 85 MtCO2 by 2030 – 17% of the emissions in the baseline (WOM) scenario. One-third of these reductions are likely to be obtained from the demand sectors, and two-thirds from the supply sectors. If every tonne of CO2 not emitted is valued up to US$10 in 2020 and $20 in 2030, additional P&M may further reduce emissions by 110 MtCO2 by 2030.  相似文献   

5.
Although there is a strong policy interest in the impacts of climate change corresponding to different degrees of climate change, there is so far little consistent empirical evidence of the relationship between climate forcing and impact. This is because the vast majority of impact assessments use emissions-based scenarios with associated socio-economic assumptions, and it is not feasible to infer impacts at other temperature changes by interpolation. This paper presents an assessment of the global-scale impacts of climate change in 2050 corresponding to defined increases in global mean temperature, using spatially-explicit impacts models representing impacts in the water resources, river flooding, coastal, agriculture, ecosystem and built environment sectors. Pattern-scaling is used to construct climate scenarios associated with specific changes in global mean surface temperature, and a relationship between temperature and sea level used to construct sea level rise scenarios. Climate scenarios are constructed from 21 climate models to give an indication of the uncertainty between forcing and response. The analysis shows that there is considerable uncertainty in the impacts associated with a given increase in global mean temperature, due largely to uncertainty in the projected regional change in precipitation. This has important policy implications. There is evidence for some sectors of a non-linear relationship between global mean temperature change and impact, due to the changing relative importance of temperature and precipitation change. In the socio-economic sectors considered here, the relationships are reasonably consistent between socio-economic scenarios if impacts are expressed in proportional terms, but there can be large differences in absolute terms. There are a number of caveats with the approach, including the use of pattern-scaling to construct scenarios, the use of one impacts model per sector, and the sensitivity of the shape of the relationships between forcing and response to the definition of the impact indicator.  相似文献   

6.
The poverty implications of climate-induced crop yield changes by 2030   总被引:1,自引:0,他引:1  
Accumulating evidence suggests that agricultural production could be greatly affected by climate change, but there remains little quantitative understanding of how these agricultural impacts would affect economic livelihoods in poor countries. Here we consider three scenarios of agricultural impacts of climate change by 2030 (impacts resulting in low, medium, or high productivity) and evaluate the resulting changes in global commodity prices, national economic welfare, and the incidence of poverty in a set of 15 developing countries. Although the small price changes under the medium scenario are consistent with previous findings, we find the potential for much larger food price changes than reported in recent studies which have largely focused on the most likely outcomes. In our low-productivity scenario, prices for major staples rise 10–60% by 2030. The poverty impacts of these price changes depend as much on where impoverished households earn their income as on the agricultural impacts themselves, with poverty rates in some non-agricultural household groups rising by 20–50% in parts of Africa and Asia under these price changes, and falling by significant amounts for agriculture-specialized households elsewhere in Asia and Latin America. The potential for such large distributional effects within and across countries emphasizes the importance of looking beyond central case climate shocks and beyond a simple focus on yields – or highly aggregated poverty impacts.  相似文献   

7.
根据IPCC全球气候变化情景,分析了石羊河流域未来可能气候变化趋势及其对流域河川径流量的影响。利用宏观经济水资源模型,研究了不同径流变化情景对石羊河流域治理规划效果的影响。结果表明:若石羊河流域未来径流量减少15%,对流域现状发展模式和治理模式经济影响将分别为29.8%和7.2%。石羊河综合治理可提高流域应对气候变化风险的能力,减小气候变化对流域社会经济的影响。  相似文献   

8.
气候变化对石羊河流域重点治理规划的影响   总被引:1,自引:0,他引:1  
 根据IPCC全球气候变化情景,分析了石羊河流域未来可能气候变化趋势及其对流域河川径流量的影响。利用宏观经济水资源模型,研究了不同径流变化情景对石羊河流域治理规划效果的影响。结果表明:若石羊河流域未来径流量减少15%,对流域现状发展模式和治理模式经济影响将分别为29.8%和7.2%。石羊河综合治理可提高流域应对气候变化风险的能力,减小气候变化对流域社会经济的影响。  相似文献   

9.
This integrated study examines the implications of changes in crop water demand and water availability for the reliability of irrigation, taking into account changes in competing municipal and industrial demands, and explores the effectiveness of adaptation options in maintaining reliability. It reports on methods of linking climate change scenarios with hydrologic, agricultural, and planning models to study water availability for agriculture under changing climate conditions, to estimate changes in ecosystem services, and to evaluate adaptation strategies for the water resources and agriculture sectors. The models are applied to major agricultural regions in Argentina, Brazil, China, Hungary, Romania, and the US, using projections of climate change, agricultural production, population, technology, and GDP growth.For most of the relatively water-rich areas studied, there appears to be sufficient water for agriculture given the climate change scenarios tested. Northeastern China suffers from the greatest lack of water availability for agriculture and ecosystem services both in the present and in the climate change projections. Projected runoff in the Danube Basin does not change substantially, although climate change causes shifts in environmental stresses within the region. Northern Argentina's occasional problems in water supply for agriculture under the current climate may be exacerbated and may require investments to relieve future tributary stress. In Southeastern Brazil, future water supply for agriculture appears to be plentiful. Water supply in most of the US Cornbelt is projected to increase in most climate change scenarios, but there is concern for tractability in the spring and water-logging in the summer.Adaptation tests imply that only the Brazil case study area can readily accommodate an expansion of irrigated land under climate change, while the other three areas would suffer decreases in system reliability if irrigation areas were to be expanded. Cultivars are available for agricultural adaptation to the projected changes, but their demand for water may be higher than currently adapted varieties. Thus, even in these relatively water-rich areas, changes in water demand due to climate change effects on agriculture and increased demand from urban growth will require timely improvements in crop cultivars, irrigation and drainage technology, and water management.  相似文献   

10.
Projections of climate impacts on crop yields simulated for different General Circulation Model (GCM) scenarios are used, in a recursively dynamic general equilibrium framework, to account for potential economy-wide impacts of climate change in Egypt. Comparing these impact projections to those obtained under a reference, business-as-usual, scenario assuming some moderate changes in the political, economic or technological spheres, indicates that global warming has potentially negative effects. The analysis is based on a global assessment of potential climate change-induced variations in world commodity production and trade. The Egyptian agricultural sector, and the non-agricultural sector to a lesser extent, are projected to be increasingly less self-sufficient. Specific potential adverse impacts are identified. The simulation results show that high-cost adaptation measures involving major changes in the agricultural system and practices may mitigate these adverse impacts. Stimulating economic development of the rural areas and creating appropriate conditions for effective diffusion and development of technologies — particularly for the agricultural sector — would seem a desirable strategy. Perhaps, more importantly, the simulation results show that the assumption of exogenously determined technological progress may be inappropriate, in which case the potential adverse impacts of a future warming of the global climate are likely to be fewer than is indicated in this study — if prevailing constraints on productivity growth in the major food and feed grains are ‘released’ by endogenous advances in technology.  相似文献   

11.
已经观测到的气候变化影响是显著的、多方面的。各个领域和地区都存在有利和不利影响,但以不利影响为主,未来的气候变暖将会对中国的生态系统、农业以及水资源等部门和沿海地区产生重大的不利影响。采取适应措施可以减轻气候变化的不利影响,应将适应气候变化的行动逐步纳入国民经济和社会发展的中长期规划中。由于我国科学研究的相对不足和科学认识能力的局限,目前的气候变化影响评估方法和结果还存在很大的不确定性。应当加强区域适应气候变化的案例研究、扩大研究领域、加强极端天气、气候事件影响的研究,以降低影响评估的不确定性,并提出切实可行的适应对策。  相似文献   

12.
Climate change is likely to harm developing economies that generate major portion of their GDP from climate sensitive sectors. This paper computes economy-wide impact of climate change and its distributional consequence with the help of a sector wise disaggregated general equilibrium model using Ethiopia as a case. The projected climate shock reduces output in the sector with the strongest forward and backward linkage to the rest of the economy and redistributes income by changing the returns to inputs owned by various agents. The results suggest that climate change will make the prospect of economic development harder in at least two ways: first, by reducing agricultural production and output in the sectors linked to the agricultural sector, which is likely to reduce Ethiopia's GDP by about 10% from its benchmark level; and second, by raising the degree of income inequality in which the Gini-coefficient increases by 20%, which is likely to further decrease economic growth and fuel poverty. Thus, climate change is expected to increase the fraction of people in poverty by reducing the size of the total pie and redistributing it more unevenly.  相似文献   

13.
The impacts of climate change on the agricultural, energy, forestry, and water sectors of MINK would reverberate negatively throughout the regional economy. Allowing for sectoral adjustments to the new climate, however, the decline in regional income and production would not likely exceed 1–2%. The largest economy-wide impacts would be by way of the agricultural and water sectors. The impacts by way of forestry and energy would be negligible, unless the nation adopts a program of massive reforestation to capture CO2, which would positively affect the regional economy.  相似文献   

14.
Study on the Impacts of Climate Change on China's Agriculture   总被引:1,自引:0,他引:1  
This paper measures the economic impacts of climate change on China's agriculture based on the Ricardian model. By using county-level cross-sectional data on agricultural net revenue, climate, and other economic and geographical data for 1275 agriculture dominated counties, we find that under most climate change scenarios both higher temperature and more precipitation would have an overall positive impact on China's agriculture. However, the impacts vary seasonally and regionally. Autumn effect is the most positive, but spring effect is the most negative. Applying the model to five climate scenarios in the year 2050 shows that the East, the Central part, the South, the northern part of the Northeast, and the Plateau would benefit from climate change, but the Southwest, the Northwest and the southern part of the Northeast may be negatively affected. In the North, most scenarios show that they may benefit from climate change. In summary, all of China would benefit from climate change in most scenarios.  相似文献   

15.
Highlights of the previous papers in this series are reviewed. Methodology developed for the MINK study has improved the ability of impacts analysis to deal with questions of (1) spatial and temporal variability in climate change; (2) CO2-enrichment effects; (3) the reactions of complex enterprises (farms and forests) to climate change and their ability to adjust and adapt; and (4) integrated effects on current and, more particularly, on future regional economies. The methodology also provides for systematic study of adjustment and adaptation opportunities and of the inter-industry linkages that determine what the overall impacts on the regional economy might be. The analysis shows that with a 1930s dust bowl climate the region-wide economic impacts would be small, after adjustments in affected sectors. In this final paper we consider whether synergistic effects among sectoral impacts and more severe climate change scenarios might alter this conclusion. The MINK analysis, as is, leads to the conclusion that a strong research capacity will be required to ensure that technologies facilitating adaptation to climate change will be available when needed. The capacity to deal with climate change also requires an open economy allowing for free trade and movement of people and for institutions that protect unpriced environmental values. More severe climate scenarios and negative synergisms can only strengthen these conclusions.  相似文献   

16.
IPCC第五次评估报告(AR5)第二工作组(WGII)报告认为,气候变化对世界上大部分区域的自然和人类系统的影响将进一步加剧,其对非洲最大的影响预计发生在半干旱的环境,增加现有的水资源可利用量和农业系统的压力;气候变化已导致北欧地区的谷物产量增加而南欧地区的产量降低,未来的变化将增加欧洲的灌溉需求;在亚洲的许多地区,气候变化将导致农业生产率下降;气候、大气CO2和海洋酸化的进一步变化预计将对大洋洲的水资源、海岸生态系统、基础设施、健康、农业和生物多样性产生实质性的影响;在北美,许多带来风险的气候压迫力的频率和强度将在未来几十年增加;中美洲和南美洲许多国家的持续高水平贫困导致了对气候变率和变化的高脆弱性;在北极,气候变化与非气候相关驱动在确定的物理、生物和社会经济风险上交互作用,变化率可能超过了社会系统适应的速率;在气候和非气候因素的影响下,小岛屿具有高度的脆弱性,同时,气候变暖将增加海洋生态系统的风险。  相似文献   

17.
The integrated assessment model FUND 2.8n is applied in an assessment to estimate the magnitude of the general market and non-market impacts of temperature changes caused by a possible shutdown of the thermohaline circulation (THC). The monetized impacts of this change in environmental conditions are determined for 207 individual countries for two scenarios: one warming scenario in which the THC weakens but remains intact, and another in which the THC breaks down. Eight different response patterns are identified. The dominant pattern is that a THC shutdown has an offsetting effect on the underlying warming trend. Depending on whether the impacts of warming are initially beneficial or detrimental, the economic effects of a THC shutdown show distinct regional variability. Key economic sectors affected are water resources and energy consumption, as well as cardiovascular and respiratory diseases among health impacts. The maximum national impact of a shutdown of the THC turns out to be of the magnitude of a few per cent of GDP, but the average global impact is much smaller. The results indicate that the temperature effect of a THC shutdown does not create an insurmountable economic threat on a global scale, but may cause severe damages to individual countries. However, a consideration of other climatic impacts such as precipitation and sea level changes is likely to alter the identified trends in economic development.  相似文献   

18.
While it is generally asserted that those countries who have contributed least to anthropogenic climate change are most vulnerable to its adverse impacts some recently developed indices of vulnerability to climate change come to a different conclusion. Confirmation or rejection of this assertion is complicated by the lack of an agreed metric for measuring countries’ vulnerability to climate change and by conflicting interpretations of vulnerability. This paper presents a comprehensive semi-quantitative analysis of the disparity between countries’ responsibility for climate change, their capability to act and assist, and their vulnerability to climate change for four climate-sensitive sectors based on a broad range of disaggregated vulnerability indicators. This analysis finds a double inequity between responsibility and capability on the one hand and the vulnerability of food security, human health, and coastal populations on the other. This double inequity is robust across alternative indicator choices and interpretations of vulnerability. The main cause for the higher vulnerability of poor nations who have generally contributed little to climate change is their lower adaptive capacity. In addition, the biophysical sensitivity and socio-economic exposure of poor nations to climate impacts on food security and human health generally exceeds that of wealthier nations. No definite statement can be made on the inequity associated with climate impacts on water supply due to large uncertainties about future changes in regional water availability and to conflicting indicators of current water scarcity. The robust double inequity between responsibility and vulnerability for most climate-sensitive sectors strengthens the moral case for financial and technical assistance from those countries most responsible for climate change to those countries most vulnerable to its adverse impacts. However, the complex and geographically heterogeneous patterns of vulnerability factors for different climate-sensitive sectors suggest that the allocation of international adaptation funds to developing countries should be guided by sector-specific or hazard-specific criteria despite repeated requests from participants in international climate negotiations to develop a generic index of countries’ vulnerability to climate change.  相似文献   

19.
This article analyses the interactions between agricultural policy measures in the EU and the factors affecting GHG emissions from agriculture on the one hand, and the adaptation of agriculture to climate change on the other. To this end, the article uses Slovenia as a case study, assessing the extent to which Slovenian agricultural policy is responding to the challenges of climate change. All agricultural policy measures related to the 2007–2013 programming period were analysed according to a new methodological approach that is based on a qualitative (expert evaluation) and a quantitative (budgetary transfers validation) assessment. A panel of experts reached consensus on the key factors through which individual measures affect climate change, in which direction and how significantly. Data on budgetary funds for each measure were used as weights to assess their relative importance. The results show that there are not many measures in (Slovenian) agricultural policy that are directly aimed at reducing GHG emissions from agriculture or at adaptation to climate change. Nevertheless, most affect climate change, and their impact is far from negligible. Current measures have both positive and negative impacts, but overall the positive impacts prevail. Measures that involve many beneficiaries and more budgetary funds had the strongest impact on aggregate assessments. In light of climate change, agricultural policy should pay more attention to measures that are aimed at raising the efficiency of animal production, as it is the principal source of GHG emissions from agriculture.

Policy relevance

Agricultural policy must respond to climate challenges and climate change impact assessment must be included in the process of forming European agricultural policy. Agricultural policy measures that contribute to the reduction of emissions and adaptation, whilst acting in synergy with other environmental, economic and social goals, should be promoted. The approach used in this study combines qualitative and quantitative data, yielding an objective assessment of the climate impact of agricultural policy measures and providing policy makers with a tool for either ex ante or ex post evaluations of climate-relevant policy measures.  相似文献   

20.
Hydropower generation plays a key role in mitigating GHG emissions from the overall power supply. Although the maximum achievable hydropower generation (MAHG) will be affected by climate change, it is seldom incorporated in integrated assessment models. In this study, we first used the H08 global hydrological model to project MAHG under two physical climate change scenarios. Then, we used the Asia-Pacific Integrated Model/Computable General Equilibrium integrated assessment model to quantify the economic consequences of the presence or absence of mitigation policy on hydropower generation. This approach enabled us to quantify the physical impacts of climate change and the effect of mitigation policy—together and in isolation—on hydropower generation and the economy, both globally and regionally. Although there was little overall global change, we observed substantial differences among regions in the MAHG average change (from ??71% in Middle East to 14% in Former Soviet Union in RCP8.5). We found that the magnitude of changes in regional gross domestic product (GDP) was small negative (positive) in Brazil (Canada) by 2100, for the no mitigation policy scenario. These consequences were intensified with the implementation of mitigation policies that enhanced the price competitiveness of hydropower against fossil fuel-powered technologies. Overall, our results suggested that there would be no notable globally aggregated impacts on GDP by 2100 because the positive effects in some regions were canceled out by negative effects in other regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号