首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium Isotopic Composition of Various Reference Materials and Seawater   总被引:1,自引:0,他引:1  
A compilation of δ44/40Ca (δ44/40Ca) data sets of different calcium reference materials is presented, based on measurements in three different laboratories (Institute of Geological Sciences, Bern; Centre de Géochimie de la Surface, Strasbourg; GEOMAR, Kiel) to support the establishment of a calcium isotope reference standard. Samples include a series of international and internal Ca reference materials, including NIST SRM 915a, seawater, two calcium carbonates and a CaF2 reference sample. The deviations in δ44/40Ca for selected pairs of reference samples have been defined and are consistent within statistical uncertainties in all three laboratories. Emphasis has been placed on characterising both NIST SRM 915a as an internationally available high purity Ca reference sample and seawater as representative of an important and widely available geological reservoir. The difference between δ44/40Ca of NIST SRM 915a and seawater is defined as -1.88 O.O4%o (δ44/42CaNISTSRM915a/Sw= -0.94 0.07%o). The conversion of values referenced to NIST SRM 915a to seawater can be described by the simplified equation δ44/40CaSa/Sw44/40CaSa/NIST SRM 915a - 1.88 (δ44/42CaSa/Sw44/42CaSa/NIST SRM 915a - 0.94). We propose the use of NIST SRM 915a as general Ca isotope reference standard, with seawater being defined as the major reservoir with respect to oceanographic studies.  相似文献   

2.
Updated analytical data on rare-earth oxides, ThO2 and U3O8 are presented for the Monazite reference sample IGS 36.  相似文献   

3.
A combination of EMPA, sensitive high resolution ion microprobe (SHRIMP II) and/or LA-ICP-MS techniques was used to measure the concentration of selenium (Se) in NIST SRM 610, 612, 614 and a range of reference materials. Our new compiled value for the concentration of Se in NIST SRM 610 is 112 ± 2 μg g−1. The concentration of Se in NIST SRM 612, using NIST SRM 610 for calibration, determined using LA-ICP-MS (confirmed using SHRIMP II) was 15.2 ± 0.2 μg g−1. The concentration of Se in NIST SRM 614, using LA-ICP-MS was 0.394 ± 0.012 μg g−1. LA-ICP-MS determination of Se in synthetic geological glasses BCR-2G, BIR-1G, TB-1G and the MPI-DING glasses showed a range in concentrations from 0.062 to 0.168 μg g−1. Selenium in the natural glass, VG2, was 0.204 ± 0.028 μg g−1.  相似文献   

4.
Determinations of the absolute age of cleavage formation can provide fundamental information about the evolution of orogenic belts. However, when applied to cleavages in slates and phyllites, conventional dating methods are complicated by problems related to mineral separation and the presence of multiple cleavage generations. In situ high-spatial-resolution 40Ar/39Ar laser microprobe geochronology and microstructural observations indicate that the age of cleavage formation in slates and phyllites can be constrained by analysing zones of tightly packed cleavage domains. Three regionally developed cleavages (S2, S3, and S4) are present in the northern Taconic Allochthon of Vermont and New York. Representative samples were studied from a variety of localities where these cleavages, which are defined by white micas, are well developed. In the suite of samples, only S3 and S4 are expressed as domains that are sufficiently wide and spatially isolated in thin section to permit quantitative 40Ar/39Ar geochronology. Mean 40Ar/39Ar laser microprobe ages for these domains are 370.7 ± 1.0 Myr for S3 and 345.5 ± 1.7 Myr for S4. Because estimates of the Ar closure temperature for white micas are substantially higher than the inferred growth temperatures of the micas defining S3 and S4, these values are interpreted as periods since cleavage formation. This interpretation is consistent with independent geochronological constraints on the age of the Acadian orogeny in the region.  相似文献   

5.
The platinum-group elements (PGE) and gold have been determined in twenty international rock reference materials by inductively coupled plasma-mass spectrometry (ICP-MS) after pre-concentration by a nickel sulfide fire assay. It was possible to achieve determination limits for a 50 g sample that ranged from 1 pg g-1 (Rh) to 23 pg g-1 (Au). Compared to published certified and recommended values for rock reference materials, the trueness of the method was found to be good. However, in some cases we observed large deviations for all elements in the sub 10 ng g-1 range within individual reference sample splits. Our results show that the PGE and Au are inhomogeneously distributed in the reference materials analysed here, where they are present in low concentrations, using 50 g test portions.  相似文献   

6.
Fluorine, chlorine, bromine, iodine and sulfur were determined in seventeen geological reference materials after extraction by pyrohydrolysis. Fluorine, Cl and S (as sulfate ions) were determined in the extraction solution by ion chromatography with detection limits of around 0.2 mg l−1. Bromine and I were measured by ICP-MS with detection limits of 1 μg l−1 for Br and 0.1 μg l−1 for I. For rock samples, using normal extraction conditions (500 mg of sample and 100 ml of final solution) detection limits were 40 mg kg−1 for F and Cl, 15 mg kg−1 for S, 0.2 mg kg−1 for Br and 0.02 mg kg−1 for I. These detection limits may be improved by increasing the amount of sample and hence the concentration of the final solution. Water was also determined using an extraction technique based on H2O degassing, reduction on zinc at 1000 °C and H2 manometry. Our results for fluorine, chlorine, sulfur and water are in good agreement with literature data. Very few reference materials have recommended values for bromine and especially for iodine. Among the analysed samples, three are new reference materials: BHVO-2, BCR-2 and AGV-2.  相似文献   

7.
A single-column suppressed ion chromatography technique was employed for the simultaneous determination of major and trace anions in sulfaterich groundwater samples. An analytical column, a self regenerating suppressor and sodium carbonate as the eluent were used to separate the anions. Method detection limits for the anions of interest were 10.4, 15.9, 36.8, 62, 60, 61 and 67 μg l−1 for F, Cl, NO2, Br, NO3, PO43− and SO42− respectively. The precision of the method was tested at five different concentration levels for each anion reference sample to evaluate the effectiveness of the method for groundwater analysis. Recovery studies were performed between two successive months by adding reference samples to the geothermal groundwater and drinking water samples. Precision was also assessed as the relative standard deviation of both repeatability (within-day) and reproducibility (between-day and different concentrations) for groundwater samples. Standard deviation and RSD values of 220 groundwater samples acquired over 8 months were evaluated. The suppressed ion chromatography technique was found to be a suitable method for determining major anions in sulfate-rich geothermal water samples.  相似文献   

8.
Abstract. Laser Raman microprobe analysis was performed on the fluid inclusions from the Honko-Sanjin zone in the Hishikari epithermal gold deposit, southern Kyushu, Japan. Gas concentrations of fluid inclusions through the zone were below detection limits (e.g., 5 mmole/kg H2O for CO2), with an exception at shallow portion in which the CO2/N2 mole ratio was determined to be 5.3. Boiling of hydrothermal solutions probably separated gases from ore fluids at the deep portion of the deposit, and migration of gases to shallow portion resulted in CO2-rich steam-heated water and related acid alteration.  相似文献   

9.
We present boron isotope and concentration data from magmatic (komatiitic to rhyolitic) and sedimentary geological silicate and artificial glass reference materials that cover a wide spectrum of boron isotope compositions and boron concentrations. Boron isotope compositions were determined by TIMS (Cs2BO2+ -graphite and BO2- method) and boron concentrations by ICP-AES. Boron concentrations ranged from 7 to 159μ g-1 and agree within 14% with published values. Based on replicate analyses of individually prepared sample aliquots an overall external reproducibility of better than 10% was determined. The obtained δ11B values ranged from -12.6 to +13.6% and were reproducible within 1.1 % (2 RSD; excluding NTIMS) on the basis of individually prepared sample aliquots. The δ11B values of JA-1 (+5.3%), JB-3 (+5.9%) and JR-2 (+2.9%) overlap the published data within analytical uncertainty. For the first time δ11B values for the TB (-12.6%) and the MPI-DING glasses GOR-128-G (+13.6%), GOR-132-G (+7.1 %) and StHs6/80-G (-4.5%) are reported. The δ11B values obtained by the Cs2BO2+ -graphite and the BO2- method as well as the majority of δ11B values obtained using different sample preparation methods agree within analytical uncertainty. Therefore, we conclude that none of these analytical methods introduce any systematic error on the obtained δ11B values.  相似文献   

10.
A second natural occurrence of yoderite   总被引:3,自引:0,他引:3  
A second example of yoderite has been discovered in whiteschists from the Southern Chewore Hills of northern Zimbabwe. The mineral is pale green in colour and occurs in an equilibrium assemblage with talc+chlorite+kyanite+dravite+hematite. There is no quartz present. Recalculated microprobe analyses give a structural formula of Mg2Al5.7Fe0.3Si4O18(OH)2, similar to that obtained for the type locality at Mautia Hill, Tanzania, i.e. Mg2Al5.6Fe0.4Si4O18(OH)2. Textural relationships and relative proportions of minerals suggest that the yoderite was formed by reaction between talc, chlorite, kyanite and hematite. Experimental evidence suggests high-water-pressure metamorphic conditions at temperatures exceeding a reaction curve that extends between 13  kbar at 590  °C and 21  kbar at 650  °C. The yoderite-bearing whiteschist is associated with a 1.4  Ga dismembered ophiolite. It is proposed that this yoderite occurrence is associated with a relict subduction/suture zone.  相似文献   

11.
In this study, the Cd isotopic composition of various geological reference materials and anthropogenic samples was investigated. The measurements were made by multicollector ICP-MS and instrumental mass fractionation was controlled using a "sample-standard bracketing" technique. Cadmium isotopic data are reported relative to an internal Cd solution (Cd Spex) and expressed as the 114 Cd/110Cd delta value. Two other Cd solutions (Prolabo and JMC) were analysed and yielded the same 0% delta value. A fractionated Cd metal sample (Münster Cd) was used as a secondary reference material for Cd isotopic measurements and we obtained a 114 Cd/110 Cd delta value of 4.48% relative to Cd Spex solution. As opposed to multi-stage Cd purification previously published in the literature, a new one step anionic exchange purification using dilute HCl for the analysis of Cd isotopes in geological samples was developed. This method enabled a high recovery (> 95%) and effective separation of the sample matrix to be achieved. The long-term external reproducibility was evaluated at 0.12% (2 standard deviations) for the 114 Cd/110Cd ratio, based on reference solutions and replicated measurements of samples over one year. The variation of Cd isotopic composition of natural terrestrial samples is restricted to a small range of 0.4%, which is similar to previously reported results. In contrast, large variations of Cd isotopic composition were found for anthropogenic samples with values as low as −0.64% for a dust sample issued from a lead smelter and values as high as +0.50% for NIST SRM 2711 (metal-rich soil). These variations are 10 times larger than the reproducibility and suggest that Cd isotopes can be useful as tracers of anthropogenic sources of Cd in the environment.  相似文献   

12.
The fluorine content in twenty-nine reference samples of geological interest has been determined using a well tried and tested method which has been previously reported. The analytical method uses fast neutron activation involving the reaction 19F(n,a)16N and gamma spectrometry. Interferences have been found to be negligible for the experimental conditions used. The method involves minimal sample preparation, is rapid and can easily measure concentrations down to 5 parts per million in a 5 g sample.  相似文献   

13.
We report a new approach to conduct fast and accurate lithium isotope ratio measurements by MC-ICP mass spectrometry after wet chemical sample preparation. In contrast to most previously published methods our MC-ICP-MS set-up did not use a desolvating system to achieve appropriate ion beam intensities and, therefore, was less affected by matrix-induced shifts of the instrumental mass bias. As the total lithium background and build-up in the sample introduction system was low, previous sample residues could be washed out by an extended uptake of the new sample. Elimination of a nitric acid rinse step increased the sample throughput by a factor of two and allowed the instrumental mass bias drift to be tracked more precisely. δ7Li values of powdered silicate rock reference materials and seawater obtained in this study revealed good accuracy and an overall analytical uncertainty of typically 0.5‰ (2s). On the basis of a comparison between our lithium isotope data and compiled literature data, we recommend preliminary average δ7Li values for seawater (+30.8‰) and several silicate rock reference materials (BHVO-1: +5.0‰; JA-1: +5.6‰; JB-2: +4.8‰). The compilation of published δ7Li values for seawater suggests that the observed large lithium isotope differences are due to inter-method and/or interlaboratory bias. Most recently published δ7Li values for seawater show little variation and confirm a constant lithium isotope composition (at the sub ‰ level) of seawater in well mixed ocean basins.  相似文献   

14.
The carbonate-carbon (CO2) content of forty-one geochemical reference samples has been determined by coulometric method following acid treatment of the sample for releasing CO2. The method is superior to the conventional methods in speed, accuracy, sensitivity, specificity, and the coverage of CO2 range. The results on NBS limestone samples agree well with the certified values. The precision of the method is 0.5 % r.s.d., and the practical detection limit is 10 ppm C.  相似文献   

15.
Abstract A deerite-bearing rock occurs at the boundary between quartzite and metabasites within the 'schistes lustrés'of eastern Corsica. It contains the typomorphic assemblage pyroxene, blue amphibole, hematite and magnetite. Pyroxene shows homogeneous composition close to the aegirine end-member and blue amphibole is zoned from crossite core to riebeckite rim. The bulk chemical analysis of the rock is remarkable by its very high iron content and the presence of an unusually large amount of Zn which is concentrated in both deerite and amphibole. Electron microprobe analyses of the Corsican deerite are compared with those published in the literature; as shown by deerite from the Fransciscan iron formation, the principal substitution for Fe2+ is Mn whereas the amount of substitution for Fe3+ is low. In the system SiO2-FeO-Fe2O3-Al2O3-Na2O-MgO-H2O the typomorphic paragenesis can be described by an univariant reaction interpreted as the result of a pressure decrease. P-T conditions of metamorphism, previously estimated to be 8 kbar and 300°C, are in good agreement with present knowledge of the deerite stability field. The occurrence of hematite and magnetite in equilibrium permits an estimation of the oxygen fugacity (log f o2= -29.41 bar). Oxidation conditions are higher than those previously mentioned in the literature for similar assemblages.  相似文献   

16.
The accuracy of 231Pa-235U measurements can be readily assessed using a secular equilibrium reference material (RM), but a secular equilibrium RM is also required to calibrate the 233Pa spike used in 231Pa determinations. The only silicate RM commonly accepted to be in secular equilibrium is Table Mountain Latite (TML) and so an additional reference is required. Our measurements on the widely available USGS BCR-2 (Basalt Columbia River) rock powder yielded (231Pa/235U) = 0.997 ± 0.013 2s (n = 10), indicating its value as a secondary reference to test the fidelity of U-Pa determinations. Such a reference material additionally provides a useful check on data reduction, which our literature survey highlights can lead to discrepancies of up to 53% between reported (231Pa/235U) activity ratios and corresponding U and Pa concentration data.  相似文献   

17.
A precise and simple method for the determination of lithium concentrations in small amounts of silicate sample was developed by applying isotope dilution-inductively coupled plasma-mass spectrometry (ID-ICP-MS). Samples plus a Li spike were digested with HF-HClO4, dried and diluted with HNO3, and measured by ICP-MS. No matrix effects were observed for 7Li/6Li in rock solutions with a dilution factor (DF) of 97 at an ICP power of 1.7 kW. By this method, the determination of 0.5 μg g-1 Li in a silicate sample of 1 mg can be made with a blank correction of < 1%. Lithium contents of ultrabasic to acidic silicate reference materials (JP-1, JB-2, JB-3, JA-1, JA-2, JA-3, JR-1 and JR-2 from the Geological Survey of Japan, and PCC-1 from the US Geological Survey) and chondrites (three different Allende and one Murchison sample) of 8 to 81 mg were determined. The relative standard deviation (RSD) was typically < 1.7%. Lithium contents of these samples were further determined by isotope dilution-thermal ionisation mass spectrometry (ID-TIMS). The relative differences between ID-ICP-MS and ID-TIMS were typically < 2%, indicating the high accuracy of ID-ICP-MS developed in this study.  相似文献   

18.
A study has been undertaken to determine sulfur in geological samples by coupled analytical techniques. Two measurement methods have been developed: one using an electric furnace coupled to an ion chromatograph (electric furnace-IC) and another using infrared (IR) and quadrupole mass spectrometry (QMS) for evolved gas analysis (EGA) coupled with a thermogravimetric analyser (TGA). In the electric furnace-IC method, measurement was performed without any sample pre-treatment. The measurement conditions were optimised by varying sample quantity, type of catalyst (WO3, Cu, W and V2O5) and sample/catalyst ratio, and the detection limit was 10 μg g−1. Sulfur ores decompose at different temperatures. However, TGA-EGA allowed identification of the different forms of sulfur in the sample, even when they were found in very low concentrations, because the sulfur was continuously analysed. The developed chromatographic method allowed simultaneous analysis of several sample components, such as S, Cl and F, with a low detection limit. The method was much faster and more specific than the methods described in the literature. The results of the sulfur determination had low scatter, possibly because the samples underwent little handling during analysis: the operator only weighed and placed the sample in the furnace, the rest of the measurement process was fully automated. The results obtained by both the developed methods have been validated by using reference materials and comparison with combustion-IR spectroscopy, a standard method for determining total sulfur in a sample.  相似文献   

19.
The CRPG (Nancy, France) has prepared secondary reference materials for Li isotope measurements by mixing 7Li or 6Li spikes and either L-SVEC or IRMM-016 certified reference materials to produce solutions having a known Li concentration and isotopic composition. The Li7-N and Li6-N solution samples (1.5 mol l−1 HNO3) have nominal δ7Li isotopic compositions of 30.1‰ and -9.7‰ respectively relative to L-SVEC and concentrations of 100 mg l−1. Repeated measurement of these samples using the QUAD-ICP-MS at the CRPG yielded δ7Li of 30.4 ± 1.1‰ (n = 13) and -8.9 ± 0.9‰ (n = 9) at the 2s level of confidence. An additional LiCl-N solution was measured and yielded a delta value of 9.5 ± 0.6‰ (n = 3). Identical results were obtained at the BRGM (Orléans, France) from determinations performed with a Neptune MC-ICP-MS (30.2 ± 0.3‰, n = 89 for the Li7-N, -8.0 ± 0.3‰, n = 38 for the Li6-N and 10.1 ± 0.2‰, n = 46 for LiCl-N at the 2s level of confidence). The deviation of measured composition relative to the nominal value for the Li6-N solution might be explained by either contamination during preparation or an error during sample weighing. These secondary reference materials, previously passed through ion exchange resin or directly analysed, may be used for checking the accuracy of Li isotopic measurements over a range of almost 40‰ and will be available to the scientific community upon request to J. Carignan or N. Vigier, CRPG.  相似文献   

20.
Two new geochemical reference materials, copper ore JCu-1 and zinc ore JZn-1 have been prepared by the Geological Survey of Japan (GSJ) for the determination of major and minor elements and isotopic compositions. JCu-1 is a sample of Cu-bearing sulfide ore typical of the Kamaishi mine in Iwate Prefecture, Japan, and is composed mainly of hedenbergite, chalcopyrite, quartz and calcite. Pyrrhotite, magnetite and actinolitic amphibole were also commonly found. The Zn-rich ore, JZn-1 is a crude ore from the Kamioka Pb-Zn mine in Gifu Prefecture, Japan. The sample consists of hedenbergite, quartz, calcite, sphalerite and epidote as main crystalline phase. Homogeneity test results showed that all studied constituents including ore elements such as Cu, Pb and Zn can be considered to be homogeneously distributed. Provisional collaborative analyses were carried out in ten laboratories, and the data were evaluated using a robust statistical method using z-scores. Recommended values for a number of major elements including TiO2, Al2O3, MnO, MgO, CaO, Na2O, K2O, Fe (total), Zn, Cu and Pb were established. In addition, information values for eighteen major, minor and trace elements are presented to support future collaborative analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号