首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Line intensity ratios of EUV emission lines from Navii and Alix have been considered for electron density and temperature determinations within the chromosphere-corona transition region and the corona. The electron pressure within the emission region has been assumed to be a constant parameter. Theoretical line intensities for these ions have been computed using a model solar atmosphere and compared with the values as observed by ATM ultraviolet spectrometer. The observed intensities correspond to the average quiet-Sun conditions near solar minimum.  相似文献   

2.
Assuming steady state conditions, the occupation of 9 levels of oxygen-like ions: Ne iii, Mg v, Si vii, S ix, and Ar xi have been computed as a function of electron density and temperature. The following physical processes have been considered: collisional excitations and spontaneous radiative de-excitations for permitted and intercombination transitions; collisional excitations and de-excitations, photo-excitations and spontaneous radiative transitions among the five levels of the ground term. This study indicates that line intensity ratios for oxygen-like ions can be used as a diagnostic in the determination of these two parameters of the solar plasma.Paper presented at the 4th Astronomical Society of India Meeting, held at Radio Astronomy Centre, Ootacamund, India, 7–10 March 1978.  相似文献   

3.
Recent R-matrix calculations of electron excitation rates for Mg vii and Si ix are used to determine the theoretical density sensitive emission line ratios R 1= I(2s2p 3 1 D 0 - 2s 2 2p 2 1 D e )/I(2s2p 3 3 S 0 - 2s 2 2p 2 3 P 2 e ) and R 2= I(2s2p 3 1 P 0 - 2s 2 2p 2 1 D e )/I(2s2p 3 3 S 0 - 2s 2 2p 2 3 P 2 e ). These are found to be quite similar to the earlier results of Mason and Bhatia. Electron densities derived using observed R 1 and R 2 ratios from Skylab NRL XUV spectra of solar flares and active regions are in good agreement, and compare favourably with those deduced from ions formed at similar electron temperatures to Mg vii and Si ix.  相似文献   

4.
Spectral line profiles of Si ii and Si iii are presented which were observed both at solar center and near the quiet solar limb with the Naval Research Laboratory EUV spectrograph of ATM/SKYLAB. Absolute intensities and line profiles are derived from the photographic data. A brief discussion is given of their center-to-limb variations and of the optical thickness of the chromosphere in these lines. Nonthermal broadening velocities are found for the optically thin lines from their full width at half maximum intensity (FWHM).Also at High Altitude Observatory for part of this work.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

5.
Theoretical Nevi/Mgvi EUV line emissivity ratios, suitable for density-measurements in various solar features such as active regions, sunspots, umbrae and flare plasmas and to be observed in the SUMER spectral range, are presented and their applications discussed with the help of available observational data.  相似文献   

6.
B. N. Dwivedi 《Solar physics》1994,153(1-2):199-203
Emission lines from an active region, observed by SERTS, have been used to determine electron densities from theoretical curves for Mgvii, Siviii, and Siix density-sensitive line ratios. Density diagnostics of Alviii 285.46/323.52 line emissivity ratio has also been investigated.  相似文献   

7.
We report some results of a rocket experiment flown on 29 April, 1971. A survey of the solar corona was carried out with a pair of collimated Bragg spectrometers to study the resonance, intersystem and forbidden line emission from the helium-like ions O vii (22 Å) and Ne ix (13 Å). In the direction of dispersion the collimator provided a field of view of 1.7. Also, the continuum radiation near 3 Å was monitored by a collimated proportional counter within a view angle of 4.2. The observed X-ray emission came from the general corona, seven plage regions, and one dynamic feature- the late stage of a small flare. From the intensity of the O vii and Ne ix resonance lines the electron temperature and emission measure of the individual emitting regions are derived on the basis of two models, one (a) in which the region is assumed to be isothermal and another (b) in which the emission measure decreases exponentially with increasing temperature. The latter model, which is the most adequate of the two, yields for the electron temperature of the time-varying feature 2–3 × 106 K, for the other active regions 1.5–2.5 × 106 K, and for the general corona 1.3–1.7 × 106 K. The Ne ix emitting regions are about 1.5 times as hot as the O vii regions. The emission measure ranges from 0.4–2.3 × 1048 cm–3 for all active regions and is about 2 × 1049 cm–3 for one hemisphere of the general corona above 106 K. From an analysis of the ratio, R, of the forbidden and intersystem lines of O vii we conclude that none of the regions producing these lines at the time of the rocket flight had electron densities exceeding about 3 × 109 cm–3. Our data demonstrate a dependence of R upon temperature in agreement with the theory of Blumenthal et al. (1971). The wavelengths for the intersystem, the 1s 22s 2 S e–1s2p2s 2 P 0 satellite, and the forbidden transition show in the case of Ne ix improved agreement with predictions. The observed strength of the satellite lines for both O vii and Ne ix agrees with the predictions of Gabriel's (1972) theory, which attributes their formation to dielectronic recombination.We are saddened to report the death of A. J. Meyerott on 13 November, 1971.  相似文献   

8.
Spectroscopic diagnostics for the Nev and Mgv solar ions have been investigated. The theoretical forbidden line ratios from these ions are presented for estimating the Ne/Mg variation in different solar structures. Calculations for density and temperature line diagnostics of these ions are given for the several spectral line ratios and their applications are discussed with the help of available solar observations in space. Future observations from the CDS and the SUMER experiments aboard the SOHO satellite are also discussed.  相似文献   

9.
Ionization equilibrium is a useful assumption which allows temperatures and other plasma properties to be deduced from spectral observations. Inherent to this assumption is the premise that the ion stage densities are determined solely by atomic processes which are local functions of the plasma temperature and electron density. However, if the time scale of plasma flow through a temperature gradient is less than the characteristic time scale for an important atomic process, deviations from the ionization stage densities expected for equilibrium will occur which could introduce serious errors into subsequent analyses. In the past few years, significant flow velocities in the upper solar atmosphere have been inferred from observations of emission lines originaing in the transition region (about 104–106 K) and corona. In this paper, three models of the solar atmosphere (quiet Sun, coronal hole, and a network model) are examined to determine if the emission expected from these model atmospheres could be produced from equilibrium ion populations when steady flows of several kilometers per second are assumed. If the flows are quasi-periodic instead of steady, spatial and temporal averaging inherent in the observations may allow for the construction of satisfactory models based on the assumption of ionization equilibrium. Representative emission lines are analysed for the following ions: C iii, iv, O iv, v, vi, Ne vii, viii, Mg ix, x, Si xii, and Fe ix–xiv. Two principle conclusions are drawn. First, only the iron ions are generally in equilibrium for steady flows of 20 km s–1. For carbon and oxygen, ionization equilibrium is not a valid assumption for steady flows as small as 1 km s–1. Second, the three models representing different solar conditions behave in a qualitatively similar manner, implying that these results are not particularly model dependent over the range of temperature gradients and electron densities thus far inferred for the Sun. In view of the flow velocities which have been reported for the Sun, our results strongly suggest caution in using the assumption of ionization equilibrium for interpreting spectral lines produced in the transition region.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

10.
Theoretical populations of the 2s3l levels of Ne vii are presented for electron temperatures from 2.5 × 105 K to 4 × 106 K and electron densities from 108 cm–3 to 1012 cm–3. These, in conjunction with intensities of previously observed solar Ne vii lines and wavelengths and intensities observed in the laboratory, are used to identify further Ne vii lines in the solar spectrum. The dependence on temperature of intensity ratios such as I(2s2p 1 P – 2s3d 1 D)/I(2s2p 3 P – 2s3d 3 D) is demonstrated and the advantages of the small wavelength separation of such lines for solar electron temperature diagnostics are discussed.  相似文献   

11.
R-matrix calculations of the 11S - 23S and 11S - 23P electron excitation rates in He - like Cv, Ovii, and Mgxi by Kingston and Tayal are used to interpolate results for Neix. Adoption of these in emission line strength calculations leads to values for the density-sensitiveR ratio very similar to those of Pradhanet al. and Wolfsonet al., although the temperature-sensitiveG ratios are approximately 10 to 20 % lower than those deduced by these authors. However the present theoretical value ofG at the temperature of maximum Neix emission,G(T m) = 0.82, is in excellent agreement with those observed by the SMM and P78-1 satellites for the 1980, November5 flare (G = 0.83 ± 0.01) and nonflaring active regions (G = 0.80 ± 0.05), respectively.  相似文献   

12.
New theoretical emission line ratios for the Be-sequence ions Mgix and Sixi are presented. A comparison with observational data for two solar flares and an active region loop obtained with the Harvard EUV spectrometer and NRL XUV spectroheliograph aboard Skylab reveals that these plasmas are in ionization equilibrium at coronal temperatures. Unfortunately most of the density diagnostics are not particularly useful under solar plasma conditions, as they vary only slightly over the electron density range 108–1013cm–3. However the Sixi ratioI(3 P e 2 -3 P o 2)/I(3 P o 11 S e 0) is density sensitive in the range 108 to 1010cm–3, which is representative of electron densities found in solar active regions or small flares.  相似文献   

13.
Some line identifications in solar disk and limb spectra are proposed on the basis of recent laboratory and theoretical results reported in the literature, including allowed lines of Mgi and Fexiv in the EUV spectrum and an expected forbidden line of Fexvii near 1190 Å.  相似文献   

14.
We studied the morphology and spatial distribution of loops in an active region, using coordinated observations obtained with both the S082A XUV spectroheliograph and the S056 grazingincidence X-ray telescope on Skylab. The active region loops in the temperature range 5 × 105 –3 × 106 K fall basically into two distinctive groups: the hot loops with temperatures 2–3 × 106 K as observed in coronal lines and X-rays, and the relatively cool loops with temperature 5 × 105 –1 × 106 K as observed in transition-zone lines (Ne vii, Mg ix). The brightest hot coronal loops in the active region are mostly low-lying, compact, closely-packed, and show greater stability than the transition-zone loops, which are fewer in number, large, and slender. The observed aspect ratio of the hot coronal loops is in the range of 0.1 and 0.2, which are almost two orders of magnitude larger than those for the Ne vii loops. Brief discussion of the MHD stability of the loops in terms of the aspect ratio is presented.  相似文献   

15.
New electron excitation rates for O vii calculated by Tayal and Kingston using the R-matrix method are used to determine theoretical emission line strengths. Values of the electron density sensitive ratio R (forbidden line to intercombination line) are found to be very similar to those deduced by other authors. However the temperature sensitive ratios G (intercombination plus forbidden lines to resonance line) are approximately 20% lower than the best previous estimates. The observed value of G for solar active regions (G = 1.0 ± 0.1) predicts an electron temperature in the range 1.1 × 106 K < T e < 1.8 × 106 K, which overlaps that of maximum O vii emissivity, T M = 1.8 × 106 K. In addition, the theoretical G versus T e curve is in excellent agreement with that observed for a Tokamak plasma.  相似文献   

16.
Characteristics of the emission observed above the solar limb in four EUV lines, Sixii 499, Mgx 625, Neviii 770, and Ovi 1032 are discussed. The mean temperature of the corona derived from the ratios of the intensities of Sixii 499 and Mgx 625 is 1.8 million K. There do not appear to be significant temperature differences in regions with low EUV intensities and those with high EUV intensities, suggesting that the EUV emission from the lithium-like ions depends primarily on the integral of n e 2 along the line of sight.The EUV data are compared with K-coronameter measurements in order to yield new estimates of the abundances of Si, Mg, Ne and O relative to hydrogen. Within the uncertainties of the analysis, these coronal abundances are in agreement with the corresponding photospheric values.  相似文献   

17.
F. P. Keenan 《Solar physics》1991,131(2):291-296
Theoretical electron-temperature-sensitive Ne vii emission line ratios, calculated using accurate R-matrix electron impact excitation rates, are presented for R 1 = I(895.2 Å)/I(465.2 Å), R 2 = I(561.7 Å)/I(465.2 Å) and R 3 = I(564.5 Å)/I(465.2 Å). A comparison of these with observational data for several solar features obtained with the Harvard S-055 spectrometer on board Skylab reveals good agreement between theory and experiment. This provides observational support for the accuracy of the atomic physics adopted in the calculations, and the methods employed in the derivation of the theoretical diagnostics.  相似文献   

18.
Diagnostics of solar ions Nevi, Mgvi, Siviii, and Mgviii in an active region observed by SERTS have been presented. Density, temperature, and electron pressure in the emitting source have been derived from theoretical line-ratio curves and its EUV spectrum obtained by SERTS. The variation of neon-to-magnesium and silicon-to-magnesium abundances has been discussed in the interpretation of the active region spectrum obtained by SERTS.  相似文献   

19.
A rocket borne spectrometer was flown to measure absolute intensities of extreme ultraviolet spectral lines from the three ions O vi, Ne viii, and Mg x present in the Sun. From these measurements, intensity ratios of lines from O vi, ratios of lines from Ne viii, and ratios of lines from Mg x were formed. These experimental ratios were compared with ratios calculated by using specific theoretical values of the ionization equilibrium in which dielectronic recombination was included in the processes establishing ionization balance. The effects of the electron density and temperature gradient on the temperature distribution of the flux of the spectral lines in the solar atmosphere have been taken into account in the calculations of the ratios. The agreement between the experimental and calculated ratios is good for the ions Ne viii and Mg x and satisfactory for the ion O vi for which the calculated ratio is subject to large uncertainties. A reliable measurement of the electron temperature in the lower corona was obtained from the experimental ratios for Mg x. This experimental temperature is in good agreement with the emission temperature of the spectral lines of Mg x predicted from the theoretical values of the ionization equilibrium. The design and photometric calibration of a new rocket spectrometer developed to measure the intensity ratios over the broad spectral region 50 to 1250 Å are also described.  相似文献   

20.
We have studied the spatial distribution of XUV emission in the 14 August, 1973 loop prominence observed with the NRL spectroheliograph on Skylab. The loop prominence consists of two large loops and is observed in lines from ions with temperatures ranging from 5 × 104 K to 3 × 106 K. The loops seen in low temperature (106K) lines such as from He ii, Ne vii, Mg vii, Mg viii, and Si viii are systematically displaced from loops seen in higher temperature lines such as from Si xii, Fe xv, and Fe xvi. The cross section of the loop, particularly in cooler lines is nearly constant along the loop. For hotter loops in Si xii, Fe xv, and Fe xvi, however, emission at the top of the loop is more intense and extended than that near the footpoints, which makes the loops appear wider at the top.There is no evidence that the 14 August loop prominence consists of a cooler core surrounded by a hot sheath as in some active region and sunspot loops reported by Foukal (1975, 1976). Rather, the observed spatial displacement between cooler and hotter loops suggest that the 14 August loop prominence is composed of many magnetic flux tubes, each with its own temperature.Ball Corporation. Now with NASA/Marshall Space Flight Center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号