首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Downstream variation of hydraulic geometry in rivers, characterized by fine textured banks and low width to depth ratios (7–25), is investigated in Victoria, Australia, with the aim of developing predictive models of channel geometry for large-scale spatial modeling applications. A one-dimensional hydraulic model is used to determine the mean bank-full geometry and discharge (Qbf) for 93 sites which are investigated in relation to discharge of fixed average recurrence interval (ARI). The median bank-full ARI is estimated at 0.8 years with 75% of sites between 0.5 and 2.5 years. Exponents in the downstream hydraulic geometry relations for width, depth and velocity are respectively 0.43, 0.40 and 0.18 (Q = Qbf) and 0.44, 0.38 and 0.03 (Q = Q2, i.e., 2-year ARI), falling near the mode of global values. Q2 and slope explain 66% of variance in Qbf, while Q2 explains 73% and 69% of the variance in width and depth relations, respectively: Q2 provides a reliable substitute for Qbf in spatial modeling applications. Spatial variation in hydraulic geometry relations within and between river basins remains largely unexplained. The W/D ratio characteristically decreases with increasing distance along the lower reaches of most rivers and this has contributed to the lower than expected value for the width exponent.  相似文献   

2.
周志德 《地理研究》1984,3(4):48-58
根据河流床沙的运动情况,将天然河流区分为三种类型,并分析其沿程河相关系。  相似文献   

3.
The Milk River, the northernmost tributary to the Missouri–Mississippi River system, exhibits an anomalous sand-bed braiding reach in an otherwise meandering system. Shortly after leaving Alberta and entering Montana the river suddenly changes to braiding and maintains this pattern for 47 km before entering Fresno Reservoir. Measured stream gradient and bankfull discharge in the braiding reach severely fail the Leopold and Wolman [U.S. Geol. Surv. Prof. Pap. 282B (1957) 39] slope–discharge test for differentiating channel patterns. While channel slope has long been regarded as one of the primary variables associated with braiding, our data from the sand-bed Milk River do not support this relationship. Instead, the data show that the braiding reach has a lower channel slope (0.00047) than the meandering reach (0.00055). Coupled with a constant discharge the unit length stream power is comparable between the two reaches. At the morphologic transition between meandering and braiding, a dramatic reduction in channel bank strength occurs where the sampled silt–clay content declines from 65% in the meandering reach to 18% in the braiding. This enables channel widening which is reflected in a 60% reduction in unit area stream power in the braiding reach. Thus, sediment transport capacity declines and channel bars are deposited. During waning flows, these bars are dissected, producing a braiding morphology. We suggest that for sand-bed braiding rivers the silt–clay percentage in the channel banks may be more important than slope. A review of the original Leopold and Wolman [U.S. Geol. Surv. Prof. Pap. 282B (1957) 39] dataset, and many subsequent analyses, reveals that most braided rivers studied were gravel-bed. As a result, causal variables associated with braiding in sand-bed environments may need a thorough evaluation.  相似文献   

4.
Fluvial process and morphology of the Brahmaputra River in Assam, India   总被引:1,自引:0,他引:1  
The Brahmaputra River finds its origin in the Chema Yundung glacier of Tibet and flows through India and Bangladesh. The slope of the river decreases suddenly in front of the Himalayas and results in the deposition of sediment and a braided channel pattern. It flows through Assam, India, along a valley comprising its own Recent alluvium. In Assam the basin receives 300 cm mean annual rainfall, 66–85% of which occurs in the monsoon period from June through September. Mean annual discharge at Pandu for 1955–1990 is 16,682.24 m3 s 1. Average monthly discharge is highest in July (19%) and lowest in February (2%). Most hydrographs exhibit multiple flood peaks occurring at different times from June to September. The mean annual suspended sediment load is 402 million tons and average monthly sediment discharge is highest in June (19.05%) and lowest in January (1.02%). The bed load at Pandu was found to be 5–15% of the total load of the river. Three kinds of major geomorphic units are found in the basin. The river bed of the Brahmaputra shows four topographic levels, with increasing height and vegetation. The single first order primary channels of this braided river split into two or more smaller second order channels separated by bars and islands. The second order channels are of three kinds. The maximum length and width of the bars in the area under study are 18.43 km and 6.17 km, respectively. The Brahmaputra channel is characterised by mid-channel bars, side bars, tributary mouth bars and unit bars. The geometry of meandering tributary rivers shows that the relationship between meander wavelength and bend radius is most linear. The Brahmaputra had been undergoing overall aggradation by about 16 cm during 1971 to 1979. The channel of the Brahmaputra River has been migrating because of channel widening and avulsion. The meandering tributaries change because of neck cut-off and progressive shifting at the meander bends. The braiding index of the Brahmaputra has been increasing from 6.11 in 1912–1928 to 8.33 in 1996. During the twentieth century, the total amount of bank area lost from erosion was 868 km2. Maximum rate of shift of the north bank to south resulting in erosion was 227.5 m/year and maximum rate of shift of the south bank to north resulting in accretion was 331.56 m/year. Shear failure of upper bank and liquefaction of clayey-silt materials are two main causes of bank erosion.  相似文献   

5.
Experiments with marked pebbles were carried out on different sized rivers of the Belgian Ardenne (catchment areas varying from less than 1 km2 to 2700 km2). Specific stream power required to cause bedload movement was evaluated and critical values were obtained. Three types of relationship between critical specific stream power (ω0) and grain size (D) were established. The values for ω0 in the largest river (the Ourthe) were the lowest and were close to the values obtained for mountainous rivers carrying large boulders. In medium sized rivers (catchment area between 40 and 500 km2), the critical unit stream power was higher. It is likely that it is due to the bedform's greater resistance. This resistance would use up some of the energy that can cause movement and transport of bedload. The amount of resistance of the bedform can be expressed as bedform shear stress (τ″), determined by the relationship between grain shear stress (τ′—that determines movement and transport of the bedload) and the total shear stress (τ). This ratio varies between 0.4 and 0.5 in the medium sized rivers, compared to 0.7 in the Ourthe. In headwater streams (less than 20 km2), there is greater loss of energy due to bedform resistance (τ′/τ<0.3). Critical specific stream power is higher in this third type of river than in the other two.  相似文献   

6.
This article introduces a technique for using a combination of remote sensing imagery and open-channel flow principles to estimate depths for each pixel in an imaged river. This technique, which we term hydraulically assisted bathymetry (HAB), uses a combination of local stream gage information on discharge, image brightness data, and Manning-based estimates of stream resistance to calculate water depth. The HAB technique does not require ground-truth depth information at the time of flight. HAB can be accomplished with multispectral or hyperspectral data, and therefore can be applied over entire watersheds using standard high spatial resolution satellite or aerial images. HAB also has the potential to be applied retroactively to historic imagery, allowing researchers to map temporal changes in depth.We present two versions of the technique, HAB-1 and HAB-2. HAB-1 is based primarily on the geometry, discharge and velocity relationships of river channels. Manning's equation (assuming average depth approximates the hydraulic radius), the discharge equation, and the assumption that the frequency distribution of depths within a cross-section approximates that of a triangle are combined with discharge data from a local station, width measurements from imagery, and slope measurements from maps to estimate minimum, average and maximum depths at a multiple cross-sections. These depths are assigned to pixels of maximum, average, and minimum brightness within the cross-sections to develop a brightness–depth relation to estimate depths throughout the remainder of the river.HAB-2 is similar to HAB-1 in operation, but the assumption that the distribution of depths approximates that of a triangle is replaced by an optical Beer–Lambert law of light absorbance. In this case, the flow equations and the optical equations are used to iteratively scale the river pixel values until their depths produce a discharge that matches that of a nearby gage.R2 values for measured depths versus depths estimated by HAB-1 and HAB-2 are 0.51 and 0.77, respectively, in the relatively simple Brazos River, Texas. R2 values for HAB-1 and HAB-2 are 0.46 and 0.26, respectively, in the Lamar River, a complex mountain river system in Yellowstone National Park. Although the R2 values are moderate, depth maps and cross-sections derived from the HAB techniques are consistent with typical stream geomorphology patterns and provide far greater spatial coverage and detail than could be achieved with ground-based survey techniques. Improved depth estimates can be achieved by stratifying the river into different habitat types that normalize for differences in turbulence and substrate.  相似文献   

7.
Mathias Spaliviero   《Geomorphology》2003,52(3-4):317-333
The fluvial geomorphological development of the Tagliamento River and its flooding history is analysed using historical documents and maps, remote-sensed data and hydrological information. The river has been building a complex alluvial fan starting from the middle part of its alluvial course in the Venetia–Friuli alluvial plain. The riverbed is aggrading over its entire braided length. The transition from braiding to meandering near Madrisio has shifted downstream where the river width determined by the dikes becomes narrower, causing major problems. The flood hazard concentrates at those places and zones where flooding occurred during historical times. Prior to the agrarian and industrial revolution, land use was adjusted to the flooding regime of the river. Subsequent land-use pressure led to a confinement of the river by dikes to such an extent that the flood risk in the floodplain downstream of Madrisio has increased consistently, and represents nowadays a major territorial planning issue. The planned retention basins upstream of the middle Tagliamento will alleviate the problem, but not solve it in the medium and long term. Therefore, fluvial corridors in the lower-middle parts (from Pinzano to the sea) have been identified on the basis of the flooding history in relation to fluvial development during historical times. The result should be used for hydraulic simulation studies and land-use planning.  相似文献   

8.
Over the past two decades there has been a growing interest in the geomorphological mosaic along large floodplain rivers where channel dynamics are seen to drive habitat-patch creation and turnover and to contribute to high biological diversity. This has required a new perspective on fluvial geomorphology that focuses on biological scales of space and time. This study examines the spatial pattern of surface fine sediment accumulations along a reach of a large gravel-bed river, the Tagliamento River in NE Italy; an area with a moist Mediterranean climate and seasonal flow regime. The study investigates changes in sediment characteristics during the summer low-flow period between April and September. Focussing on five areas representing a gradient from open, bar-braided to wooded island-braided morphologies, the paper demonstrates the importance of riparian vegetation and aeolian–fluvial interactions.Significant contrasts in particle size distributions and organic content of freshly deposited sand and finer sediments were found between sampling areas, geomorphological settings, and sampling dates. In particular, wooded floodplain and established islands supported consistently finer sediment deposits than both open bar surfaces and the lee of pioneer islands, and in September significantly finer sediments were also found in deposits located in the lee of pioneer islands than on open bar surfaces. Overall, the September samples had a greater variability in particle size characteristics than those obtained from the same sites in April, with a general coarsening of the D5 (φ) (i.e., the coarse tail of the particle size distribution). Also in September, crusts of fine sediment (30 μm < D50 < 64 μm) had formed on the surface of some of the open bar and pioneer island deposits within the more open sampling areas along the study reach. These crusts possessed similar particle size characteristics to aeolian crusts found in more arid environments. They were significantly finer than April samples and September subcrust samples obtained from the same sites and had similar particle size characteristics to some samples taken from wooded floodplain, established island surfaces and the lee of pioneer islands that were not crusted.Local climatological and river level data confirm significant wind and rainfall events during a period of consistently low river levels between the April and September sampling periods. These support deflation, deposition and rain wash of finer sediment during the summer, with windblown sediments being deposited on bar surfaces and in the lee of pioneer islands where wood and young trees provide foci for accelerated sedimentation and island growth as well as on marginal floodplains and established islands. We conclude that along braided rivers in moist settings but with a distinct dry season, aeolian reworking of sediment deposits may have a more important role in driving habitat dynamics than previously considered.  相似文献   

9.
We combine hydraulic modeling and field investigations of logjams to evaluate linkages between wood-mediated fluctuations in channel-bed-and water-surface elevations and the potential for lateral channel migration in forest rivers of Washington state. In the eleven unconfined rivers we investigated, logjams were associated with reduced channel gradient and bank height. Detailed river gauging and hydraulic modeling document significant increases in the water-surface elevation upstream of channel-spanning wood accumulations. Logjams initiated lateral channel migration by increasing bed-or water-surface elevations above adjacent banks. Because the potential for a channel to avulse and migrate across its floodplain increases with the size and volume of instream wood, the area of the valley bottom potentially occupied by a channel over a specified timeframe — the channel migration zone (CMZ) — is dependent on the state of riparian forests. The return of riparian forests afforded by current land management practices will increase the volume and caliber of wood entering Washington rivers to a degree unprecedented since widespread clearing of wood from forests and rivers nearly 150 years ago. A greater supply of wood from maturing riparian forests will increase the frequency and spatial extent of channel migration relative to observations from wood-poor channels in the period of post-European settlement. We propose conceptual guidelines for the delineation of the CMZs that include allowances for vertical fluctuations in channel elevation caused by accumulations of large woody debris.  相似文献   

10.
In efforts to rehabilitate regulated rivers for ecological benefits, the flow regime has been one of the primary focal points of management strategies. However, channel engineering can impact channel geometry such that hydraulic and geomorphic responses to flow reregulation do not yield the sought for benefits. To illustrate and assess the impacts of structural channel controls and flow reregulation on channel processes and fish habitat quality in multiple life stages, a highly detailed digital elevation model was collected and analyzed for a river reach right below a dam using a suite of hydrologic, hydraulic, geomorphic, and ecological methods. Results showed that, despite flow reregulation to produce a scaled-down natural hydrograph, anthropogenic boundary controls have severely altered geomorphic processes associated with geomorphic self-sustainability and instream habitat availability in the case study. Given the similarity of this stream to many others, we concluded that the potential utility of natural flow regime reinstatement in regulated gravel-bed rivers is conditional on concomitant channel rehabilitation.  相似文献   

11.
Over the past 10 years many restoration projects have been undertaken in Austria, and river engineering measures such as spur dykes and longitudinal bank protection, which imposed fixed lateral boundaries on rivers, have been removed. The EU-Life Project “Auenverbund Obere Drau” has resulted in extensive restoration on the River Drau, aimed to improve the ecological integrity of the river ecosystem, to arrest riverbed degradation, and to ensure flood protection. An essential part of the restoration design involved the consideration of self-forming river processes, which led to new demands being imposed on river management.This paper illustrates how model complexity is adapted to the solution and evaluation of different aspects of river restoration problems in a specific case. Point-scale monitoring data were up-scaled to the whole investigation area by means of digital elevation models, and a scaling approach to the choice of model complexity was applied. Simple regime analysis methods and 1-D models are applicable to the evaluation of long-term and reach-scale restoration aims, and to the prediction of kilometre-scale processes (e.g. mean river bed aggradation or degradation, flood protection). 2-D models gave good results for the evaluation of hydraulic changes (e.g. transverse flow velocities, shear stresses, discharges at diffluences) for different morphological units at the local scale (100 m–10 m), and imposed an intermediate demand on calibration data and topographic survey. The study shows that complex 3-D numerical models combined with high resolution digital elevation models are necessary for detailed analysis of processes (1 m–0.01 m), but not for the evaluation of the restoration aims on the River Drau. In conclusion, model choice (complexity) will depend on both lower limits (determined by the complexity of processes to be analysed) and upper limits (field data quality and process understanding for numerical models).  相似文献   

12.
The hydraulic and sedimentary characteristics of the spawning habitat of Atlantic salmon (Salmo salar) in tributary and mainstem locations in a river system in north-east Scotland are described. Salmon used spawning sites with a relatively wide range in sediment characteristics, although measures of central tendency were all in the gravel (2–64 mm) size-class. The dominant factor differentiating the sediment characteristics of study sites was the level of fine sediment, which accounted for significant differences between tributary and mainstem samples. The ranges of depth and velocity in areas used for spawning by salmonids were found to be similar in all tributary study sites. However, due to the interdependence of depth and velocity, major differences were observed between tributary and mainstem study sites in that spawning in larger streams tended to be associated with deeper, faster flowing water. Spawning locations were shown to have similar Froude number, despite different sized streams and species of salmonid. Due to its dimensionless nature and significance in characterising flow hydraulics, the Froude number is proposed as a potentially useful variable for describing the habitat of aquatic organisms.  相似文献   

13.
长江岸线的空间功能、开发问题及管理对策   总被引:2,自引:2,他引:0  
段学军  邹辉 《地理科学》2016,36(12):1822-1833
基于长江岸线空间功能的理念,从历史演变的角度梳理了长江岸线开发功能分异的过程,总结了岸线开发功能定位的科学依据,并剖析了长江岸线开发的区域功能。归纳了长江岸线开发条件评估的技术体系,并综合分析了长江干流(宜宾以下)岸线的开发条件状况及利用现状,提出了长江岸线资源利用中存在的缺少科学的开发时序安排、资源潜力没有得到充分发挥、功能布局不合理、不当开发易造成生态破坏、缺少有效的管理机制等问题。最后,从推进法制建设,破除行政壁垒,建立有偿使用机制,促进功能协调等方面提出加强岸线资源管理的对策,以期为长江岸线科学有效管理与保护提供借鉴。  相似文献   

14.
最小水流能量损失率理论在河相关系中的应用   总被引:4,自引:0,他引:4  
本文介绍最小水流能量损失率理论的变分法基础。用该理论导出了航道整治工程前后的河相关系式,并将之用于预估东平水道航道整治工程后的河相。实测值与预估值的比较表明,该理论和该河相关系式是可信的。  相似文献   

15.
This study focuses on the effects of urbanisation on the morphology and hydraulic geometry of the Ekulu River in Enugu, southeastern Nigeria. Measurements of channel properties were taken along a 25 km stretch at 45 sites grouped into three sections: section A, upstream of the town (15); section B, within the town (15); and section C, downstream of the town (15). Spatial interpolation techniques were used to predict channel morphometric properties within and downstream of Enugu on the basis of upstream relationships. The independent variable in the analysis was drainage area, used as a surrogate for discharge. In section A, channel parameters increased systematically downstream with basin area. Within the town, channel parameters exhibited sudden dimensional increases. Based on sectoral relationships, measured channel dimensions showed moderate increases above the expected values, with average enlargement ratio indices of 34 per cent, 91 per cent and 65 per cent in width, channel capacity and depth, respectively, between sections A and B. Between B and C the channel exhibited average reduction ratio indices of 21 per cent and 27 per cent in capacity and depth, respectively, and an average enlargement ratio index of 17 per cent in width relative to the expected value. The increase in channel dimension within the town is explained by: (1) the confluence with a third-order tributary; (2) the poorly structured, loose, incoherent and highly erodible channel bank materials; (3) high volumes of runoff generated from the impermeable urban surfaces; (4) urban hydrological routing due to urban drainage; (5) human traffic across the river banks; and (6) the huge volume of garbage and solid wastes dumped into the channel.  相似文献   

16.
We assessed the geographic distribution of Tillandsia lomas in northern Chile, from Arica (18°20′S) to the Loa river (21°25′S) and discussed the factors that might potentially underlie the observed patterns. We carried out extensive field survey complemented with aerial surveys and analysis of specimens deposited in herbaria. We detected over 30 Tillandsia stands most of which corresponded to the species Tillandsia landbeckii and can be grouped in 10 large systems. Other two species were also detected Tillandsia marconae and Tillandsia virescens, both of which show a restricted distribution in the area. Our results provide evidence on the wide distribution of Tillandsia lomas in northern Chile and its association with fog corridors.  相似文献   

17.
Alpa Sridhar   《Geomorphology》2007,88(3-4):285-297
This paper attempts to quantify contemporary and palaeo-discharges and changes in the hydrologic regime through the mid–late Holocene in the alluvial reach of the arid Mahi River basin in western India. The occurrence of terraces and pointbars high above active river levels and change in the width/depth ratio can be regarded as geomorphic responses to changes in discharge. Discharge estimates are made based on the channel dimensions and established empirical relations for the three types of channels: mid–late Holocene, historic (the channel that deposited extensive pointbars above the present-day average flow level) and the present ones. The bankfull discharge of the mid–late Holocene channel was  55 000 m3 s− 1 and that of the historic channel was  9500 m3 s− 1, some  25 times and  5 times greater than that of the present river (2000 m3 s− 1), respectively. Since the mid–late Holocene, the channel form has changed from wide, large-amplitude meanders to smaller meanders, and decreases in the width/depth ratio, unit stream power and the bed shear stresses have occurred. It can be inferred that there has been a trend of decreasing precipitation since the mid–late Holocene.  相似文献   

18.
Predicting channel patterns   总被引:1,自引:0,他引:1  
The proposed distinction between meandering and braided river channel patterns, on the basis of bankfull specific stream power and bed material size, is analysed and rejected. Only by using regime-based estimates of channel widths (rather than actual widths) has discrimination been achieved, and it is argued that this procedure is unacceptable.An alternative is to explore the patterning processes underlying the marked pattern scatter on bankfull stream power/bed material size plots. Of the five sets of patterning processes, large-scale bedform development and stability is seen as especially important for meandering and braiding. For gravel-bed rivers, bedforms developed at around or above bankfull stage appear important for pattern generation, with braiding relating to higher excess shear stress and Froude number. There seems to be an upper threshold to both meandering and braiding which is achieved at extreme discharges and steep gradients, as on steep alluvial fans, rather than for the rivers with available flow data here considered. For sand-bed rivers with greater excess shear stress, the equivalent upper plane bed threshold may occur below bankfull, with bed material mobility and bedform modification occurring over a wider range of sub-bankfull discharges. Sand-bed channel margin outlines appear to be less perturbed by bedform effects than gravel bed planforms, and they may have naturally straight or sinuous planforms. Bedform relief may nevertheless lead to some being designated as braided when viewed at low flows.It is concluded that the use of a single-stage stream power measure and bed material size alone is unlikely to achieve meandering/braiding discrimination.  相似文献   

19.
In this paper we explore the development and assimilation of a high resolution topographic surface with a one-dimensional hydraulic model for investigation of avulsion hazard potential on a gravel-bed river. A detailed channel and floodplain digital terrain model (DTM) is created to define the geometry parameter required by the 1D hydraulic model HEC-RAS. The ability to extract dense and optimally located cross-sections is presented as a means to optimize HEC-RAS performance. A number of flood scenarios are then run in HEC-RAS to determine the inundation potential of modeled events, the post-processed output of which facilitates calculation of spatially explicit shear stress (τ) and level of geomorphic work (specific stream power per unit bed area, ω) for each of these. Further enhancing this scenario-based approach, the DTM is modified to simulate a large woody debris (LWD) jam and active-channel sediment aggradation to assess impact on innundation, τ, and ω, under previously modeled flow conditions. The high resolution DTM facilitates overlay and evaluation of modeled scenario results in a spatially explicit context containing considerable detail of hydrogeomorphic and other features influencing hydraulics (bars, secondary and scour channels, levees). This offers advantages for: (i) assessing the avulsion hazard potential and spatial distribution of other hydrologic and fluvial geomorphic processes; and (ii) exploration of the potential impacts of specific management strategies on the channel, including river restoration activities.  相似文献   

20.
This study examines spatial variations in natural levee deposits within the lower reaches of a large coastal plain drainage system. The Pánuco basin (98,227 km2) drains east-central Mexico, and is an excellent setting to examine the influence of watershed and local controls on the morphology and sedimentology of natural levees. Although many fluvial systems in the U.S. Gulf Coastal Plain have been investigated, the rivers in the Mexican Gulf Coastal Plain have received comparatively little attention. Lateral and downstream characteristics of natural levee morphology and sediment texture are considered within the context of meandering river floodplain deposits. Data sources include total-stations surveying, sediment samples of surficial levee deposits, topographic maps (1:50,000), and aerial photographs (1:40,000). The slope of natural levees average 0.0049 m/m, whereas the texture (D84) of levee deposits averages 0.12 mm. Natural levee characteristics vary due to local- and watershed-scale controls. The lateral reduction in levee height displays a curvilinear pattern that coincides with an abrupt change in sediment texture. The downstream pattern of natural levee texture exhibits the influence of local-scale perturbations superimposed upon a larger watershed-scale trend. Disruption to the fining trend, either by tributary inputs of sediment or reworking of Tertiary valley deposits, is retained for a limited distance. The influence of the channel planform geometry on levee morphology is examined by consideration of the radius of curvature (Rc) of meander bends, and is inversely related to natural levee width. This suggests that the planform geometry of river channels exerts a control on the dispersal of flood sediments, and is responsible for considerable local variability in the floodplain topography. The average width of natural levees increases with drainage area, from an average of 747 m in the Moctezuma to an average of 894 m in the Pánuco. However, in the lower reaches of the Pánuco valley the width of natural levees rapidly decreases, which is associated with fining of the suspended sediment load. Thus, the reduction in natural levee width signifies an abrupt change in the directionality of cause–effect relationships at the watershed-scale. Findings from this study elucidate linkages between meandering river channels and floodplains for a large lowland alluvial valley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号