首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The island of Crete is located in the forearc of the Hellenic subduction zone, where the African lithospheric plate is subducting beneath the Eurasian one. The depth of the plate contact as well as the internal structure of the Aegean plate in the area of Crete have been a matter of debate. In this study, seismic constrains obtained by wide-angle seismic, receiver function and surface wave studies are discussed and compared to a 3D density model of the region.The interface between the Aegean continental lithosphere and the African one is located at a depth of about 50 km below Crete. According to seismic studies, the Aegean lithosphere in the area of Crete is characterised by strong lateral, arc–parallel heterogeneity. An about 30 km thick Aegean crust is found in central Crete with a density of about 2850 kg/m3 for the lower Aegean continental crust and a density of about 3300 kg/m3 for the mantle wedge between the Aegean crust and the African lithosphere. For the deeper crust in the area of western Crete two alternative models have been proposed by seismic studies. One with an about 35 km thick crust and another one with crustal velocities down to the plate contact. A grid search is performed to test the consistency of these models with gravimetric constraints. For western Crete a model with a thick lower Aegean crust and a density of about 2950 kg/m3 is favoured. The inferred density of the lower Aegean crust in the area of Crete correlates well with S-wave velocities obtained by surface wave studies.Based on the 3D density model, the weight of the Aegean lithosphere is estimated along an E–W oriented profile in the area of Crete. Low weights are found for the region of western Crete.  相似文献   

2.
《Journal of Geodynamics》2008,45(3-5):173-185
The island of Crete is located in the forearc of the Hellenic subduction zone, where the African lithospheric plate is subducting beneath the Eurasian one. The depth of the plate contact as well as the internal structure of the Aegean plate in the area of Crete have been a matter of debate. In this study, seismic constrains obtained by wide-angle seismic, receiver function and surface wave studies are discussed and compared to a 3D density model of the region.The interface between the Aegean continental lithosphere and the African one is located at a depth of about 50 km below Crete. According to seismic studies, the Aegean lithosphere in the area of Crete is characterised by strong lateral, arc–parallel heterogeneity. An about 30 km thick Aegean crust is found in central Crete with a density of about 2850 kg/m3 for the lower Aegean continental crust and a density of about 3300 kg/m3 for the mantle wedge between the Aegean crust and the African lithosphere. For the deeper crust in the area of western Crete two alternative models have been proposed by seismic studies. One with an about 35 km thick crust and another one with crustal velocities down to the plate contact. A grid search is performed to test the consistency of these models with gravimetric constraints. For western Crete a model with a thick lower Aegean crust and a density of about 2950 kg/m3 is favoured. The inferred density of the lower Aegean crust in the area of Crete correlates well with S-wave velocities obtained by surface wave studies.Based on the 3D density model, the weight of the Aegean lithosphere is estimated along an E–W oriented profile in the area of Crete. Low weights are found for the region of western Crete.  相似文献   

3.
Fault plane solutions for earthquakes in the central Hellenic arc are analysed to determine the deformation and stress regimes in the Hellenic subduction zone in the vicinity of Crete. Fault mechanisms for earthquakes recorded by various networks or contained in global catalogues are collected. In addition, 34 fault plane solutions are determined for events recorded by our own local temporary network on central Crete in 2000–2001. The entire data set of 264 source mechanisms is examined for types of faulting and spatial clustering of mechanisms. Eight regions with significantly varying characteristic types of faulting are identified of which the upper (Aegean) plate includes four. Three regions contain interplate seismicity along the Hellenic arc from west to east and all events below are identified to occur within the subducting African lithosphere. We perform stress tensor inversion to each of the subsets in order to determine the stress field. Results indicate a uniform N-NNE direction of relative plate motion between the Ionian Sea and Rhodes resulting in orthogonal convergence in the western forearc and oblique (40–50) subduction in the eastern forearc. There, the plate boundary migrates towards the SE resulting in left-lateral strike-slip faulting that extends to onshore Eastern Crete. N110E trending normal faulting in the Aegean plate at this part is in accordance with this model. Along-arc extension is observed on Western Crete. Fault plane solutions for earthquakes within the dipping African lithosphere indicate that slab pull is the dominant force within the subduction process and responsible for the roll-back of the Hellenic subduction zone.  相似文献   

4.
The results of a controlled source seismic reflection–refraction experiment carried out in 1992 reveal the following characteristics of the northern Izu–Bonin (Ogasawara) oceanic island arc–trench system. (1) The crust rapidly thickens from the Shikoku back-arc basin to the arc, is thickest beneath the active rifts, and then gradually thins to the forearc. The thickness of the crust beneath the arc rift zone and the back-arc basin are ∼ 20 km and 8 km, respectively. (2) The Moho vanishes beneath the forearc. Velocities rapidly decrease eastwards beneath the inner trench wall. (3) The velocity of the lower crust of the arc and the back-arc basin is 7.1–7.3 km/s. This velocity is higher than the typical oceanic lower crust whose velocity is ∼ 6.7 km/s. (4) The velocity of the middle crust of the arc is ∼ 6 km/s. This layer does not exist beneath the back-arc basin. (5) A slight difference in the velocity gradient of the middle crust exists between the arc rift zone and the forearc. Based on these findings and previous studies, it is inferred that: (i) the middle crust is probably granitic rock and formed in more than two episodes; (ii) the lower crust formed by igneous underplating which may also have affected part of the back-arc basin; and (iii) the root of the serpentinite diapir on the inner trench wall is a low-velocity mantle wedge that was probably caused by large amounts of water released from the subducting Pacific plate at depths shallower than 30 km.  相似文献   

5.
Non erosive margins are characterized by heavily sedimented trenches which obscure the morphological expression of the outer rise; a forebulge formed by the bending of the subducting oceanic lithosphere seaward of the trench. Depending on the flexural rigidity (D) of the oceanic lithosphere and the thickness of the trench sedimentary fill, sediment loading can affect the lithospheric downward deflection in the vicinity of the trench and hence the amount of sediment subducted. We used seismic and bathymetric data acquired off south central Chile, from which representative flexural rigidities are estimated and the downward deflection of the oceanic Nazca plate is studied. By flexural modeling we found that efficient sediment subduction preferentially occurs in weak oceanic lithosphere (low D), whereas wide accretionary prisms are usually formed in rigid oceanic lithosphere (high D). In addition, well developed forebulges in strong oceanic plates behaves as barrier to seaward transportation of turbidites, whereas the absence of a forebulge in weak oceanic plates facilitates seaward turbidite transportation for distances >200 km.  相似文献   

6.
An M8.3 earthquake struck the southwestern part of the Hellenic Arc, near the Island of Crete, in AD 365, generating a tsunami that affected almost the entire eastern Mediterranean region. Taking into account that the time history of seismicity in this region is fairly complete for such earthquakes in the historical catalog, which can be dated as back as the 5th century B.C., there is no indication that this segment of plate boundary has been fully ruptured again. The seismic hazard associated with this part of the Hellenic Arc necessitates the evaluation of the rupture characteristics of this great event. The constraint of the faulting geometry was initially achieved by using information from seismicity, and the focal mechanisms of earthquakes that occurred during the instrumental period. A rupture model for this great earthquake is constructed by assuming an elastic medium and calculating the theoretical surface displacements for various fault models that are matched with the observed surface deformation gleaned from historical reports. The resulted fault model concerns thrust faulting with a rupture length of 160 km and a seismic moment of 5.7 × 1028 dyn·cm, an average slip of 8.9 m and a corresponding moment magnitude equal to 8.4, in excellent agreement with the macroseismic estimation. The absence of such events recurrence is an indication of the lack of complete seismic coupling that is common in subduction zones, which is in accordance with the back arc spreading of the Aegean microplate and with previous results showing low coupling for extensional strain of the upper plate.  相似文献   

7.
The occurrence of earthquakes in oceanic trenches can pose a tsunami threat to lives and properties in active seismic zones. Therefore, the knowledge of focal depth, magnitude, and time distribution of earthquakes along the trenches is needed to investigate the future occurrence of earthquakes in the zones. The oceanic trenches studied, were located from the seismicity map on: latitude +51° to +53°and longitude-160° to 176°(Aleutian Trench), latitude+40° to +53° and longitude +148° to +165°(Japan Trench), and latitude-75° to-64° and longitude –15° to+30°(Peru–Chile Trench). The following features of seismic events were considered: magnitude distribution, focal depth distribution, and time distribution of earthquake. The results obtained in each trench revealed that the earthquakes increased with time in all the regions. This implies that the lithospheric layer is becoming more unstable. Thus, tectonic stress accumulation is increasing with time. The rate of increase in earthquakes at the Peru–Chile Trench is higher than that of the Japan Trench and the Aleutian Trench. This implies that the convergence of lithospheric plates is higher in the Peru–Chile Trench. Deep earthquakes were observed across all the trenches. The shallow earthquakes were more prominent than intermediate and deep earthquakes in all thetrenches. The seismic events in the trenches are mostly of magnitude range 3.0–4.9. This magnitude range may indicate the genesis of mild to moderate tsunamis in the trench zone in near future once sufficient slip would occur with displacement of water column.  相似文献   

8.
This paper presents the results of a detailed survey combining Seabeam mapping, gravity and geomagnetic measurements as well as single-channel seismic reflection observations in the Japan Trench and the juncture with the Kuril Trench during the French-Japanese Kaiko project (northern sector of the Leg 3) on the R/V “Jean Charcot”. The main data acquired during the cruise, such as the Seabeam maps, magnetic anomalies pattern, and preliminary interpretations are discussed. These new data cover an area of 18,000 km2 and provide for the first time a detailed three-dimensional image of the Japan Trench. Combined with the previous results, the data indicate new structural interpretations. A comparative study of Seabeam morphology, single-channel and reprocessed multichannel records lead to the conclusion that along the northern Japan Trench there is little evidence of accretion but, instead, a tectonic erosion of the overriding plate. The tectonic pattern on the oceanic side of the trench is controlled by the creation of new normal faults parallel to the Japan Trench axis, which is a direct consequence of the downward flexure of the Pacific plate. In addition to these new faults, ancient normal faults trending parallel to the N65° oceanic magnetic anomalies and oblique to the Japan trench axis are reactivated, so that two directions of normal faulting are observed seaward of the Japan Trench. Only one direction of faulting is observed seaward of the Kuril Trench because of the parallelism between the trench axis and the magnetic anomalies. The convergent front of the Kuril Trench is offset left-laterally by 20 km relative to those of the Japan Trench. This transform fault and the lower slope of the southernmost Kuril Trench are represented by very steep scarps more than 2 km high. Slightly south of the juncture, the Erimo Seamount riding on the Pacific plate, is now entering the subduction zone. It has been preceded by at least another seamount as revealed by magnetic anomalies across the landward slope of the trench. Deeper future studies will be necessary to discriminate between the two following hypothesis about the origin of the curvature between both trenches: Is it due to the collision of an already subducted chain of seamounts? or does it correspond to one of the failure lines of the America/Eurasia plate boundary?  相似文献   

9.
We analyzed a large number of focal mechanisms and relocated earthquake hypocenters to investigate the geodynamics of western Greece, the most seismically active part of the Aegean plate-boundary zone. This region was seismically activated multiple times during the last decade, providing a large amount of enhanced quality new information that was obtained by the Hellenic Unified Seismological Network (HUSN). Relocated seismicity using a double-difference method appears to be concentrated above ∼35 km depth, exhibiting spatial continuity along the convergence boundary and being clustered elsewhere. Earthquakes are confined within the accreted sediments escarpment of the down-going African plate against the un-deformed Eurasian hinterland. The data arrangement shows that Pindos constitutes a seismic boundary along which large stress heterogeneities occur. In Cephalonia no seismicity is found to be related with the offshore Cephalonia Transform Fault (CTF). Onshore, NS crustal extension dominates, while in central and south Peloponnesus the stress field appears rotated by 90°. Shearing-stress obliquity by 30° is indicated along the major strike-slip faults, consistent with clockwise crustal rotation. Within the lower crust, the stress field appears affected by plate kinematics and distributed deformation of the lower crust and upper mantle, which guide the regional geodynamics.  相似文献   

10.
—The plate boundary along the north-central Caribbean margin is geologically complex. Our understanding of this complexity is hampered by the fact that plate motions are relatively slow (1 to 2 cm/yr), so that recent seismicity often does not provide a complete picture of tectonic deformation. Studies of the faulting processes of instrumentally recorded earthquakes occurring prior to 1962 thus provide important information regarding the nature and rate of seismic deformation within the region, and are essential for a comprehensive assessment of seismic hazard. We have conducted body waveform modeling studies of eight earthquakes which occurred along the north-central Caribbean plate margin, extending from southeastern Cuba to the Swan Island fracture zone (75 to 83°W). None of these earthquakes has been previously studied and several occurred in regions where no recent (post-1962) seismicity has been recorded. The plate margin in the western portion of our study area is characterized by a transform fault-spreading center system. In the central and eastern portions of our study area the plate margin is a complex, diffuse region of deformation that couples transform motion in the Cayman trough to subduction along the Lesser Antilles arc. Our results show that the western portion of the study area has only experienced large strike-slip earthquakes. Off southeastern Cuba two earthquakes appear to have occurred on high angle, northward dipping, reverse faults with south to southeastward directed slip vectors. An earthquake in northern Jamaica in 1957 shows pure strike-slip faulting, most likely along an east-west trending fault. Finally, an unusual sequence of events located in the Pedro Bank region ~70 km southwest of Jamaica has a mainshock with a reverse-oblique mechanism, suggesting continuity of the plate interface stress field well south of the northern Caribbean margin.  相似文献   

11.
The Medina Wrenth in the central Mediterranean is a transform fault connecting the plate collision in northwest Africa and northern Sicily with that occurring at the Aegean plate boundary, south of Greece. The more than 800 km long crescent-shaped wrench zone is currently seismically quiet but exhibits major deformation since 5 Ma within a belt 30–100 km wide. It forms the southern boundary of two microplates moving eastward with respect to Africa and Europe. A simple plate rotation model constrained by recent paleomagnetic data indicates that a continental Iblean microplate and a hybrid continental/oceanic Ionian microplate, separated along the Malta Escarpment, have rotated anticlockwise by 11° and 12°, respectively, around poles in southern Italy. These rotations involved some 100 km of dextral eastward movement relative to Africa of the Ionian Basin north of the Medina Wrench since 5 Ma. Combining the published 26° clockwise rotation of the Peloponnesus and northwest half of the Aegean with the 12° anticlockwise rotation of the Ionian microplate results in (a) a 99% agreement between the length of the seismic Benioff Zone beneath Greece and the total convergence of the microplates, and (b) an average rate of convergence across the Aegean plate boundary southwest of the Peloponnesus of 6.6 ± 1cm a−1 since the Miocene. Relative motion between microplates in a collision zone thus may be as much as 6 times faster than convergence between the major plates which spawned them, and they can be considered rigid to the first order over the time span involved.  相似文献   

12.
We present the spatio-temporal distribution of more than 2000 earthquakesthat occurred during the Umbria-Marche seismic crisis, between September 26and November 3, 1997. This distribution was obtained from recordings of atemporary network that was installed after the occurrence of the first two largest shocks (Mw =, 5.7, Mw = 6.0) of September 26. This network wascomposed of 27 digital 3-components stations densely distributed in theepicentral area. The aftershock distribution covers a region of about 40 km long and about2 km wide along the NW-SE central Apennines chain. The activity is shallow,mostly located at less than 9 km depth. We distinguished three main zonesof different seismic activity from NW to SE. The central zone, that containsthe hypocenter of four earthquakes of magnitude larger than 5, was the moreactive and the more complex one. Sections at depth identify 40–50°dipping structures that agree well with the moment tensor focalmechanisms results. The clustering and the migration of seismicity from NW to SE and the generalfeatures are imaged by aftershock distribution both horizontally and at depth.  相似文献   

13.
Summary The seismicity depth pattern, seismic energy and b-value depth variation in the Hellenic Wadati-Benioff zone and the overlying continental plate in the Aegean region for the period 1901–1982 are studied separately on the basis of a recent seismotectonic model [1]. The results obtained show that the W and E flanks of the Hellenic Wadati-Benioff zone, as well as the E and W parts of the overlying continental plate, have similar tendencies in the depth distributions of seismic activity and different tendencies in the depth distributions of seismic energy and b-value. The different depth distributions of the considered seismogenic characteristics are supposed to be due to different depth distributions of heterogeneity of material, stress and rheology of material of the western and eastern parts of the sinking and overlying lithospheric plates.  相似文献   

14.
By deploying a 30 3-component digital seismic array in the Messiniakos gulf and the surrounding region, we recorded for a period of 45 days the microseismic activity. With a minimum of six records per event, we located 1121 earthquakes corresponding to an average of 20 events per day. For the hypocenter location we used a local velocity model adopted to two controlled source seismic experiments. Within the array, traveltime residuals were within ± 0.2 s and the epicentral accuracy in the order of ± 2 km, while the hypocentral one is twice this value. Correlation of the seismicity with the tectonic elements indicated that most of the NW-SE oriented faults are active with strike-slip movement along this orientation and extension perpendicular to it. The neogene basins of Messini, Meligalas and Megalopolis are seismically very active and their eastern flanks are delineated by higher seismic activity than their western ones. This indicates that the basins are asymmetric with master faults defining their eastern-northeastern flanks. This hypothesis is supported by the asymmetric structure mapped at the offshore Messiniakos basin as densely spaced high resolution reflection seismic profiles have revealed. The western margins of the basins are less deformed and the seismic activity is dispersed over several minor NW-SE faults. Since the NW-SE striking faults onshore are truncated by major NE-SW oriented ones, their overall length is shortened, reducing their seismic potential and capacity to store large stresses that could produce events above Ms6.1. Offshore western Messinia, in the Ionian Sea, the size and activity of the faults is significantly larger and prone to develop events of larger magnitudes. Subcrustal seismicity indicates a deepening of the foci to the east-northeast.Part of this work was presented at the CIESM Conference, Monaco, 2001, and in the EGS General Assembly, Nice, 2001.  相似文献   

15.
The Andaman–Sumatra margin displays a unique set‐up of extensional subduction–accretion complexes, which are the Java Trench, a tectonic (outer arc) prism, a sliver plate, a forearc, oceanic rises, inner‐arc volcanoes, and an extensional back‐arc with active spreading. Existing knowledge is reviewed in this paper, and some new data on the surface and subsurface signatures for operative geotectonics of this margin is analyzed. Subduction‐related deformation along the trench has been operating either continuously or intermittently since the Cretaceous. The oblique subduction has initiated strike–slip motion in the northern Sumatra–Andaman sector, and has formed a sliver plate between the subduction zone and a complex, right‐lateral fault system. The sliver fault, initiated in the Eocene, extended through the outer‐arc ridge offshore from Sumatra, and continued through the Andaman Sea connecting the Sagaing Fault in the north. Dominance of regional plate dynamics over simple subduction‐related accretionary processes led to the development and evolution of sedimentary basins of widely varied tectonic character along this margin. A number of north–south‐trending dismembered ophiolite slices of Cretaceous age, occurring at different structural levels with Eocene trench‐slope sediments, were uplifted and emplaced by a series of east‐dipping thrusts to shape the outer‐arc prism. North–south and east–west strike–slip faults controlled the subsidence, resulting in the development of a forearc basins and record Oligocene to Miocene–Pliocene sedimentation within mixed siliciclastic–carbonate systems. The opening of the Andaman Sea back‐arc occurred in two phases: an early (~11 Ma) stretching and rifting, followed by spreading since 4–5 Ma. The history of inner‐arc volcanic activity in the Andaman region extends to the early Miocene, and since the Miocene arc volcanism has been associated with an evolution from felsic to basaltic composition.  相似文献   

16.
The Nankai Trough, Japan, is a subduction zone characterized by the recurrence of disastrous earthquakes and tsunamis. Slow earthquakes and associated tremor also occur intermittently and locally in the Nankai Trough and the causal relationship between slow earthquakes and large earthquakes is important to understanding subduction zone dynamics. The Nankai Trough off Muroto, Shikoku Island, near the southeast margin of the rupture segment of the 1946 Nankai earthquake, is one of three regions where slow earthquakes and tremor cluster in the Nankai Trough. On the Philippine Sea plate, the rifting of the central domain of the Shikoku Basin was aborted at ~15 Ma and underthrust the Nankai forearc off Muroto. Here, the Tosa-Bae seamount and other high-relief features, which are northern extension of the Kinan Seamount chain, have collided with and indented the forearc wedge. In this study, we analyzed seismic reflection profiles around the deformation front of accretionary wedge and stratigraphically correlated them to drilling sites off Muroto. Our results show that the previously aborted horst-and-graben structures, which were formed around the spreading center of the Shikoku Basin at ~15 Ma, were rejuvenated locally at ~6 Ma and more regionally at ~3.3 Ma and have remained active since. The reactivated normal faulting has enhanced seafloor roughness and appears to affect the locations of slow earthquakes and tremors. Rejuvenated normal faulting is not limited to areas near the Nankai Trough, and extends more than 200 km into the Shikoku Basin to the south. This extension might be due to extensional forces applied to the Philippine Sea plate, which appear to be driven by slab-pull in the Ryukyu and Philippine trenches along the western margin of the Philippine Sea plate.  相似文献   

17.
—The plate boundary between Iberia and Africa has been studied using data on seismicity and focal mechanisms. The region has been divided into three areas: A; the Gulf of Cadiz; B, the Betics, Alboran Sea and northern Morocco; and C, Algeria. Seismicity shows a complex behavior, large shallow earthquakes (h < 30 km) occur in areas A and C and moderate shocks in area B; intermediate-depth activity (30 < h < 150 km) is located in area B; the depth earthquakes (h 650 km) are located to the south of Granada. Moment rate, slip velocity and b values have been estimated for shallow shocks, and show similar characteristics for the Gulf of Cadiz and Algeria, and quite different ones for the central region. Focal mechanisms of 80 selected shallow earthquakes (8 mb 4) show thrust faulting in the Gulf of Cadiz and Algeria with horizontal NNW-SSE compression, and normal faulting in the Alboran Sea with E-W extension. Focal mechanisms of 26 intermediate-depth earthquakes in the Alboran Sea display vertical motions, with a predominant plane trending E-W. Solutions for very deep shocks correspond to vertical dip-slip along N-S trends. Frohlich diagrams and seismic moment tensors show different behavior in the Gulf of Cadiz, Betic-Alboran Sea and northern Morocco, and northern Algeria for shallow events. The stress pattern of intermediate-depth and very deep earthquakes has different directions: vertical extension in the NW-SE direction for intermediate depth earthquakes, and tension and pressure axes dipping about 45 ° for very deep earthquakes. Regional stress pattern may result from the collision between the African plate and Iberia, with extension and subduction of lithospheric material in the Alboran Sea at intermediate depth. The very deep seismicity may be correlated with older subduction processes.  相似文献   

18.
Seismic data collected at four volcanoes in Central America during 1973 and 1974 indicate three sources of seismicity: regional earthquakes with hypocentral distances greater than 80 km, earthquakes within 40 km of each volcano, and seismic activity originating at the volcanoes due to eruptive processes. Regional earthquakes generated by the underthrusting and subduction of the Cocos Plate beneath the Caribbean Plate are the most prominent seismic feature in Central America. Earthquakes in the vicinity of the volcanoes occur on faults that appear to be related to volcano formation. Faulting near Fuego and Pacaya volcanoes in Guatemala is more complex due to motion on a major E-W striking transform plate boundary 40 km north of the volcanoes. Volcanic activity produces different kinds of seismic signatures. Shallow tectonic or A-type events originate on nearby faults and occur both singly and in swarms. There are typically from 0 to 6 A-type events per day withb value of about 1.3. At very shallow depths beneath Pacaya, Izalco, and San Cristobal large numbers of low-frequency or B-type events are recorded with predominant frequencies between 2.5 and 4.5 Hz and withb values of 1.7 to 2.9. The relative number of B-type events appears to be related to the eruptive states of the volcanoes; the more active volcanoes have higher levels of seismicity. At Fuego Volcano, however, low-frequency events have unusually long codas and appear to be similar to tremor. High-amplitude volcanic tremor is recorded at Fuego, Pacaya, and San Cristobal during eruptive periods. Large explosion earthquakes at Fuego are well recorded at five stations and yield information on near-surface seismic wave velocities (α=3.0±0.2 km/sec.).  相似文献   

19.
In June/July 2000, a hydraulic stimulation experiment took place at the geothermal EGS site of Soultz-sous-Forêts (Alsace, France) in order to enhance the permeability of the fractured granitic massif at 5 km depth. As it is well known that fluid injections tend to induce microseismic events, a downhole and a surface seismological network have been installed to monitor the seismic activity during the stimulation test. 23400 m3 of fluid have been injected in the rock volume through the open-hole section (4400 m–5000 m) of the well GPK2 at increasing rates of 30 l.s−1, 40 l.s−1 and then 50 l.s−1. More than 7200 microseismic events in the magnitude range –0.9 to 2.6 have been precisely located through a simultaneous inversion of the seismic velocity structure and location parameters. The analysis of the behavior of the seismicity relative to the hydraulic parameters gives important information about the geothermal reservoir. It appears that the evolution of the seismicity strongly depends on the variations of the injection rate: An increase or a decrease leads to changes of the velocity structure, the number and magnitude of microseismic events. This involves different hydro-mechanical processes between the fluid flow and the fracture planes, which will control the final shape of the microseismic cloud. Moreover, the study of the variations of the b-value with time suggests that the stimulation experiment produces a large proportion of small earthquakes, but records of events of magnitude higher than 2 indicate that fluid injection could reactivate structures whose dimensions allow the generation of such earthquakes.  相似文献   

20.
The researches in this paper disclose a huge earthquake migration series that lasted more than one century—from the 17th century to the early day of the 18th, transverse migration of huge earthquake from West Pacific trench to the Chinese mainland, lasted about 134 a, the distance is about 2600 km, the velocity is about 19 km/a, and the direction of migration agrees with the direction of plate subduction and vertical to the strike of plate boundary. The migration has two branches. One extends westwards and terminates at the central longitude belt (Helanshan—Liupanshan fault zone) of the Chinese mainland, triggered the strongest seismicity episode in North China, including 4 earthquakes withM ⩾8.0. The other extends northwards, passing through Korea Peninsula, terminates at the north part of Heilongjian Province, and triggered the volcanic eruption activity in Changbaishan and Wudalianchi. The time-space linearity of migration is good. Its velocity is stable and its activity attenuates gradually. It is estimated that it is related with the disturbance of asthenosphere matters caused by the sudden acceleration of the subduction of the trench plate. There are two similar transverse migration series from 1498 to 1556 and from 1843 to 1927, and the velocities are 36.2 and 33.7 km/a respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号