首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The shoreline is one of the rapidly changing landforms in coastal areas.They are the key element in coastal GIS and provide the most information on coastal land form dynamics.Therefore,accurate detection and frequent monitoring of shorelines is very essential to understand the coastal processes and dynamics of various coastal features.The present study is to investigate the shoreline changes along the coast between Kanyakumari and Tuticorin of south India(where hydrodynamic and morphologic changes occur continuously after the December 2004 tsunami)by using Digital Shoreline Analysis System(DSAS),an extension of ArcGIS.Multidate IRS and Landsat Satellite data(1999,2001,2003,2005,2007,and 2009)are used to extract the shorelines.The data is processed by using the ERDAS IMAGINE 9.1 software and analyzed by ArcGIS 9.2 workstation.The rates of shoreline changes are estimated by three statistical methods,namely,End Point Rate(EPR),Linear Regression Rate(LRR),and Least Me-dian of Squares(LMS)by using DSAS.The study reveals that most of the study area has undergoing erosion.Both natural and an-thropogenic processes along the coast modify the shoreline configuration and control the erosion and accretion of the coastal zones.The coastal zones along the estuary have experienced accretion due to the littoral processes.The zones with headlands have more eroded than other zones along the study area.The study also shows that the coastal zones where sand is mined have relatively more rate of erosion than that of the other zones.Improper and unsustainable sand mining may also lead to severe erosion problem along this area.The shoreline change rates are altered by various geological processes along the coast.Thus,the present study implies that proper beach filling and nourishment projects should be made in the study area to save from hazards.It also indicates the advantage and suitability of DSAS to assess the shoreline changes compared with the traditional manual shoreline change analysis and prom-ising its applications for coastal zone management in other regions.  相似文献   

2.
Rameswaram Island located on the southeast coast of India bounded by Gulf of Mannar (GoM) on the south and Palk Bay (PB) on the north, respectively, is unique in nature. The southeastern part of Rameswaram Island known as Dhanushkodi foreland is a long sand spit of about 20?km length. Shoreline erosion/accretion rates are computed based on End-Point Rate, Linear Regression Rate and Net Shoreline Change from Indian Remote sensing Satellite, Linear Imaging Self scanning Sensor III images from 1998 to 2012. Along the PB coast of Dhanushkodi foreland, eroding shorelines are dominant except Arichamunai, whereas it is reversing along GoM. Inter-annual shoreline change revealed that changing trend and stability of Island are affirmed with statistical approaches. An equilibrium shoreline trend is noticed on both the sides of Dhanushkodi foreland. Annual shoreline change rate indicates erosion and accretion in northern and southern coastline of Dhanushkodi foreland varies, respectively.  相似文献   

3.
Shoreline is the dynamic interfaces of both terrestrial and marine environment, which constantly affected by natural coastal processes includes wave, tide, littoral drift and cyclonic storms as well as coastal development. Wave induced littoral drift and fluvial discharge causing the gradual inlet migration and has the concurrent impact on shoreline of Chilika lagoon. This study is to determine the long-term shoreline changes along the coast of Chilika lagoon. Historical satellite images were used to analyse the shoreline erosion and accretion based on statistical approach. The satellite data from 1975 to 2015 were processed by using ERDAS Imagine and the shorelines are extracted. The shoreline oscillation was analysed at an interval of 100 m along the coast of Chilika lagoon using DSAS software. Most commonly used statistical methods such as end point rate and linear regression rate are used. The shoreline change analysis for entire coast of the lagoon since 40 years (1975–2015) indicates that 62% is of accretion, 25% is under stable coast and erosion is 13%. The result reveals that the lagoon coast shows high accretion of 9.12 m/year at updrift side of the lagoon inlet whereas the downdrift side shows high erosion of ??10.73 m/year due to the wave induced northeasterly longshore sediment transport round the year and riverine discharge. This study would provide the potential erosion and accretion area at Chilika lagoon coast and would help in adaptive shoreline management plan.  相似文献   

4.
Shoreline changes along the south Gujarat coast has been analyzed by using USGS Digital Shoreline Analysis System (DSAS) version 4.3. Multi-temporal satellite images pertaining to 1972, 1990, 2001 and 2011 were used to extract the shoreline. The High water line (HTL) is considered as shoreline and visual interpretation of satellite imageries has been carried out to demarcate the HTL based on various geomorphology and land use & land cover features. The present study used the Linear Regression Method (LRR) to calculate shoreline change rate. Based on the rate of shoreline changes, the coastal stretches of study area has been classified in to high erosion, low erosion, stable, low accretion and high accretion coast. The study found that about 69.31 % of the South Gujarat coast is eroding, about 18.40 % of coast is stable and remaining 12.28 % of the coast is accreting in nature. Field investigation was carried out which confirmed the coastal erosion/accretion derived from the analysis. The high erosion area are mostly found along the Umergaon (near Fansa, Maroli, Nargol, Varili river mouth, Umergaon light house) and Pardi (Kolak, Udwara)Taluka in Valsad district. Stable coastal length of the study area is 21.59 km and mostly found in Nani Dandi and near Onjal. High accretion (3.70 %) was only found near Hajira and low accretion (8.58 %) are distributed the study area. The main causes of coastal erosion of the study area were the strong tidal currents accompanied by wave action and reduced the sediment load of the river.  相似文献   

5.
Sandy beaches of the eastern coast zone in Eastern Laizhou Bay represent the most popular tourist, recreational destinations and constitute some of the most valuable restates in China. This paper presents the detection of shoreline changes in Laizhou Bay East Bank using an automatic histogram thresholding algorithm on the basis of multi-temporal Landsat images. Shoreline change rates (SCR) and shoreline change areas (SCA) were retrieved using the statistical approach and zonal change detection method, respectively. Results showed that during 1979–2010 a large portion (over 59.8 %) of shoreline are dominated by a retreating process with an average rate of ?2.01 m/year, while other parts of shoreline exhibited a seaward advancing trend due to intense land reclamation activities. It is our anticipation that the result of this work would support sandy beaches protection and management in China coast.  相似文献   

6.
TOPSAR wave spectra model and coastal erosion detection   总被引:2,自引:0,他引:2  
This paper presents work done utilizing TOPSAR data to detect shoreline change along the Terengganu coast (Malaysia). TOPSAR data were used to extract information on wave spectra. This wave spectra information was then used to model shoreline changes by investigating the wave refraction patterns. From these patterns, the volume transport at several locations was estimated. The shoreline change model developed was designed to cover a 20 km stretch of shoreline of Kuala Terengganu. The model utilized data from aerial photographs, TOPSAR data and ground truth data. The location of sedimentation and erosion along the shoreline of Kuala Terengganu was estimated. The wave spectra extracted from TOPSAR data showed wavelengths ranging from 20 m to 175 m. The main direction of the waves given by the spectra was from the northeast. The wave refraction patterns varied, showing both convergence and divergence, indicating erosion and sedimentation locations, respectively. A comparison between the TOPSAR shoreline change model and aerial photographs and ground truth data showed a significant relationship. Finally, the regression model showed that erosion occurred particularly at Sultan Mahmed Airport, at a rate of −1.5 m/year. The maximum rate of sedimentation along the 20 km stretch was 1 m/year.  相似文献   

7.
Between 1887 and 1888, Henry L. Marindin, Assistant Topographer of the U.S. Coast & Geodetic Survey, conducted a detailed survey of the outer shores of Cape Cod, Massachusetts, providing an important base line for future comparisons, “which will be of value to geologists and others who study the changes in the coast-line”. In 2007, the Land-Sea Interaction Program of the Provincetown Center for Coastal Studies began a project to resurvey Marindin's profiles and cross-sections to quantify changes to landforms and the nearshore environment that have occurred over the past century for use in estimating future conditions in the context of climate change and sea level rise. In order to facilitate reliable, quantitative shoreline comparisons, the translation of historical spatial data to contemporary horizontal (e.g., NAD83) and vertical (e.g., NAVD88) reference systems is paramount. With historical transects translated to NAD83 using methods developed as part of a previous study, the goal of this work is to develop an accurate estimate of the relationship between Marindin's elevation data and NAVD88. Recognizing that the physical and social landscape had changed significantly over the past 120+ years, a historical base map was prepared to assist with the recovery of 19th century benchmarks. Using the base map, five Coast survey benchmarks were recovered and resurveyed. Based on the results of this work, the local mean sea level datum of Marindin's survey is estimated to be 1.13 feet (0.34 meters) below the NAVD88 plane of reference.  相似文献   

8.
Funafuti Atoll, Tuvalu is located in the southwestern Pacific Ocean, which has experienced some of the highest rates of global sea-level rise over the past 60 years. Atoll islands are low-lying accumulations of reef-derived sediment that provide the only habitable land in Tuvalu, and are considered vulnerable to the myriad possible impacts of climate change, especially sea-level rise. This study examines the shoreline change of twenty-eight islands in Funafuti Atoll between 2005 and 2015 using 0.65 m QuickBird, 0.46 m WorldView-2, and 0.31 m WorldView-3 imagery using an image segmentation and decision tree classification. Shoreline change estimates are compared to previous study that used a visual interpretation approach. The feasibility of estimating island area with Landsat-8 Operational Land Imager (OLI) data is explored using CLASlite software. Results indicate a 0.13% (0.35 ha) decrease in net island area over the study time period, with 13 islands decreasing in area and 15 islands increasing in area. Substantial decreases in island area occurred on the islands of Fuagea, Tefala and Vasafua, which coincides with the timing of Cyclone Pam in March, 2015. Comparison between the WorldView-2 shoreline maps and those created from Landstat-8 indicate that the estimates tend to be in higher agreement for islands that have an area > 0.5 ha, a compact shape, and no built structures. Ten islands had > 90% agreement, with percent disagreements ranging from 2.78 to 100%. The methods and results of this study speak to the potential of automated EoV shoreline monitoring through segmentation and classification tree approach, which would reduce down data processing and analysis time. With the growing constellation of high and medium spatial resolution satellite-based sensors and the development of semi or fully automated image processing technology, it is now possible to remotely assess the short and medium-term shoreline dynamics on dynamic atolls. Landsat estimates were reasonably matched to those derived from fine resolution imagery, with some caveats about island size and shape.  相似文献   

9.
Abstract

Shoreline extraction is fundamental and inevitable for several studies. Ascertaining the precise spatial location of the shoreline is crucial. Recently, the need for using remote sensing data to accomplish the complex task of automatic extraction of features, such as shoreline, has considerably increased. Automated feature extraction can drastically minimize the time and cost of data acquisition and database updating. Effective and fast approaches are essential to monitor coastline retreat and update shoreline maps. Here, we present a flexible mathematical morphology-driven approach for shoreline extraction algorithm from satellite imageries. The salient features of this work are the preservation of actual size and shape of the shorelines, run-time structuring element definition, semi-automation, faster processing, and single band adaptability. The proposed approach is tested with various sensor-driven images with low to high resolutions. Accuracy of the developed methodology has been assessed with manually prepared ground truths of the study area and compared with an existing shoreline classification approach. The proposed approach is found successful in shoreline extraction from the wide variety of satellite images based on the results drawn from visual and quantitative assessments.  相似文献   

10.
Projecting the future distribution of permafrost under different climate change scenarios is essential, especially for the Qinghai–Tibet Plateau (QTP). The altitude-response model is used to estimate future permafrost changes on the QTP for the four RCPs (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). The simulation results show the following: (1) from now until 2070, the permafrost will experience different degrees of significant degradation under the four RCP scenarios. This will affect 25.68%, 40.54%, 45.95%, and 62.84% of the current permafrost area, respectively. (2) The permafrost changes occur at different rates during the periods 2030–2050 and 2050–2070 for the four different RCPs. (1) In RCP2.6, the permafrost area decreases a little during the period 2030–2050 but shows a small increase from 2050 to 2070. (2) In RCP4.5, the rate of permafrost loss during the period 2030–2050 (about 12.73%) is higher than between 2050 and 2070 (about 8.33%). (3) In RCP6.0, the permafrost loss rate for the period 2030–2050 (about 16.52%) is similar to that for 2050–2070 (about 16.67%). (4) In RCP8.5, there is a significant discrepancy in the rate of permafrost decrease for the periods 2030–2050 and 2050–2070: the rate is only about 3.70% for the first period but about 29.49% during the second.  相似文献   

11.
Coastal zone is very dynamic, being the meeting place of land and sea water. The development in coastal area and subsequent population growth have given rise to problems such as erosion, sedimentation, saltwater intrusion, degradation of natural resources, etc. Satellite data has proved to be more appropriate for change detections quantifying and monitoring coastal zones compared to conventional sources. An attempt is being made to elucidate the effect of shoreline changes with reference to the spatial and field data observed along the Tharangampadi area. The base map was prepared on 1:50,000 scale for delineation and identification of shoreline changes. The spatial variability of shoreline changes are studied using IRS 1B LISS-II 1991, IRS 1C LISS-III 2004 and IRS P6 LISS-IV and IRS 1D PAN merge data 2006. The corresponding Survey of India toposheets of 1852, 1972 and survey and land record village map of 1918 also supplemented for this study. The kind and extent of shoreline changes were investigated by using GPS during ground truth verification. The results are analyzed and presented in this paper. The study results revealed that 180 m receding of the shoreline occurred in the past 155 years.  相似文献   

12.
During the last six decades, Kuwait has experienced rapid and unprecedented population growth with only a small increase in the urban areas. The alarming rise in urban density in Kuwait has caused issues for the residents' lifestyles, the economy and the environment. These issues have been aggravated by urban planning which perpetuated a city‐centric urban form without modelling the impacts of current patterns of urban growth. A spatial model using Agent Based Modelling (ABM) and Geographical Information Systems (GIS) is proposed to model disaggregate future changes in land‐use patterns given forecast population estimates and planning policies. The two main impacts considered are housing shortage and traffic congestion, as these are the two most significant social impacts for Kuwaitis. This article discusses the design methodology and parameterization of the ABM and the agent groups. It characterizes urban growth by rules for different citizen groups, historical growth patterns and the influence of decision‐makers. The model is validated against data for the period 1995‐2015 and simulations run to 2050; the results predict that continued city‐centric growth will aggravate the problems, with more than 50% increase in housing shortage and congestion unless the government intervenes to rectify the situation.  相似文献   

13.
This work explores the potential of multispectral imagery in identifying dried and buried moats, and possibly any adjacent fortifications of medieval sites in South India. Vegetation marks in the form of geometrical patterns have been one of the key signatures indicating archaeological sites. To explore this three of well known sites from Karnataka in south India–Belur, Halebidu and Somanathapura–were chosen as their historical accounts mention that they were townships which had circumscribing artefacts such as fort/wall or moats that at present are not easily detected from conventional exploration. These three sites belong to Hoysala dynasty, a period when a systematic town planning was followed based on cultural aspects such as the religion or faith followed by the inhabitants of respective sites. Traces of specific configuration of moats can be detected around each of them. The present work investigates the possibility of identifying these artefacts on space imageries through spatial and spectral distinction along with synoptic views and use of appropriate image processing and analysis techniques.  相似文献   

14.
海岛岸线遥感立体测图精细测量方法   总被引:2,自引:0,他引:2  
提出了一种海岛岸线遥感测图精细测量新方法,该方法直接基于理论定义的海岸线,利用航空影像瞬时水涯线数据在立体测图环境中提取瞬时水位高程;利用海岛周边精密海潮模型和瞬时水位高程推算海岛岸线高程;最后依据海岛岸线高程,采用立体测图方法测制海岛岸线的平面位置。该方法确保了海岛岸线成果的唯一性和连续性,适合大比例尺的大陆海岸线和海岛岸线测量。测试结果显示,在较高精度海潮模型和海面地形支持下,海岛岸线高程精度优于0.2 m,可满足1:2000测图要求。  相似文献   

15.
Coastal zone is highly volatile ecosystem which is always in adjustments. Loss of shore line will cause severe impact on human life and as well as their properties. Remote sensing is a reliable technique to study the historical shoreline changes. Therefore in this paper long term shoreline oscillations of Cauvery delta shorelines at Poompuhar, Tharangambadi and Nagapattinam were studied using satellite imageries and the same was physically observed at the above three locations with the help of reference pillars and compared mutually. It was observed that the shoreline at Poompuhar is under accretion at the rate of 1.79m/ year and other shoreline stretches at Tharangambadi and Nagapattinam were under erosion at 0.4888m/ year and 0.4985m/ year respectively. It was also observed that the remote sensing study qualitatively matches with the physical observation for all the three coastal stretches of the study area.  相似文献   

16.
Beach heights and tidal variation have large impacts on the accuracy of estimates of coastline position and its historical changes of a wider and flatter beach based on remote sensing data. This study presents an approach to analysis of waterline movement based on the beach slope, estimated from two effective images with Landsat images data. Two images acquired at different stages of the tide were processed to delineate accurately the position of the waterline. Then waterlines were assigned heights using elevations predicted by a two-dimensional non-linear tidal assimilation model. Beach slope can be calculated piecewise using the heighted shorelines based on the equiangular triangle theory. The positions of the national tidal height datum coastline can be obtained by the beach slope calculation method to accurately monitor the changing of coastline. A change in the coastline of the southwest tidal flat of the Yellow River delta, from Tianshuigou to the Xiaoqing River mouth, was detected by combining field measurements of profiles and bathymetric data. The root mean squared error (RMSE) of the calculated slope of the intertidal zone was one order of magnitude less than the measured slope. The minimum error of self-consistency check is 0.2%. The RMSE between the coastlines estimated by the proposed method and those surveyed data varies from 53.98 m to 217.72 m. It is shown that this method is more suitable for the two years and over the time scales of shoreline change monitoring. To assess erosion/accretion patterns in the tidal flat, and the controlling factors, the volume of the beach was investigated as a possible indicator. The accepted coastline position and changes in the beach volume were used to monitor the changing pattern of accretion and erosion along the coast southwest of the recent Yellow River mouth.  相似文献   

17.
浙江东部穿山半岛岸线及潮滩演变的遥感调查   总被引:1,自引:3,他引:1  
穿山半岛北侧是杭州湾的外海滨部分,其水动力条件、泥沙运移、沉积过程和地貌演变复杂。根据区域遥感影像和地理地形等资料,通过综合分析研究,探讨了穿山半岛北侧岸线和潮滩的变迁过程。研究表明,上世纪50年代穿山半岛北侧岸线大部分仍处于自然演变状态,从20世纪60年代开始,岸线向海迁移基本上是由工业填海和围海造田所致。潮滩总体呈现淤长的趋势,37a来,西侧滩界外移3050m,外移速率达+82.4m/a;向东,滩界变动范围逐渐减小。潮滩的发展具有空间、时间上差异性,潮滩淤涨集中在1955~1963年和1977~1982年。  相似文献   

18.
The present work is committed to simulate the expansion of agricultural and cattle raising activities within a watershed located in the fringes of the Xingu National Park, Brazilian Amazon. A spatially explicit dynamic model of land cover and land use change was used to provide both past and future scenarios of forest conversion into such rural activities, aiming to identify the role of driving forces of change in the study area. The employed modeling platform – Dinamica EGO – consists in a cellular automata environment that embodies neighborhood-based transition algorithms and spatial feedback approaches in a stochastic multi-step simulation framework. Biophysical variables and legal restrictions drove this simulation model, and statistical validation tests were then conducted for the generated past simulations (from 2000 to 2005), by means of multiple resolution fitting methods. Based on optimal calibration of past simulations, future scenarios were conceived, so as to figure out trends and spatial patterns of forest conversion in the study area for the year 2015. In all simulated scenarios, pasturelands remained nearly stable throughout the analyzed period, while a large expansion in croplands took place. The most optimistic scenario indicates that more than 50% of the natural forest will be replaced by either cropland or pastureland by 2015. This modeling experiment revealed the suitability of the adopted model to simulate processes of forest conversion. It also indicates its possible further applicability in generating simulations of deforestation for areas with expanding rural activities in the Amazon and in tropical forests worldwide.  相似文献   

19.
This article presents the results and potential of using volunteered geographic information (VGI) in heritage detection. Research was completed under the project entitled “Laser Discoverers – non‐invasive examination and documentation of archeological and historical objects in the ?wi?tokrzyskie Voivodeship”, carried out as a part of the Ministry of Science and Higher Education program entitled “The Paths of Copernicus”. Within the project, strong emphasis was placed on promotional and awareness‐raising activities, to involve as many voluntary users as possible. Project participants had at their disposal a web application, which provided access to a digital terrain model (DTM) where they identified possible heritage objects. All samples of data were additionally available in eight variants of sunshine, based on the simulation of sunlight from eight directions and at a constant angle. In total, 5,989 elementary areas with dimensions of 100 × 100 m were used for the project. After conducting a field inventory, Internet users together with specialists were able to recognize several thousands of potential archaeological and historic objects. During the project, approximately 10% of those features were verified through non‐invasive (field survey) work, with 75% success.  相似文献   

20.
The impact of wave spectra modulation transfer function (MTF) in shoreline change model accuracy has been presented. The MTF consisted of real aperture radar (RAR) and velocity-bunching which is utilized to map the wave spectra observed from ERS-1 into the observed real ocean wave spectra. Based on this information, the shoreline change model have developed. Two hypotheses were concerned with the shoreline change model based on ERS-1 wave spectra. First, there is a significant difference between RAR and velocity-bunching modulations for ERS-1 wave spectra modeling. Second, this significant difference is induced a different spatial variation for shoreline change pattern.This study shows that there was the significant difference between velocity-bunching and quasi-linear models. The study shows that velocity-bunching model produces wave spectra pattern approximately close to the real ocean wave compared to the quasi-linear model. The error percentage occurred with velocity-bunching and quasi-linear models were 33.5 and 46.7%, respectively. The highest rate of erosion occurred to the shore south of Chendering with −5 m per year and the highest rate of sedimentation occurred to north of Chendering headland with 3 m per year. It can be concluded that ERS-1 data could be used to model shoreline change and identify the locations of erosion and sedimentation. The sedimentation was occurred due to the effect of lowest wave spectra energy captured along the range direction while the erosion was occurred due to highest spectra energy captured near azimuth direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号