首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
针对北斗二号(BeiDou-2) B1I&B2I标准双频无电离层伪距组合解算的共视比对结果中存在明显的噪声进而影响其短期稳定性的现象, 开展了在BeiDou-2和北斗三号(BeiDou-3)现有可用频率信号中选取最优双频组合的研究, 以期改善BeiDou的共视时间传递性能. 基于开发的CGGTTS (Common GNSS (Global Navigation Satellite System) Generic Time Transfer Standard)软件所生成的标准共视文件, 完成了中国科学院国家授时中心(NTSC)与捷克光电研究院(TP)之间GPS、Galileo、BeiDou-2 B1I&B2I及B1I&B3I和BeiDou-3 B1I&B3I及B1C&B2a双频无电离层伪距组合共视时间比对试验, 并用Vondark滤波对各双频组合的共视结果降噪处理, 通过计算滤波残差的RMS值来评估共视时间比对的精度. 结果表明, 利用BeiDou-3 B1C&B2a组合伪距值获得的共视时间比对结果噪声相对较小, 相比BeiDou-2 B1I&B2I、B1I&B3I和BeiDou-3 B1I&B3I组合的RMS (Root Mean Square)值分别提高约46%、52%和37%, 与GPS P1&P2组合的精度相当, 且与Galileo E1&E5a组合相差不大. BeiDou-3 B1C&B2a组合链路的短稳(< 1d)要优于BeiDou-2 B1I&B2I、B1I&B3I和BeiDou-3 B1I&B3I组合, 且与GPS P1&P2、Galileo E1&E5a组合的稳定性相当; 6条共视时间比对链路的中长稳(> 1d)基本一致.  相似文献   

2.
简要介绍了4种北斗双频组合共视(Common-View, CV)模型,设计并实现了RINEX (Receiver Independent Exchange Format)转换CGGTTS (Common GNSS (Global Navigation Satellite System) Generic Time Transfer Standard)的工具软件rnx2cgg,解决了CGGTTS V2E (Version 2 Extended)不支持北斗三号(BDS-3)新信号体制的问题.系统性地分析了北斗授时误差源,包括空间信号测距误差、伪距测量噪声、差分码偏差,并根据误差模型给出了北斗双频共视的权函数.最后,利用BSNC (Beijing Satellite Navigation Center)和MGEX (The Multi-GNSS Experiment and Pilot Project)观测站数据,开展了北斗授时、站间共视时间传递性能分析.试验结果表明:北斗时从地面段到空间段、用户段的全链路双频共视闭合差的标准差(Standard Deviation, STD)优于2 ns.北...  相似文献   

3.
基于软件接收机的卫星双向时间传递(Two-Way Satellite Time and Frequency Transfer based on Software Defined Receiver, SDR-TWSTFT)链路每秒采集测量数据后通过数学模型将原始数据拟合为300 s一组的观测文件,因此链路的时间传递结果受短期测量噪声和非模型误差的影响,呈现出一定的随机噪声的特征.提出了一种频域幅值分析方法,针对性地确定滤波因子,构造符合需求的低通Vondrak滤波器.通过对中国科学院国家授时中心(National Time Service Center, NTSC)和德国联邦物理技术研究所(Physikalisch-Technische Bundesanstalt, PTB)之间的SDR-TWSTFT链路测量数据的分析发现,该方法对过滤链路平均时间一天内的高频噪声有效,能够提高链路时间传递结果的可信度,同时滤波后链路的短期频率、时间稳定度也有了显著提高.  相似文献   

4.
基于卫星导航双频时间传递型接收机的伪码观测量,利用国际全球卫星导航系统服务组织(International Global Navigation Satellite System (GNSS) Service, IGS)提供的高精度卫星轨道和钟差产品,实现了北斗全视法时间比对.以IGS提供的时间尺度为两个待比对站的公共参考时间,首先使用双频组合法消除电离层对伪距观测的影响,然后将对流层和地球自转效应带来的时延利用理论模型在伪码观测量中进行扣除,分别获得两个比对站时间与公共参考时间之差后,将2者再做差,便得到了北斗全视时间比对结果.以中国科学院国家授时中心(NTSC)、德国物理技术研究院(PTB)和西班牙海军天文台(ROA)所保持的国家标准时间作为比对对象,开展了长基线北斗全视时间比对试验,获得北斗全视时间传递结果,最后利用阿伦方差和时间方差两项关键性能指标以及卫星双向时间比对对其进行性能评估.结果表明:北斗全视时间比对的天稳为10-14量级,可以满足国际时间比对需求.  相似文献   

5.
全球卫星导航系统(Global Navigation Satellite System, GNSS)通过播发卫星钟差和精密轨道信息实现时间和空间基准信息向导航用户的传递.随着高精度原子钟等导航卫星载荷、星间链路等天基/地基监测手段以及数据处理方法等技术的不断更新,卫星轨道和钟差产品的精度和实时性也逐步提升. 2018年12月,北斗三号卫星导航系统正式开通,为"一带一路"国家提供实时高精度、高可靠的基本导航定位服务.综述了北斗导航系统从北斗二号区域系统到北斗三号全球系统精密定轨与时间同步处理面临的困难和挑战,针对上述问题,阐述了北斗运行控制系统的解决途径和实现指标.与GPS等其他GNSS系统进行比较,分析了不同导航系统技术特点.最后展望了精密定轨与时间同步技术未来的发展路线图,为更高精度的GNSS导航定位授时服务提供参考.  相似文献   

6.
测量集(MeasurementSet, MS)是射电天文领域重要的文件格式,并逐渐成为射电天文数据存储、分析与共享的标准格式,得到越来越多的天文数据处理软件的支持,在阿塔卡玛大型毫米波天线阵(Atacama Large Millimeter Array, ALMA)、LOFAR等射电望远镜系统中已经深入应用。但长期以来,测量集格式在国内应用较少,介绍了测量集格式的基本概念、目录结构和字段设计,在此基础上讨论了利用Python-casacore调用底层Casacore生成测量集文件的方法,将实现程序集成到射电天文模拟校准成像库(Radio Astronomy Simulation, Calibration and Imaging Library, RASCIL),生成仿真观测测量集文件,并利用CASA(Common Astronomy Software Applications)软件加以验证。所完成的测量集文件生成软件在满足平方千米阵工程桥接阶段工作需要的同时,也为其后续的成像、观测模拟和文件存储提供了重要支撑,对我国射电天文数据处理工作有较高的参考价值。  相似文献   

7.
北斗卫星导航系统目前已经完成北斗卫星导航试验验证系统和北斗区域卫星导航系统,正在建设北斗全球卫星导航系统,简称北斗三号系统.截至2018年11月,北斗三号系统已经发射19颗组网星.为了了解新发射组网星的信号、数据质量和目前能达到的定轨精度,基于2018年5月18日至28日22个国际GNSS (Global Navigation Satellite System)监测评估系统(iGMAS)跟踪站的数据,从观测噪声和伪距多路径两方面分析比较了最早发射的8颗北斗三号组网星新旧信号的数据质量,分别用旧信号B1I、B3I和新信号B1C、B2a对北斗三号组网星和GPS进行联合定轨实验.实验结果表明,新信号B2a的数据质量与旧信号相当, B1C的数据质量略差于老信号;比较3 d解重叠弧段(48 h)轨道和钟差结果,新旧信号的结果相当, B1I/B3I和B1C/B2a定轨的3维位置精度(3D-RMS)都在35 cm左右,钟差结果基本在0.5 ns以内.  相似文献   

8.
北斗卫星导航系统(BeiDou navigation satellite System, BDS)已于2020年7月正式建成并开通, 北斗三号(BDS-3)在旧信号B1I和B3I的基础上, 增加了B1C、B2a新信号. 为了全面评估BDS-3的新信号B1C、B2a的定位性能, 试验了GPS (Global Positioning System)、BDS-3、BDS-2/BDS-3新旧信号的定位性能和BDS系统不同频点与GPS组合定位性能, 对BDS (B1I+B3I、B1C/B2a)+GPS (L1+L2)组合静态PPP (Precise Point Positioning)定位性能进行分析, 并与单卫星系统对比分析. 试验结果表明: BDS-3 (B1C/B2a)在East (E)、\lk North (N)、Up (U)方向的定位精度优于1.25cm、0.89cm、1.67cm, BDS-3新旧频点在E、N方向上定位精度与GPS L1/L2在同一水平上, U方向上新频点定位精度高于GPS L1/L2和BDS-3旧频点, 较旧频点定位精度提升了34.2%, 新频点收敛时间25.9min比旧频点提升了12.7%; 相较于BDS、GPS单系统, 组合系统BDS/GPS定位精度和收敛时间有了明显的提高, BDS-3 (B1C/B2a)+GPS在E、N方向上与BDS-3 (B1I/B3I)+GPS定位精度相当, 在U方向上定位精度前者较后者有了明显的提升, 提升了17.2%, 组合系统新频点收敛时间20.1min比旧频点提升了17.6%.  相似文献   

9.
北斗二号(Bei Dou Navigation Satellite System-2, BDS-2)卫星播发以B3频点为基准的卫星钟差参数,并播发B1和B2频点相对于B3频点的群延迟(time group delay, TGD)参数。以差分码偏差(differential code bias, DCB)参数为基准,计算BDS-2群延迟参数的精度。在计算过程中,发现在2017年年积日202 d以前,各颗卫星TGD1参数精度较差,与DCB1参数互差在2~4 ns之间,TGD2与DCB2的互差约为0.5 ns。在2017年年积日202―203 d处,所有卫星群延迟参数均发生明显跳变,该跳变主要是因参与群延迟解算的北斗系统的接收机不再采用抗多径算法所致。跳变后,群延迟参数与MGEX (Multi-GNSS Experiment)公布的差分码偏差参数的差值小于0.5 ns,与GPS卫星播发的群延迟参数精度接近。进一步利用实测数据计算了群延迟参数改正精度对用户导航定位精度的影响。结果表明,使用跳变前的群延迟参数,单频定位精度为2.078 m,双频定位N方向精度为1.451 m,E方向精度为1.648 m,U方向精度为3.467 m;使用跳变后的群延迟参数,单频定位精度为1.968 m,双频定位N方向精度为1.361 m,E方向精度为0.998 m,U方向精度为2.789 m,在双频定位的N, E, U方向,双频定位精度分别提升6.2%, 39.4%, 19.5%。  相似文献   

10.
卫星钟差长期可靠预报是实现卫星自主导航定轨所要解决的重要前提之一.针对多项式模型(PM)、灰色模型(GM)等常用的钟差预报方法存在的预报误差较大的情况,为了有效地进行卫星钟差预报和更好地反映卫星钟差变化特性,将ARMA(Auto-Regressive Moving Average)模型引入到卫星钟差预报中,利用IGS(International GNSS Service)提供的卫星钟差观测数据进行90 d的长期预报,根据各个卫星钟差的变化特性,对其进行模式识别、建模和预报,并与其它3种模型进行了较为细致的比较.计算结果表明,采用ARMA模型可以有效地提高卫星钟差的长期预报精度.  相似文献   

11.
According to the Common GNSS Generic Time Transfer Standard Version2E (CGGTTS_V2E) developed by the GNSS (Global Navigation Satellite System) Working Group of the International Consultative Committee for Time and Frequency (CCTF), the data processing software is developed by using the pseudorange signal measured by the GNSS receiver, which is used to generate the CGGTTS files in the standard format, and its reliability is verified. The results show that, compared with the CGGTTS files generated by sbf2cggtts software, the offset between the GNSS system time and local time scale calculated by the same GPS and BDS satellite observations in the same epoch is identical, and the difference with the absolute value of the difference less than 0.5 ns accounts for 96% and 94% of the total, respectively. Taking Chinese standard time UTC(NTSC) (Coordinated Universal Time (National Time Service Center)) as the reference time scale, the data processing software is used to process the observations of the B1I and B3I dual-frequency ionospheric combination of BeiDou-2 and BeiDou-3 satellites, and generate the CGGTTS files in the standard format, and the performance of BeiDou system time is evaluated by analyzing the parameter of offset between the GNSS system time and local time scale. The results show that, compared with BeiDou-2, the internal precision of BeiDou-3 system time is increased by about 28%, and the frequency stability of medium and long-term is obviously better than BeiDou-2 after one day.  相似文献   

12.
13.
国际电信联盟建议,作为国家时间中心的实时UTC(k)与协调世界时UTC的差异应不大于100ns。从2000年12月起,中国科学院国家授时中心(NTSC)产生和保持的UTC(NTSC)的准确度通过人工监控已达到了这个指标。UTC(NTSC)主要以其所拥有的一组6个HP5071A铯原子钟产生的地方原子时TA(NTSC)为参考,用相位微调仪调控UTC(NTSC)的频率,使它达到所需的准确度。介绍了在VB6.0环境下开发的一个UTC(NTSC)的自动监控软件,它包括4个窗体和由与4个窗体上的控作及图形窗口相匹配的子程序组成。图形窗口可以实时显示钟的日差曲线、UTC(NTSC)-TA(NTSC)曲线和UTC(NTSC)-GPS曲线。该软件自动化可视化程度高、灵活性强,即可实时自动运行,又可人机对话操作。该软件的主体部分已于2001年底完成,在2002年成功地进行了部分程序的试运行,使|UTC-UTC(NTSC)|达到了优于50ns的准确度水平。  相似文献   

14.
Software named “Falling Star” has been developed for digital processing of double-station TV meteor observations. It was designed for measurement and calculation of both kinematic and photometric parameters of faint meteors observed with any video system. Data from video recordings are first digitized as standard AVI files, and then converted into the software’s TVS (TV sequence) format. Additional astronomical information like date, time of observations, geographic position of point of the observation and horizontal coordinates of TV camera optical axis orientation are added to the files. These parameters allow the right ascension and declination of the optical center of camera for the moment of meteor flight to be calculated. “Falling Star” includes a range of automated procedures for the identification of frame stars with star catalogues, search of movable meteor-like objects inside frame, calculation of equatorial coordinates and photometry. Finally, meteor trajectory parameters, orbital elements and brightness curves are calculated. Errors of calculations are determined using Monte-Carlo method.  相似文献   

15.
网络技术在时间服务工作中的应用   总被引:1,自引:1,他引:0  
主要介绍网络技术在授时中心守时实验室的守时及授时服务系统中的应用情况。守时系统是一种需要连续、可靠运转的复杂系统,包括守时钟组、比对测量系统、原子时归算等多个环节。原子时专用局域网是守时系统的一个重要的组成部分,它有效地提高了守时、原子时及相关数据资料的传递和交换速率。时间服务的网络化、自动化不仅有效提高了工作效率,减少了人工过多干预造成的误差,更重要的是可以提高守时系统的可靠性和合理性。章详细介绍原子时局域网络(ATLAN)系统和计算机网络授时系统的设计情况。  相似文献   

16.
介绍了为中国科学院国家授时中心(NTSC)的长波发播系统BPL全面升级改造工程而研制的BPL授时发播时频控制监测软件系统。整个软件系统分为两大部分,第一部分包括局域网的时间同步、时间信号比对、数据采集、数据传递等与整个时频系统的硬件控制有关的软件;第二部分包括系统中各种时间比对数据的定时处理与分析、设备超差报警判断、BPL工作钟时间T(PU)的监测和频率驾驭信息的产生、各种设备运行情况的曲线显示等软件。经过近一年的试运转和修改,该软件已正常使用,效果良好。  相似文献   

17.
围绕着为上海海岸电台研制授时信号单元的任务,对新国际式报时格式作了简要介绍,提出了基于远程拨号通讯的时间传递方案。依据该方案,以嵌入式调制解调器(Modem)和32位嵌入式处理器为核心完成了授时信号单元的软、硬件设计。讨论了通讯双方的握手方式和链路时延测定方法。实现了上海海岸电台时间信号对国家授时中心标准时间的溯源。  相似文献   

18.
通过研究GNSS(global navigation satellite syetem,全球导航卫星系统)共视远程时间传递技术,并结合现代网络通信技术,搭建了基于GNSS CV(common-view,共视)的精密时间服务系统的硬件平台。利用中国科学院国家授时中心保持的精确时间UTC(NTSC)和GNSS共视接收机观测数据,实现了用户与国家授时中心之间的在线数据传输和比对处理,为用户时间与UTC(NTSC)之间的高精度时间同步提供了一种解决方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号