首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
本文对以下问题作了论述:现用基本参考系的局限性,VLBI在建立准惯性参考系上的作用,射电源星表的进展,射电源星表误差来源的分析和考虑,综合射电源星表建立的需要,光学、射电和空间天体测量星表联系的必要性,用中国VLBI网进行天球参考系工作的一些初步考虑。  相似文献   

2.
快速射电暴是近年来发展最快的天文学科之一. 理论上, 快速射电暴可能存在毫秒到小时时标的光学\lk对应体. 快速射电暴光学对应体有可能在中国未来大视场望远镜中探测到, 例如: 中国空间站工程巡天望远\lk镜(China Space Station Telescope, CSST)、中国科学技术大学和紫金山天文台合作的2.5m大视场巡天望远镜(Wide Field Survey Telescope, WFST)和地球2.0 (Earth 2.0, ET)等. 快速射电暴光学对应体通常分为毫秒时标光学对应体、小时时标光学对应体和光学余辉. 前两者可产生于快速射电暴的高能外延或是快速射电暴的射电辐射与高能电子的逆康普顿散射, 探测率与光学-射电流量比$\eta_\nu$关系密切. 对于毫秒时标光学对应体, 最理想情况下WFST、CSST和ET的探测率可以达到每年上百个. 当$\eta_\nu$~10-3时, WFST、CSST的年探测率仅 为1个的量级, ET的年探测率为19.5个. 对于小时时标光学对应体, 最理想情况下超新星遗迹的年龄为5年且$\eta_\nu$约为10-6时, 年探测率可到100以上. FRB 200428的X射线对应体表明, 快速射电暴可能产生相对论性外流并且与星际介质相互作用产生光学余辉. 结合快速射电暴的能量、在宇宙中的分布以及标准余辉模型, 可以对快速射电暴余辉的可探测性进行研究. 当总能量-射电能量比与FRB 200428类似(ζ = 105)时, CSST、WFST和ET的 年探测率分别为1.3、1.0和67个.  相似文献   

3.
通过比较地球定向参数(EOP)序列和对应的地因参考架,得到了依巴谷输入星表(HIC)和临时星表H37与国际地球自转服务(IERS)基于甚长基线干涉测量(VLBI)建立的河外天球参考架(ICRF)之间的旋转参数。在J2000.0历元,HIC和H37至ICRF的旋转分别为[7.4±1.1mas,70.0±1.2mas,86.8±6.9mas]和[-27.4±1.0mas,10.4±1.0mas,70.3±4.6mas]。由于光学仪器位置坐标精度较低,第三个旋转角的可信度较差。  相似文献   

4.
利用北京天文台具有CCD终端的60cm光学望远镜(V波段)观测射电源的光学对应体,得到了0716+714和0839+187精确的光学位置。参考星表采用拉帕尔玛(LaPalma)的18cm全自动子午环观测资料编制的CAMC星表,该星表是FK5星表系统。两颗源位置的内符精度约为0.″19,与其他作者给出的光学和射电位置观测结果分别进行了比较  相似文献   

5.
BL Lac型天体的多波段光度相关性及喷流模型   总被引:1,自引:0,他引:1  
本文对X射线选和射电选BL Lac型天体的射电、光学、X射线波段的单色光度进行相关性分析,发现X射线选的BL Lac天体只有射电与光学线性相关,而射电选BL Lac天体则X射线与射电、光学都相关。并在此基础上对射电选的BL Lac天体进行相对论修正后的相关性分析,得到了比修正前更好的相关性.因此,我们认为,两种选择的BL Lac型天体本质上是一样的;X射线流来自两种不同的辐射源;射电选的BL Lac型天体三波段流都有相对论提高。  相似文献   

6.
本文根据基本天体测量的主要任务和目前发展趋势的要求,以及低纬子午环配备CCD后的观测精度、效率和极限星等,提出了该仪器长期观测;的目标,包括建立实用的准惯性天球参考架和动力学参考架,为太阳系动力学研究,为银河系结构和运动学研究,为某些天体物理课题研究的需要,提供有用的观测数据,为本地的地震预报和天文地震研究提供参考数据。在甚长基线射电干涉测量技术和空间测量技术迅速发展的时代,地面光学天体测量仍具有  相似文献   

7.
作为射电天文接收机系统的关键器件, 低噪声放大器的噪声和增益性能对接收机系统的灵敏度有重要影响. 采用100nm砷化镓赝配高电子迁移率晶体管(pseudomorphic High Electron Mobility Transistor, pHEMT)\lk工艺, 研制了一款可覆盖C波段(4--8GHz)的低噪声放大器(Low Noise Amplifier, LNA). 所设计的LNA采用3级共源级联放大拓扑结构, 栅极、漏极双电源供电. 常温下测试表明, 该LNA在4--8GHz频段内平均噪声温度为\lk60K, 在5GHz处获得最低噪声温度50K, 通带内增益($31\pm1.5$)dB, 输入输出回波损耗均优于10dB, 芯片面积为$2.1\times1.1$mm2, 可以应用于C波段射电天文接收机以及卫星通信系统等.  相似文献   

8.
利用北京天台ABTC巡天观测中的部分资料--20幅CCD图像,通过IRAF处理软件和底片常数法,归算得到4个河外射电源光学对应体的光学位置,参考星表为最新的CAMC星表;同时对本结果与射电位置进行了比较。  相似文献   

9.
依巴谷星表和第谷星表的特征和意义   总被引:2,自引:0,他引:2  
主要论述依巴谷星表和第谷星表的观测特征和天体测量特征,依巴谷卫星在短期内同时测定大量高精度的恒星位置,自行和视差等五个天体测量参数以及星等和色指数,依巴谷星表和第谷星表为建立高精度的光学参考系,为研究恒星的起源,演化,分布,质量,大小和光度等,为研究双星和聚星的分布和运动,为研究星系运动和星系动力学提供了大量的高精度资料,具有重要的科学意义。  相似文献   

10.
本文简述了国际天球参考架的发展历史和现在射电参考架的现状—基准源选择的标准和参考架的稳定性。描述了地面上光学观测在依巴谷参考架的维持和加密的一系列工作。介绍由天体测量卫星GAIA和SIM给出的天球参考架可能逵到的精度。详述了在今后十年中地面天体测量的作用以及正在开展有关天球参考架的研究课题 ,同时也列出了我国正在和即将开展天体测量的几个研究课题  相似文献   

11.
We compute the ultra-high energy (UHE) neutrino fluxes from plausible accreting supermassive black holes closely linking to the 377 active galactic nuclei (AGNs). They have well-determined black hole masses collected from the literature. The neutrinos are produced via simple or modified URCA processes, even after the neutrino trapping, in superdense proto-matter medium. The resulting fluxes are ranging from: (1) (quark reactions)— $J^{q}_{\nu\varepsilon}/(\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1})\simeq8.29\times 10^{-16}$ to 3.18×10?4, with the average $\overline{J}^{q}_{\nu\varepsilon}\simeq5.53\times 10^{-10}\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ , where ε d ~10?12 is the opening parameter; (2) (pionic reactions)— $J^{\pi}_{\nu\varepsilon} \simeq0.112J^{q}_{\nu\varepsilon}$ , with the average $J^{\pi}_{\nu\varepsilon} \simeq3.66\times 10^{-11}\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ ; and (3) (modified URCA processes)— $J^{URCA}_{\nu\varepsilon}\simeq7.39\times10^{-11} J^{q}_{\nu\varepsilon}$ , with the average $\overline{J}^{URCA}_{\nu\varepsilon} \simeq2.41\times10^{-20} \varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ . We conclude that the AGNs are favored as promising pure neutrino sources, because the computed neutrino fluxes are highly beamed along the plane of accretion disk, peaked at high energies and collimated in smaller opening angle θε d .  相似文献   

12.
We present results based on the systematic analysis of Chandra archive data on the X-ray bright Abell Richness class-I type cluster Abell 1991 with an objective to investigate properties of the X-ray cavities hosted by this system. The unsharp masked image as well as 2-d β model subtracted residual image of Abell 1991 reveals a pair of X-ray cavities and a region of excess emission in the central ~12 kpc region. Both the cavities are of ellipsoidal shape and exhibit an order of magnitude deficiency in the X-ray surface brightness compared to that in the undisturbed regions. Spectral analysis of X-ray photons extracted from the cavities lead to the temperature values equal to $1.77_{-0.12}^{+0.19}~\mathrm{keV}$ for N-cavity and $1.53_{-0.06}^{+0.05}~\mathrm{keV}$ for S-cavity, while that for the excess X-ray emission region is found to be equal to $2.06_{-0.07}^{+0.12}~\mathrm{keV}$ . Radial temperature profile derived for Abell 1991 reveals a positive temperature gradient, reaching to a maximum of 2.63 keV at ~76 kpc and then declines in outward direction. 0.5–2.0 keV soft band image of the central 15′′ region of Abell 1991 reveals relatively cooler three different knot like features that are about 10′′ off the X-ray peak of the cluster. Total power of the cavities is found to be equal to ${\sim}8.64\times10^{43}~\mathrm{erg\,s}^{-1}$ , while the X-ray luminosity within the cooling radius is found to be $6.04 \times10^{43}~\mathrm{erg\,s}^{-1}$ , comparison of which imply that the mechanical energy released by the central AGN outburst is sufficient to balance the radative loss.  相似文献   

13.
The radio tracking apparatus of the New Horizons spacecraft, currently traveling to the Pluto system where its arrival is scheduled for July 2015, should be able to reach an accuracy of 10 m (range) and 0.1  $\text{ mm } \text{ s }^{-1}$ mm s ? 1 (range-rate) over distances up to 50 au. This should allow to effectively constrain the location of a putative trans-Plutonian massive object, dubbed Planet X (PX) hereafter, whose existence has recently been postulated for a variety of reasons connected with, e.g., the architecture of the Kuiper belt and the cometary flux from the Oort cloud. Traditional scenarios involve a rock-ice planetoid with $m_\mathrm{X}\approx 0.7\,m_{\oplus }$ m X ≈ 0.7 m ⊕ at some 100–200 au, or a Jovian body with $m_\mathrm{X}\lesssim 5\,m_\mathrm{J}$ m X ? 5 m J at about 10,000–20,000 au; as a result of our preliminary sensitivity analysis, they should be detectable by New Horizons since they would impact its range at a km level or so over a time span 6 years long. Conversely, range residuals statistically compatible with zero having an amplitude of 10 m would imply that PX, if it exists, could not be located at less than about 4,500 au ( $m_\mathrm{X}=0.7\,m_{\oplus }$ m X = 0.7 m ⊕ ) or 60,000 au ( $m_\mathrm{X}=5\,m_\mathrm{J}$ m X = 5 m J ), thus making a direct detection quite demanding with the present-day technologies. As a consequence, it would be appropriate to rename such a remote body as Thelisto. Also fundamental physics would benefit from this analysis since certain subtle effects predicted by MOND for the deep Newtonian regions of our Solar System are just equivalent to those of a distant pointlike mass.  相似文献   

14.
The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) gives us a chance to investigate the theoretical Neupert effect using the correlation between the thermal-energy derivative and the nonthermal energy, or the thermal energy and the integral nonthermal energy. Based on this concept, we analyze four M-class RHESSI flares on 13 November 2003, 4 November 2004, 3 and 25 August 2005. According to the evolution of the temperature [T], emission measure [EM], and thermal energy [E th], each event is divided into three phases during the nonthermal-energy input [ \frac dEnthdt\frac {\mathrm{d}E_{\mathrm{nth}}}{\mathrm{d}t} in the units of erg s−1]. Phase 1 is identified as the interval before the temperature maximum, while after the thermal-energy maximum is phase 3, between them is phase 2. We find that these four flares show the Neupert effect in phase 1, but not in phase 3. The Neupert effect still works well in the second phase, although the cooling becomes slightly important. We define the parameter μ in the relation of \fracdEthdt=m\fracdEnth(t)dt\frac{\mathrm {d}E_{\mathrm{th}}}{\mathrm{d}t}=\mu\frac{\mathrm{d}E_{\mathrm {nth}}(t)}{\mathrm{d}t} or Eth(t0)=mò0t0\fracdEnth(t)dt dtE_{\mathrm{th}}(t_{0})=\mu\int_{0}^{t_{0}}\frac{\mathrm{d}E_{\mathrm{nth}}(t)}{\mathrm{d}t}\,\mathrm{d}t when the cooling is ignored in phase 1. Considering the uncertainties in estimating the energy from the observations, it is not possible to precisely determine the fraction of the known energy in the nonthermal electrons transformed into the thermal energy of the hottest plasma observed by RHESSI. After a rough estimate of the flare volume and the assumption of the filling factor, we investigate the parameter μ in these four events. Its value ranges from 0.02 to 0.20, indicating that a small fraction (2% – 20%) of the nonthermal energy can be efficiently transformed into thermal energy, which is traced by the soft X-ray emission, and the bulk of the energy is lost possibly due to cooling.  相似文献   

15.
We explore self-similar hydrodynamic evolution of central voids embedded in an isothermal gas of spherical symmetry under the self-gravity. More specifically, we study voids expanding at constant radial speeds in an isothermal gas and construct all types of possible void solutions without or with shocks in surrounding envelopes. We examine properties of void boundaries and outer envelopes. Voids without shocks are all bounded by overdense shells and either inflows or outflows in the outer envelope may occur. These solutions, referred to as type void solutions, are further divided into subtypes and according to their characteristic behaviours across the sonic critical line (SCL). Void solutions with shocks in envelopes are referred to as type voids and can have both dense and quasi-smooth edges. Asymptotically, outflows, breezes, inflows, accretions and static outer envelopes may all surround such type voids. Both cases of constant and varying temperatures across isothermal shock fronts are analyzed; they are referred to as types and void shock solutions. We apply the ‘phase net matching procedure’ to construct various self-similar void solutions. We also present analysis on void generation mechanisms and describe several astrophysical applications. By including self-gravity, gas pressure and shocks, our isothermal self-similar void (ISSV) model is adaptable to various astrophysical systems such as planetary nebulae, hot bubbles and superbubbles in the interstellar medium as well as supernova remnants.   相似文献   

16.
The quintessence dark energy model with a kinetic coupling to gravity within the Palatini formalism is studied in this paper. Two different coupling forms: $\hat{R}\partial^{\mu}\phi\partial_{\mu}\phi$ and $\hat {R}_{\mu\nu}\partial^{\mu}\phi\partial^{\nu}\phi$ are analyzed, respectively. We find that both the model with the $\hat{R}\partial^{\mu}\phi\partial_{\mu}\phi$ coupling and the one with the $\hat{R}_{\mu\nu}\partial^{\mu}\phi\partial^{\nu}\phi$ coupling can realize the phantom divide line crossing from phantom to quintessence at late time for its effective equation-of-state. Furthermore, the former can behave like phantom. These features are different from those found in the $\hat {R}\phi^{2}$ coupling case.  相似文献   

17.
Pulsar emission     
  相似文献   

18.
A basic model for the formation of non-equilibrium rotational energy distributions is described for reactive, homo-polar diatomic molecules and ions in the interstellar medium. Kinetic models were constructed to calculate the rotational populations of $\mathrm{C}_{2}^{+}$ under the conditions it would experience in the diffuse interstellar medium. As the non-polar ion reacts with molecular hydrogen, but not atomic hydrogen, the thermalization of a hot nascent rotational population will be arrested by chemical reaction when the H2 density begins to be significant. Populations that deviate strongly from the local thermodynamic equilibrium are predicted for $\mathrm{C}_{2}^{+}$ in environments where it may be detectable. Consequences of this are discussed and a new optical spectrum is calculated.  相似文献   

19.
We investigate the radiative and conductive cooling in the solar flare observed by RHESSI on 2005 September 13. The radiative and conductive loss energies are estimated from the observations after the flare onset. Consistent with previous findings, the cooling is increased with time, especially the radiation becomes remarkable on the later phase of flare. According our method, about half of thermal energy is traced by RHESSI soft X-rays, while the other half is lost by the radiative (∼38%) and conductive (∼9%) cooling at end of the hard X-rays in this event. The nonthermal energy input of P nth (inferred from RHESSI hard X-ray spectrum) is not well correlated with the derivative of thermal energy of \fracdEthdt\frac{\mathrm{d}E_{\mathrm{th}}}{\mathrm{d}t} (required to radiate the RHESSI soft X-ray flux and spectrum) alone. However, after consideration the radiation and conduction, a high correlation is obtained between the derivative of total thermal energy ( \fracdEth+Erad+Econddt\frac{\mathrm{d}E_{\mathrm{th}}+E_{\mathrm{rad}}+E_{\mathrm{cond}}}{\mathrm{d}t}) and nonthermal energy input (P nth) from the flare start to end, indicating the relative importance of conductive and direct radiative losses during the solar flare development. Ignoring the uncertainties to estimate the energy from the observations, we find that about ∼12% fraction of the known energy is transferred into the thermal energy for the 2005 September 13 flare.  相似文献   

20.
We present a multi-wavelength correlation study of diffuse ultraviolet radiation using GALEX observations towards the Aquila Rift. Apart from airglow and zodiacal emissions, we find a diffuse background of \(1300\mbox{--} 3700~\mbox{ph}\,\mbox{cm}^{-2}\,\mbox{s}^{-1}\,\mbox{sr}^{-1}\,\mathring{\mathrm{A}}^{-1}\) in the far-ultraviolet (FUV, 1350–1750 Å) band and \(1300\mbox{--}2800~\mbox{ph}\,\mbox{cm}^{-2}\,\mbox{s}^{-1}\,\mbox{sr}^{-1}\,\mathring{\mathrm{A}}^{-1}\) in the near-ultraviolet (NUV, 1750–2850 Å) band. The observed diffuse UV emissions are saturated with total as well as neutral hydrogen column density in the region due to high optical depth in UV (\(\tau \), 0.91–23.38). Higher values of FUV/NUV ratio in the region, greater than the threshold value of 0.6, along with the positive correlation between the ratio and FUV intensity are due to excess emission in the FUV band which is absent in the NUV band. We estimated the excess emission to be in the range \(\sim 400\mbox{--} 2700~\mbox{ph}\,\mbox{cm}^{-2}\,\mbox{s}^{-1}\,\mbox{sr}^{-1}\,\mathring{\mathrm{A}}^{-1}\), plausibly due to H2 fluorescence, ion line emissions and two-photon continuum emissions from the region in the FUV band, which also shows saturation in optically thick regions with N(H2) as well as \(\mbox{H}\alpha \) emissions. Since N(H2) and \(\mbox{H}\alpha \) emissions spread all over the region, the excess emission from the field is composite in nature and a detailed spectroscopic analysis is needed to disentangle the contribution from individual components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号