首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We examined the effects of sieving with different mesh sizes on the efficiency of processing fossil chironomids from lake sediments for isotope analyses. Results obtained for three different sediments indicate that each of the studied sieve fractions (100–150, 150–200, 200–250, 250–300, >300 μm) contain a similar proportion of the overall mass of chironomid fossils in a sample. However, the sorting time needed to separate chironomids from other sieve residue is disproportionately large for smaller mesh sizes. Employing sieves with a 200-μm rather than the 100-μm mesh commonly used for standard palaeoecological analyses of fossil chironomids decreased processing time for a given mass of fossils by 30–58% in our study. For optimizing the efficiency of chironomid sample processing for stable isotope and radiocarbon analysis we therefore recommend a 200-μm mesh size sieve, although the sorting of all >100-μm fractions may be necessary in sediments with low chironomid abundances. Excluding certain small taxa from isotope analysis, may structurally bias isotope values of samples. Therefore, further studies on taxon-specific isotope analysis are required to quantify these effects.  相似文献   

2.
Studies addressing within-lake variability of fossil chironomid assemblages are very few, and all deal with hydrologically stable temperate lakes where the question of spatial integration mostly relates to the mixing of faunal assemblages associated with shallow, warm-water habitat and those associated with deeper, cold-water habitat. Here we study within-lake variability of surface-sediment chironomid assemblages in the fairly large (∼100–170 km2 since 1983) and shallow (Z max = 5–8 m) fluctuating tropical lake basin of Lake Naivasha, Kenya, and compare the patterns observed with those in two smaller adjacent basins, one similarly shallow (Lake Oloidien, 5.1–5.7 km2, 5–8 m), the other deep and stratified (Crescent Island Crater, 1.9 km2, 14–17 m). Chironomid assemblages were analysed in core-top samples and surface sediments along inshore to offshore transects, and how well individual samples represented the total (basin-wide mean) subfossil assemblage was considered both in terms of taxon richness and taxon percent composition. Within-lake variability of subfossil chironomid concentrations (with generally higher absolute values in nearshore samples) could be explained by effects of sediment winnowing and focusing, whereas between-lake variability reflected their relative susceptibility to wind-driven sediment disturbance or bottom anoxia. In all study lakes, but most significantly in lakes Naivasha and Oloidien, species distribution in the subfossil chironomid assemblages showed a strong nearshore to offshore gradient, which in these shallow lakes, reflects the dominant control of substrate and food quality on species distribution in the living community. Particularly in the larger basins, nearshore samples better represented the total lake assemblage than offshore samples, because the former always contained a component of mud-dwelling species whereas the latter often lacked a component of macrophyte-dwelling species. Our results show that although sedimentation dynamics in the shallow, wind-stressed Lake Naivasha is dominated by frequent resuspension and random sediment redistribution, the near- to offshore gradient in chironomid habitat remains imprinted on subfossil assemblages. We conclude that also in shallow fluctuating lakes, given sufficient size, incomplete pre-burial spatial integration of habitat-specific chironomid assemblages can be exploited for within-lake calibration of environmental gradients.  相似文献   

3.
Sieving samples for chironomid analysis with a 150 μm mesh was shown to greatly reduce sample preparation time, and use of only larger specimens did not affect chironomid-inferred salinities in African lakes. Here, we tested if this method is suitable for temperature reconstruction in colder lakes at higher latitudes. Removal of specimens <150 μm in two training sets, one from Canada and one from Sweden, had little impact on the performance statistics of the calibration models. Chironomid abundance, however, decreased greatly because more than half of the head capsules in assemblages were <150 μm. This had major impacts on the temperature reconstructions. Inferences were on average 2°C warmer with the modified models (all specimens >150 μm) than those obtained with the full model (all specimens >100 μm). General patterns of temperature change were also altered. For Lake 7 on Southampton Island, Canada, a cooling trend was reconstructed with the full Canadian model while the modified Canadian model yielded a warming trend. When only specimens >150 μm were used, two to three times more wet sediment was needed to obtain a sufficient number of head capsules. These results indicate that, in cold lakes (mean July/August air temperature ≤11°C), large proportions of head capsules are <150 μm, and sieving the samples in a 150 μm mesh leads to altered temperature reconstructions.  相似文献   

4.
Inferred temperatures from chironomids preserved in the varved sediment of Lake Silvaplana in the Eastern Swiss Alps were compared with instrumental data obtained from a meteorological station in Sils-Maria, on the shore of Lake Silvaplana, for the time interval 1850–2001. At near-annual resolution, the general patterns of chironomid-inferred temperature changes followed the meteorological record over the last ∼150 years (r Pearson = 0.65, P = 0.01) and 87% of the inferences had deviations from the instrumental data below the root-mean-square error of prediction (RMSEP). When the inferences were compared with a 2-year running mean in the meteorological data, 94% of the inferences had differences with the instrumental data below the RMSEP, indicating that more than half of the inaccurate inferences may have been due to errors in varve counting. Larger deviations from the instrumental data were also obtained from samples with low percentages of fossil taxa represented in the training set used for temperature reconstruction and/or assemblages with poor fit to temperature. Changes in total phosphorus (TP, as inferred by diatoms) and/or greater precipitation were possible factors affecting the accuracy of the temperature reconstruction. Although these factors might affect the quantitative estimates, obtaining >80% accurate temperature inferences suggests that chironomid analysis is a reliable tool for reconstructing mean July air temperature quantitatively over the last ∼150 years in Lake Silvaplana.  相似文献   

5.
This paper and a companion article present illustrated guides to the identification of sub-fossil chironomid larvae (Insecta: Diptera: Chironomidae) preserved in the sediments of low- and mid-elevation lakes in East Africa. They are based on analysis of surface-sediment death assemblages from 61 lakes located in the humid to semi-arid environments in equatorial East Africa (Uganda, Kenya, Tanzania), supplemented with similar surface-sediment samples from 12 lakes in the Horn of Africa (Ethiopia), and sub-recent core samples from six lakes in Kenya and two in Uganda. We analyzed about 11,000 specimens and identified 98.4% of these to species, species group, genus, or tribe level, depending on current -taxonomic knowledge of the various considered genera and the taxonomic resolution of preserved diagnostic features. We distinguished 90 different sub-fossil morphotypes, of which 16 are Tanypodinae, 19 are Orthocladiinae, and 55 are Chironominae. In this paper we focus on the subfamily Chironominae (tribes Chironomini and Tanytarsini). The diagnostic characters distinguishing these morphotypes from each other resemble differences at the species level in the better-known Holarctic fauna, hence we consider most of our morphotypes equivalent to morphological species or groups of closely related species. Given that core samples yielded only seven morphotypes not also found in the surface-sediment samples, the current inventory of 90 taxa likely represents the large majority of distinct sub-fossil chironomid larval types to be found in East African lakes, excluding the few very large Rift lakes, cold-water lakes above treeline, and special standing-water environments such as fens and bogs. Consistent use of a single set of morphological characters to identify both fossil and living chironomid larvae would ensure exchangeability of information between modem and paleoenvironmental studies on aquatic invertebrate communities in African lakes, and increase the relevance of paleoenvironmental reconstructions to water-quality evaluations aimed at sustainable management of scarce, fluctuating surface-water resources in tropical East Africa.  相似文献   

6.
The impact of recent natural and human-induced environmental change on chironomid faunas on Svalbard has been investigated. The modern chironomid fauna was studied from surface-sediment samples collected from 23 lakes in western Svalbard. A total of 18 taxa was found, of which three had not been recorded previously from Svalbard. The influence of water chemistry and physical variables on the distribution and abundance of the modern chironomid assemblages was investigated using correspondence analysis and multiple regression. The chironomid assemblages fall into four groups, which are primarily influenced by pH, nutrient concentrations, water temperature, and water depth. Sediment cores were taken from three lakes to investigate changes in chironomid assemblages over the last 700 years. At two of the sites there is evidence for a response to regional climatic change occurring about 200 years ago and may have been associated with the ‘Little Ice Age’. At the third site there is a response to local catchment changes, probably brought about, initially, by the establishment of a human settlement close to the lake 70 years ago, and subsequently, as a result of the abandonment of this settlement in 1988.  相似文献   

7.
This paper and a companion article present illustrated guides to the identification of sub-fossil chironomid larvae (Insecta: Diptera: Chironomidae) preserved in the sediments of low- and mid-elevation lakes in East Africa. They are based on analysis of surface-sediment death assemblages from 61 lakes located in the humid to semi-arid environments of equatorial East Africa (Uganda, Kenya, Tanzania), supplemented with similar surface-sediment samples from 12 lakes in the Horn of Africa (Ethiopia), and sub-recent core samples from six lakes in Kenya and two in Uganda. We analyzed about 11,000 specimens and identified 98.4% of these to species, species group, genus, or tribe level depending on current -taxonomic knowledge of the various genera considered and the taxonomic resolution of preserved diagnostic features. We distinguished 90 different sub-fossil morphotypes, of which 16 are Tanypodinae, 19 are Orthocladiinae, and 55 are Chironominae. Diagnostic characters distinguishing these morphotypes from each other resemble differences at the species level in the better-known Holarctic fauna, hence we consider most of our morphotypes equivalent to morphological species or groups of closely related species. In this paper we focus on the Tanypodinae and Orthocladiinae, with special attention to the high taxon richness among the Pentaneurini. Patterns of cephalic setation were found to facilitate identification of Tanypodinae both at the genus and species level, and contributed to improved taxonomic resolution in sub-fossil East African material. High taxon richness and numerical abundance of the Orthocladiinae in our study lakes indicates that a considerable number of African Orthocladiinae is adapted to warm standing-water environments.  相似文献   

8.
Floodplain lakes are rarely analysed for fossil chironomids and usually not incorporated in modern chironomid-climate calibration datasets because of the potential complex hydrological processes that could result from flooding of the lakes. In order to investigate this potential influence of river inundations on fossil chironomid assemblages, 13 regularly inundated lakes and 20 lakes isolated from riverine influence were sampled and their surface sediments analysed for subfossil chironomid assemblages. The physical and chemical settings of all lakes were similar, although the variation in the environmental variables was higher in the lakes isolated from riverine influence. Chironomid concentration and taxon richness show significant differences between the two classes of lakes, and the variation in these variables is best explained by loss-on-ignition of the sediments (LOI). Relative chironomid abundances show some differences between the two groups of lakes, with several chironomid taxa occurring preferentially in one of the two lake-types. The variability in chironomid assemblages is also best explained by LOI. Application of a chironomid-temperature inference model shows that both types of lakes reconstruct July air temperatures that are equal to, or slightly underestimating, the measured temperature of the region. We conclude that, although there are some differences between the chironomid assemblages of floodplain lakes and of isolated lakes, these differences do not have a major effect on chironomid-based temperature reconstruction.  相似文献   

9.
We sampled modern chironomids at multiple water depths in Lake Annecy, France, before reconstructing changes in chironomid assemblages at sub-decadal resolution in sediment cores spanning the last 150 years. The lake is a large, deep (zmax = 65 m), subalpine waterbody that has recently returned to an oligotrophic state. Comparison between the water-depth distributions of living chironomid larvae and subfossil head capsules (HC) along three surface-sediment transects indicated spatial differences in the influence of external forcings on HC deposition (e.g. tributary effects). The transect with the lowest littoral influence and the best-preserved, depth-specific chironomid community characteristics was used for paleolimnological reconstructions at various water depths. At the beginning of the twentieth century, oxygen-rich conditions prevailed in the lake, as inferred from M. contracta-type and Procladius sp. at deep-water sites (i.e. cores from 56 to 65 m) and Paracladius sp. and H. grimshawi-type in the core from 30 m depth. Over time, chironomid assemblages in cores from all three water depths converged toward the dominance of S. coracina-type, indicating enhanced hypoxia. The initial change in chironomid assemblages from the deep-water cores occurred in the 1930s, at the same time that an increase in lake trophic state is inferred from an increase in total organic carbon (TOC) concentration in the sediment. In the 1950s, an assemblage change in the core from 30 m water depth reflects the rapid expansion of the hypoxic layer into the shallower region of the lake. Lake Annecy recovered its oligotrophic state in the 1990s. Chironomid assemblages, however, still indicate hypoxic conditions, suggesting that modern chironomid assemblages in Lake Annecy are decoupled from the lake trophic state. Recent increases in both TOC and the hydrogen index indicate that changes in pelagic functioning have had a strong indirect influence on the composition of the chironomid assemblage. Finally, the dramatic decrease in HC accumulation rate over time suggests that hypoxic conditions are maintained through a feedback loop, wherein the accumulation of (un-consumed) organic matter and subsequent bacterial respiration prevent chironomid re-colonization. We recommend study of sediment cores from multiple water depths, as opposed to investigation of only a single core from the deepest part of the lake, to assess the details of past ecological changes in large deep lakes.  相似文献   

10.
Stable oxygen isotope measurements on fossil chironomid head capsules from lake sediments show that these chitinous remains can be used to reconstruct past lake water δ18O and, indirectly, past climate change. We examined the impact of chemical pretreatment procedures on the chemical and stable oxygen isotope composition, and morphology of chironomid cuticles. Use of alkali, acids, and sodium chlorite alters the chemical composition and the morphological structure of chironomid cuticles by selective removal of chitin or proteins. Gas chromatograms of pyrolyzates show that NaClO2 causes deproteination, whereas the combined use of HCl and HF results in partial chitin removal. Head capsules pretreated with KOH contained both chitin- and protein-derived moieties, although the concentration of protein was reduced, especially after KOH treatment at high concentration (28%) and temperature (100°C). Scanning electron microscopy confirmed that a proteinaceous matrix is still present in modern and fossil head capsules after KOH treatment. This matrix, however, is largely absent in head capsules pretreated with NaClO2. A change in the proportion of chitin and proteins in our samples was associated with differences in chironomid δ18O values. Our results suggest that deproteination results in a relative increase of chironomid δ18O, whereas removal of chitin leads to decreased δ18O values. We therefore discourage the use of acids or prolonged (≥1 h) exposure to hot alkali (70°C) prior to chironomid δ18O analysis. Chitin purification by sodium chlorite causes significant weight loss, which may preclude down-core chironomid δ18O measurements. Caution and standardization are required when pretreating samples for chironomid δ18O analysis to ensure reliable, comparable, and reproducible results.  相似文献   

11.
Kerosene, a grade mineral oil, is commonly used to extract beetles from sediment. Here, the use of kerosene to extract chironomid head capsules was tested on 10 samples from sediment of different lakes, with different organic matter content as measured by loss on ignition, and estimated ages. Our results revealed that this flotation tool is very effective in extracting either full or half chironomid head capsules. The mean extraction efficiency was 89.3 ± 8.0% with an estimated relative abundance error ranging from −1% to 1% for 46 of the 57 identified taxa. Larger chironomids (400–500 μm width), which are often full of sediment particles, have the highest relative abundance error, with a maximum of 4.3% for Corynocera oliveri-type. A canonical correspondence analysis showed that, despite this small bias, samples retrieved with the kerosene flotation do not differ from the whole sample assemblages. These results give us confidence in the use of this flotation technique for chironomid sample preparation.  相似文献   

12.
Subfossil chironomids in the surface sediments of five small and shallow Norwegian lakes were studied to determine the within-lake variability of fossil assemblages, changes in chironomid assemblages with respect to water depth, and the representativeness of single samples for the entire chironomid fauna of a lake. In each of the lakes studied, six short sediment cores in the deepest part of the lake basin and two littoral to deep-water transects of seven cores each were obtained using a gravity corer, and chironomid assemblages in the uppermost centimetre of sediment were analysed. In three of the five lakes, chironomid concentrations were highest in the deepest parts of the lake basins. In the remaining two lakes, concentrations were either very variable or, in a lake with clear indications of anoxia in the bottom waters, highest at intermediate water depth. Chironomid assemblages tended to be dominated by the same taxa within a lake basin. However, in each of the lakes studied there was a clear and statistically significant shift in chironomid assemblages with respect to water depth. The organic content of the sediments was statistically significant in explaining the variance in the chironomid assemblages only in lakes where organic matter content was closely related to water depth. Only a few chironomid taxa were restricted to the shallowest parts of the lake basins, whereas a number of chironomids were found exclusively in deep-water sediments. Chironomid head capsules of running water taxa and simuliid remains were generally found in sediments close to lake tributaries and in the deepest parts of the lake basins. Although any individual sample contained only a part of the total subfossil chironomid fauna (21–63% of the total taxa per lake), chironomids dominant in any section of the study lakes were found in most of the transect and mid-lake samples.  相似文献   

13.
Paleolimnological information is often extracted from diatom records using weighted averaging calibration and regression techniques. Larger calibration sample sets yield better inferences because they better characterize the environmental characteristics and species assemblages of the sample region. To optimize inferred information from fossil assemblages, however, it is worth knowing if fewer calibration samples can be used. Furthermore, confidence in environmental reconstructions is greater if we consider the relative importance of (A) similarity between fossil and calibration assemblages and (B) how well fossil taxa respond to the environmental variable of interest. We examine these issues using ~200-year sediment profiles from four Minnesota lakes and a 145-lake surface sediment training set calibrated for total phosphorus (TP). Training set sample sizes ranging from 10 to 145 were created through random sample selection, and models based on these training sets were used to calculate diatom-inferred (DI) TP data from fossil samples. Relationships between DI-TP variability and sample size were used to determine the minimum sample size needed to optimize the model for paleo-reconstruction. Similarly, similarities between fossil and modern assemblages were calculated for each size training set. Finally, fossil and modern assemblages were compared to determine whether older fossil samples had poorer similarity with modern analogs. More than 50–80 samples, depending on lake, were needed to stabilize variability in DI-TP results, and >110 training set samples were needed to minimize modern-fossil assemblage dissimilarities. Dissimilarities appeared to increase with sample age, but only one of the four studied cores displayed a significant trend. We have two recommendations for future studies: (1) be cautious when dealing with smaller training sets, especially if they are used to interpret older fossil assemblages and (2) understand how well fossil taxa are attuned to the variable of interest, as it is critical to evaluating the quality of the diatom-inferred data.  相似文献   

14.
We used a series of experiments to determine whether stable carbon isotope analysis of modern and fossil larval head capsules of chironomids allowed identification of their dietary carbon source. Our main focus was to assess whether carbon from naturally 13C-depleted methane-oxidizing bacteria (MOB) can be traced in chironomid cuticles using stable carbon isotope analysis. We first showed that a minimum sample weight of ~20 μg was required for our equipment to determine head capsule δ13C with a standard deviation of 0.5‰. Such a small minimum sample weight allows taxon-specific δ13C analyses at a precision sufficient to differentiate whether head capsules consist mainly of carbon derived from MOB or from other food sources commonly encountered in lake ecosystems. We then tested the effect of different chemical pre-treatments that are commonly used for sediment processing on δ13C measurements on head capsules. Processing with 10% KOH (2 h), 10% HCl (2 h), or 40% HF (18 h) showed no detectable effect on δ13C, whereas a combination of boiling, accelerated solvent extraction and heavy chemical oxidation resulted in a small (0.2‰) but statistically significant decrease in δ13C values. Using culturing experiments with MOB grown on 13C-labelled methane, we demonstrated that methanogenic carbon is transferred not only into the larval tissue, but also into chironomid head capsules. Taxon-specific δ13C of fossil chironomid head capsules from different lake sediments was analyzed. δ13C of head capsules generally ranged from −28 to −25.8‰, but in some instances we observed δ13C values as low as −36.9 to −31.5‰, suggesting that carbon from MOB is traceable in fossil and subfossil chironomid remains. We demonstrate that stable carbon isotope analyses of fossil chironomid head capsules can give insights into dietary links and carbon cycling in benthic food webs in the past and that the method has the potential to reconstruct the importance of MOB in the palaeo-diet of chironomid larvae and, indirectly, to infer past changes in methane flux at the sediment water interface in lakes.  相似文献   

15.
Testate amoebae are informative about palaeoecological conditions, but the methods generally used for their analyses in lake sediments differ from those used for their analyses in peats, making comparisons difficult. This study examines how filter mesh size and total number of individuals counted affect species richness, Shannon diversity, equitability, density and assemblage structure. We analysed the complete testate amoeba contents of six sediment samples from Lake Lautrey, France. The abundance of testate amoebae was high (1,403–10,870 shells cm−3), and species smaller than 63 μm in both length and width represented up to 89% of total abundance and 43% of species richness. A simulation showed that using 47- or 63-μm mesh-size filters reduced inter-sample differences and changed the patterns of abundance, species richness and assemblage structure, causing loss of information and leading to potential erroneous palaeoecological interpretation. Rarefaction analyses suggest that although 170 shells are sufficient to assess the general structure of assemblages, such small sample sizes can underestimate species richness by overlooking taxa with relative abundances <4%. Total counts of 400 shells yield better estimates of assemblage structure and recover at least 50% of total species richness, although species with absolute frequencies below 2% may still be missed. Higher counts are required to obtain reliable estimates of species richness and assemblage structure in samples that have high testate amoeba densities but are dominated by a few small taxa. Further studies should determine the bioindicator value and functional roles of small and/or rare species in lakes and thus to what extent overlooking them affects palaeoecological interpretations.  相似文献   

16.
A study on the taphonomy of Cladocera was carried out in a small (9 ha), oligotrophic mountain loch, Loch Coire Fionnaraich (LCFR) in northwest Scotland. Four approaches were used. First, the fossil assemblage of Cladocera in the core-top sample taken from the deepest basin (14 m) of the loch were compared with the fossil assemblages of Cladocera in surface sediments along eight depth transects with samples taken at 2, 5, 8 and 11 m, respectively. The results of the deposition of remains of individual Cladocera and of the PCA ordination showed that littoral Cladocera were dominant in the 2 m-depth samples, while the planktonic Cladocera dominated the deeper water (8, 11 m and core-top) samples. Second, the fossil assemblages of Cladocera in the core-top sample were compared with the assemblages in a sediment trap sample. The core-top sample showed a better representation of the cladoceran taxa present in the loch than the trap sample, but rare taxa were missing in the core sample. Third, the fossil assemblages of Cladocera in the core sample were compared with the contemporary assemblages in the source samples derived from seasonal sampling across all habitats (macrophyte, sand, boulder) over 2 years. Only a small proportion of Cladocera in the source samples was represented by the fossil assemblages in the core sample. Finally, ‘integrated’ approach samples (spatial, trap, source and core together) were compared using PCA. The Cladocera in the core-top sample were closely related to the trap and surface sediment samples, but weakly related to the source samples. The overall results indicate that biases may occur whilst reconstructing the past environmental change based on the fossil assemblages of Cladocera in the core sample taken from the deepest basin of the lake.  相似文献   

17.
A study on two closed salt lake basins, Tal Chapar and Parihara in the eastern margin of the Thar Desert, Rajasthan, was carried out to unravel late Quaternary geomorphic evolution of these saline lakes. Both lakes are elliptical in shape bordered by stabilised dunes, and are oriented in a NE-SW direction, i.e., in the direction of the prevailing summer monsoon wind. Both lakes have been formed in the wind-shadow zones of isolated hills of Precambrian quartzite. Our study indicates that the late Quaternary sediments in the lakes began with the cyclic deposition of laminated fine silt layers (0.5 m thick), rich in organic matter, alternating with ripple cross-bedded sand layers (each ∼1.5–2 m thick). Sand layers that are moderately sorted are separated by laminated silt-clay layers with gypsum/calcite and this unit occurs in the upper most 4 m sequence in deeper sections. The presence of gypsum crystals within the laminated sediments suggests a high concentration of Ca in the inflowing water. At Parihara Lake the organic carbon-rich sediments at 95 cm depth was dated to 7,375 + 155/−150 year BP. At Tal Chapar radiocarbon dates of 7,190 + 155/−150 and 9,903 + 360/−350 was obtained from the sediments rich in organic carbon occurring at a depth of 1.35 m and 1.80 m, respectively. The study reveals strong hydrologic oscillations during the past ∼14,000 year BP (13,090 + 310/−300 year BP). Quaternary geomorphic processes, especially the strong aeolian processes during dry climatic phases, played a major role in the formation of the lake basins, as well as the fringing linear dunes. Geochemical and mineralogical analyses of the lacustrine sediments, supported by radiocarbon dates indicate the existence of an ephemeral lake earlier than ∼13,000 year BP as sediments began to be deposited in a lacustrine environment implying sustained runoff in the catchments. A freshwater lake formed between 9,000 year and 7,000 year BP. The lake dried periodically and this strong fluctuating regime continued until about ∼7,000 year BP. Mid-Holocene was wet and this was possibly due to higher winter rains A saline lake existed between 6,000 year and 1,300 year BP and finally present day semi arid conditions set in since 1,200 year BP. Remnants of a habitation site (hearth and charred bones) on stabilised dune at Devani near Tal Chapar were dated to 240 ± 120 year, while that at Gopalpura was dated to 335 ± 90 year. These historical sites on stabilised dunes were, according to the local accounts, settlements of people who used the lake brine for manufacturing salt.  相似文献   

18.
Surface lake sediment was recovered from 57 lakes along an elevation gradient in the central, eastern Sierra Nevada of California. The surface sediment was analysed for subfossil chironomid remains in order to assess the modern distribution of chironomids in the region. The lakes sampled for the calibration dataset were between 2.0 and 40.0 m in depth, spanned an altitudinal gradient of 1360 m and a surface water temperature gradient of approximately 14 °C. Redundancy analysis (RDA) identified that five of the measured environmental variables – surface water temperature, elevation, depth, strontium, particulate organic carbon – accounted for a statistically significant amount of the variance in chironomid community composition. Quantitative transfer functions, based on weighted-averaging (WA), partial least squares (PLS) and weighted-averaging partial least squares (WA-PLS), were developed to estimate surface water temperature from the chironomid assemblages. The best model was a WA model with classical deshrinking, which had a relatively high coefficient of determination (r2 = 0.73), low root mean square error of prediction (RMSEP = 1.2 °C) and a low maximum bias (0.90 °C). The results from this study suggest that robust quantitative estimates of past surface water temperature can be derived from the application of these models to fossil chironomid assemblages preserved in late-Quaternary lake sediment in this region.  相似文献   

19.
A temperature reconstruction using chironomids was attempted at Egelsee, Switzerland, a site where pollen and macrofossil records showed a correspondence between vegetation and climatic changes inferred by other proxies in Europe. The general pattern of temperature changes inferred from chironomids during the Late Glacial [i.e. cold temperatures between ca. 16,500 and 14,800 cal BP, close to present-day temperature between 15,000 and 13,000 cal BP and colder temperatures during the Younger Dryas (YD)], and the major temperature changes of the Holocene (i.e. the Younger Dryas–Holocene transition and the Late Holocene cooling trend) at Egelsee, were mirrored in other European climate reconstructions using various proxies. However, the amplitude of temperature changes during the YD was smaller than reconstructed by other proxies at various sites, and the 8,200 years BP event was not apparent. These differences between records were probably due to the dominance of Corynocera ambigua, with percentages reaching 60% in parts of the Egelsee sequence. This taxon was not present in any of the 103 lakes used for the transfer function and its absence may have yielded less accurate inferences. Its presence in samples only associated with cold inferences at Egelsee suggests that this taxon is a cold indicator. However, it was also found in warm Danish lakes and the factors that determine the presence of C. ambigua remain unexplained. Most samples had a poor fit to temperature and instead, dissolved organic carbon seemed to be a factor influencing the chironomid assemblages during the Holocene. These results illustrate the need to better understand the ecology of chironomids and to disentangle the various factors that affect chironomid communities through time. Ultimately, such information will lead to more accurate temperature reconstructions.  相似文献   

20.
Fossil assemblages of chironomid larvae (non-biting midges) preserved in lake sediments are well-established paleothermometers in north-temperate and boreal regions, but their potential for temperature reconstruction in tropical regions has never before been assessed. In this study, we surveyed sub-fossil chironomid assemblages in the surface sediments of 65 lakes and permanent pools in southwestern Uganda (including the Rwenzori Mountains) and central and southern Kenya (including Mount Kenya) to document the modern distribution of African chironomid communities along the regional temperature gradient covered by lakes situated between 489 and 4,575 m above sea level (a.s.l). We then combined these faunal data with linked Surface-Water Temperature (SWTemp: range 2.1–28.1°C) and Mean Annual Air Temperature (MATemp: range 1.1–24.9°C) data to develop inference models for quantitative paleotemperature reconstruction. Here we compare and discuss the performance of models based on different numerical techniques [weighted-averaging (WA), weighted-averaging partial-least-squares (WA-PLS) and a weighted modern analogue technique (WMAT)], and on subsets of lakes with varying gradient lengths of temperature and other environmental variables. All inference models calibrated against MATemp have a high coefficient of determination ( r\textjack2 r_{\text{jack}}^{2}  = 0.81–0.97), low maximum bias (0.84–2.59°C), and low root-mean-squared error of prediction (RMSEP = 0.61–1.50°C). The statistical power of SWTemp models is generally weaker ( r\textjack2 r_{\text{jack}}^{2}  = 0.77–0.95; maximum bias 1.55–3.73°C; RMSEP = 1.39–1.98°C), likely because the surface-water temperature data are spot measurements failing to catch significant daily and seasonal variation. Models based on calibration over the full temperature gradient suffer slightly from the limited number of study sites at intermediate elevation (2,000–3,000 m), and from the presence of morphologically indistinguishable but ecologically distinct taxa. Calibration confined to high-elevation sites (>3,000 m) has poorer error statistics, but is less susceptible to biogeographical and taxonomic complexities. Our results compare favourably with chironomid-based temperature inferences in temperate regions, indicating that chironomid-based temperature reconstruction in tropical Africa can be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号