首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
邓春楠  葛彤  吴超 《海洋工程》2013,31(6):53-58
水下环境复杂多变,由于水流的不可预知性和多变性,潜器的水动力系数往往无法准确获取,使得依赖这种参数的潜器运动控制算法的应用受到了很大的局限。为了解决控制器对模型参数的依赖,设计了一种基于高阶滑模控制算法的模型无关控制器,并通过设置合理的过渡过程,解决了这种控制算法依赖初值的弊端。仿真结果表明,位置和姿态的控制能够快速的收敛,误差很小并且不依赖于初始条件,控制器需调节参数很少,并且算法简单,适用于工程的实际需要。  相似文献   

2.
Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feedback from the axial water velocity in the propeller disc. In this paper, an output feedback controller is derived, reconstructing the axial flow velocity from vehicle speed measurements, using a three-state model of propeller shaft speed, forward (surge) speed of the vehicle, and the axial flow velocity. Lyapunov stability theory is used to prove that a nonlinear observer combined with an output feedback integral controller provide exponential stability. The output feedback controller compensates for variations in thrust due to time variations in advance speed. This is a major problem when applying conventional vehicle-propeller control systems. The proposed controller is simulated for an underwater vehicle equipped with a single propeller. The simulations demonstrate that the axial water velocity can be estimated with good accuracy. In addition, the output feedback integral controller shows superior performance and robustness compared to a conventional shaft speed controller  相似文献   

3.
The Naval Postgraduate School (NPS) is constructing a small autonomous underwater vehicle (AUV) with an onboard mission control computer. The mission controller software for this vehicle is a knowledge-based artificial intelligence (AI) system requiring thorough analysis and testing before the AUV is operational. The manner in which rapid prototyping of this software has been demonstrated by developing a controller code on a LISP machine and using an Ethernet link with a graphics workstation to simulate the controller's environment is discussed. The development of a testing simulator using a knowledge engineering environment (KEE) expert system shell that examines AUV controller subsystems and vehicle models before integrating them with the full AUV for its test environment missions is discussed. This AUV simulator utilizes an interactive mission planning control console and is fully autonomous once initial parameters are selected  相似文献   

4.
This paper proposes a saturated tracking controller for underactuated autonomous marine surface vehicles with limited torque. First, a second-order open-loop error dynamic model is developed in the actuated degrees of freedom to simplify the design procedure. Then, a saturated tracking controller is designed by utilizing generalized saturation functions to reduce the risk of actuator saturation. This, in turn, improves the transient performance of the control system. A multi-layer neural network and adaptive robust control techniques are also employed to preserve the controller robustness against unmodeled dynamics and environmental disturbances induced by waves and ocean currents. A Lyapunov stability analysis shows that all signals of the closed-loop system are bounded and tracking errors are semi-globally uniformly ultimately bounded. Finally, simulation results are provided for a hovercraft vehicle to illustrate the effectiveness of the proposed controller as a qualified candidate for real implementations in offshore applications.  相似文献   

5.
Kihun  Hang S.   《Ocean Engineering》2007,34(8-9):1138-1150
This paper describes the estimation of hydrodynamic coefficients and the control algorithm based on a nonlinear mathematical modeling for a test bed autonomous underwater vehicle (AUV) named by SNUUV I (Seoul National University Underwater Vehicle I).A six degree of freedom mathematical model for SNUUV I is derived with linear and nonlinear hydrodynamic coefficients, which are estimated with the help of a potential code and also the system identification using multi-variable regression.A navigation algorithm is developed using three ranging sonars, pressure sensor and two inclinometers keeping towing tank applications in mind. Based on the mathematical model, a simulation program using a model-based control algorithm is designed for heading control and wall following control of SNUUV I.It is demonstrated numerically that the navigation system together with controller guides the vehicle to follow the desired heading and path with a sufficient accuracy. Therefore the model-based control algorithm can be designed efficiently using the system identification method based on vehicle motion experiments with the appropriate navigation system.  相似文献   

6.
A fuzzy logic controller for ship path control in restricted waters is developed and evaluated. The controller uses inputs of heading, yaw rate, and lateral offset from the nominal track to produce a commanded rudder angle. Input variable fuzzification, fuzzy associative memory rules, and output set defuzzification are described. Two maneuvering situations are evaluated: track keeping along a specified path where linearized regulator control is valid; and larger maneuvers onto a specified path where nonlinear modeling and control are required. For the track keeping assessment, the controller is benchmarked against a conventional linear quadratic Gaussian (LQG) optimal controller and Kalman filter control system. The Kalman filter is used to produce the input state variable estimates for the fuzzy controller as well. An initial startup transient and regulator control performance with an external hydrodynamic disturbance are evaluated using linear model simulations of a crude oil tanker. A fully nonlinear maneuvering model for a smaller product tanker is used to assess the larger maneuvers  相似文献   

7.
This paper presents a discrete-time quasi-sliding mode controller for an autonomous underwater vehicle (AUV) in the presence of parameter uncertainties and a long sampling interval. The AUV, named VORAM, is used as a model for the verification of the proposed control algorithm. Simulations of depth control and contouring control are performed for a numerical model of the AUV with full nonlinear equations of motion to verify the effectiveness of the proposed control schemes when the vehicle has a long sampling interval. By using the discrete-time quasi-sliding mode control law, experiments on depth control of the AUV are performed in a towing tank. The controller makes the system stable in the presence of system uncertainties and even external disturbances without any observer nor any predictor producing high rate estimates of vehicle states. As the sampling interval becomes large, the effectiveness of the proposed control law is more prominent when compared with the conventional sliding mode controller  相似文献   

8.
This paper is concerned with the robust control synthesis of autonomous underwater vehicle(AUV) for general path following maneuvers.First,we present maneuvering kinematics and vehicle dynamics in a unified framework.Based on H∞ loop-shaping procedure,the 2-DOF autopilot controller has been presented to enhance stability and path tracking.By use of model reduction,the high-order control system is reduced to one with reasonable order,and further the scaled low-order controller has been analyzed in both the frequency and the time domains.Finally,it is shown that the autopilot control system provides robust performance and stability against prescribed levels of uncertainty.  相似文献   

9.
The present paper introduces a three-dimensional guidance system developed for a miniature Autonomous Underwater Vehicle(AUV). The guidance system determines the best trajectory for the vehicle based on target behavior and vehicle capabilities. The dynamic model of this novel AUV is derived based on its special characteristics such as the horizontal posture and the independent diving mechanism. To design the guidance strategy, the main idea is to select the desired depth, presumed proportional to the horizontal distance of the AUV and the target. By connecting the two with a straight line, this strategy helps the AUV move in a trajectory sufficiently close to this line. The adjacency of the trajectory to the line leads to reasonably short travelling distances and avoids unsafe areas. Autopilots are designed using sliding mode controller. Two different engagement geometries are considered to evaluate the strategy's performance: stationary target and moving target. The simulation results show that the strategy can provide sufficiently fast and smooth trajectories in both target situations.  相似文献   

10.
The topic of this paper is the modeling, parameter identification, and analysis of the heave and pitch dynamics in a remote operated vehicle (ROV). The work presented here is motivated by an unusual dynamic behavior experienced on the Gaymarine Pluto-Gigas ROV: if the depth is regulated using a proportional controller, the ROV exhibits permanent oscillations at high forward speed. The purpose of this paper is to gain insight into ROV dynamics, so as to explain the reason for the oscillations. To this end, a dynamic gray-box model is developed and its uncertain parameters are identified from real data. The analysis of such a model shows that the nonlinear dynamics of the ROV contains a limit cycle. This discovery explains the observed oscillatory behavior. An interesting aspect of this limit-cycling behavior is that it is not due (as usual) to saturation effects of the actuators, but is intrinsic in the ROV dynamics.  相似文献   

11.
基于模糊神经网络理论对水下拖曳体进行深度轨迹控制   总被引:2,自引:0,他引:2  
以华南理工大学开发的自主稳定可控制水下拖曳体为研究对象,首先通过水下拖曳体在拖曳水池样机中的试验取得试验数据后作为训练样本,采用LM BP算法,建立基于神经网络理论构建的可控制水下拖曳体轨迹与姿态水动力的数值模型。在此基础上设计了一个控制系统,它主要由两部分组成:基于遗传算法的神经网络辨识器和基于模拟退火改进的遗传算法的模糊神经网络控制器。以满足预先设定的拖曳体水下监测轨迹要求为控制依据,由控制系统确定为达到所要求的运动轨迹而应采用的迫沉水翼转角,以此作为输入参数,通过LM BP神经网络模型的模拟计算预报在这一操纵动作控制下的拖曳体所表现的轨迹与姿态特征。数值模拟计算结果表明:该系统的设计达到了所要求的目的;借助这一系统,可以有效地实现对拖曳体的深度轨迹控制。  相似文献   

12.
Robust Nonlinear Path-Following Control of an AUV   总被引:3,自引:0,他引:3  
This paper develops a robust nonlinear controller that asymptotically drives the dynamic model of an autonomous underwater vehicle (AUV) onto a predefined path at a constant forward speed. A kinematic controller is first derived, and extended to cope with vehicle dynamics by resorting to backstepping and Lyapunov-based techniques. Robustness to vehicle parameter uncertainty is addressed by incorporating a hybrid parameter adaptation scheme. The resulting nonlinear adaptive control system is formally shown and it yields asymptotic convergence of the vehicle to the path. Simulations illustrate the performance of the derived controller .   相似文献   

13.
水下潜器通常采用捷联惯性导航和多普勒计程仪组合导航系统。为提高惯性导航系统的导航精度,保障水下潜器顺利作业,文章以高性能惯导系统PHINS为例,介绍其安装和初始对准技术。PHINS在安装时须计算其与船体的偏差以及与船体和外部传感器的力臂,尤其与多普勒计程仪组合时应执行传感器自动对准程序;PHINS的初始对准是其精确导航的前提,可在海上或静态时进行;惯导系统的安装误差和初始对准精度对于其导航精度具有决定性的影响。  相似文献   

14.
This work demonstrates the feasibility of applying a sliding mode fuzzy controller to motion control and line of sight guidance of an autonomous underwater vehicle. The design method of the sliding mode fuzzy controller offers a systematical means of constructing a set of shrinking-span and dilating-span membership functions for the controller. Stability and robustness of the control system are guaranteed by properly selecting the shrinking and dilating factors of the fuzzy membership functions. Control parameters selected for a testbed vehicle, AUV-HM1, are evaluated through tank and field experiments. Experimental results indicate the effectiveness of the proposed controller in dealing with model uncertainties, non-linearities of the vehicle dynamics, and environmental disturbances caused by ocean currents and waves.  相似文献   

15.
Fuzzy logic is a viable control strategy for depth control of undersea vehicles. It has been applied to the low speed ballast control problem for ARPA's Unmanned Undersea Vehicle (UUV), designed and built by Draper Laboratory. A fuzzy logic controller has been designed and tested in simulation that issues pump commands to effect changes in the UUV depth, while also regulating the pitch angle of the vehicle. The fuzzy logic controller performs comparably to the current ballast control design. The controller is also less sensitive to variations in the vehicle configuration and dynamics. The benefits of the fuzzy logic approach for this problem are: 1) simplicity, by not requiring a dynamic model, thus allowing for rapid development of a working design and less sensitivity to plant variations; 2) better matching of the control strategy and complexity with performance objectives and limitations; 3) the insight provided and easy modification of the controller, through the use of linguistic rules  相似文献   

16.
田海涛  葛彤 《海洋工程》2004,22(4):80-85
论述了纵倾控制律设计及自航模试验。首先选择一系列深度,对同一深度采用频域校正法单独设计控制律,使之对不同的速度和漂角具有足够的稳态精度和抗干扰性,这些控制律被集成统一为纵倾控制器,并根据潜深变化进行切换,对于其它深度采用同样的方法设计。控制器首先通过计算机仿真,然后进行自航模试验验证。设计的纵倾控制系统同时在其他试验项目中(水下管线跟踪和动力定位)发挥了重要的作用。  相似文献   

17.
This paper introduces an underwater docking procedure for the test-bed autonomous underwater vehicle (AUV) platform called ISiMI using one charge-coupled device (CCD) camera. The AUV is optically guided by lights mounted around the entrance of a docking station and a vision system consisting of a CCD camera and a frame grabber in the AUV. This paper presents an image processing procedure to identify the dock by discriminating between light images, and proposes a final approach algorithm based on the vision guidance. A signal processing technique to remove noise on the defused grabbed light images is introduced, and a two-stage final approach for stable docking at the terminal instant is suggested. A vision-guidance controller was designed with conventional PID controllers for the vertical plane and the horizontal plane. Experiments were conducted to demonstrate the effectiveness of the vision-guided docking system of the AUV.  相似文献   

18.
基于分布式控制力矩陀螺的水下航行器轨迹跟踪控制   总被引:2,自引:0,他引:2  
基于控制力矩陀螺群(CMGs)的水下航行器具有低速或零速机动的能力。采用基于分布式CMGs的水下航行器方案,并研究其水平面的轨迹跟踪控制问题。通过全局微分同胚变换将非完全对称的动力学模型解耦成标准欠驱动控制模型,并根据简化的模型构建其轨迹跟踪的误差动力学模型,将轨迹跟踪控制问题转化为误差模型镇定问题。基于一种分流神经元模型和反步法设计了系统的轨迹跟踪控制律,该控制器不需要对任何虚拟控制输入进行求导计算,且能确保跟踪误差的最终一致有界性。仿真结果表明该控制器能够实现在不依赖动力学参数先验知识的情况下对光滑轨迹的有效跟踪。  相似文献   

19.
20.
Underwater glider is an autonomous underwater vehicle that glides by controlling their buoyancy and attitude using internal actuators. By changing the vehicle's buoyancy intermittently, vertical motion can be achieved. Characteristics of glider motion include upward and downward movement in a saw tooth pattern, turning and gliding in a vertical spiral motion and gliding without using thrusters or propellers. This paper presents the modelling and identification on net buoyancy, depth and pitching angle of an underwater glider system. A ballast tank subsystem is considered appropriate for the identification process since it is the main parameter for the motion control. By selecting the ballast rate as the input, three aspects of the dynamics of a glider can be observed: buoyancy, depth of the glider and pitching angle. The MATLAB System Identification ToolboxTM is used to obtain a mathematical model of the glider ballast-buoyancy, ballast-depth and ballast-pitching angle conditioning system. The best three parametric estimation models are chosen, and the results of the comparison between simulated and estimated outputs are presented. The information obtained from the modelling and identification approaches are used for USM's Underwater Glider Prototype controller design. The information observed during this procedure are utilised for optimisation, stability, reliability and robustness analysis of the underwater glider.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号