首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Object 2003 EH1 was recently identified as the parent body of the Quadrantid meteor shower. The origin of this body is still uncertain. We use data on 51 Quadrantid meteors obtained from double-station video observations as an insight on the parent body properties. A data analysis shows that the Quadrantids are similar to other meteor showers of cometary origin in some aspects, but in others to Geminid meteors. Quadrantid meteoroids have partially lost volatile component, but are not depleted to the same extent as Geminid meteoroids. In consideration of the orbital history of 2003 EH1, these results lead us to the conclusion that the parent body is a dormant comet.  相似文献   

2.
Comet 15P/Finlay is unusual in that, contrary to ab initio expectations, it demonstrates no apparent linkage to any known meteor shower. Using data contained within the Electronic Atlas of Dynamical Evolutions of Short-Period Comets, we evaluate theoretical shower radiants for Comet 15P/Finlay, but find no evidence to link it to any meteoric anomalies in recorded antiquity. This result, however, must be tempered by the fact that any Comet 15P/Finlay-derived meteoroids will have a low, 16 km s−1, encounter velocity with Earth's atmosphere. Typically, therefore, one would expect mostly faint meteors to be produced during an encounter with a Comet 15P/Finlay-derived meteoroid stream. We have conducted a D -criterion survey of meteoroid orbits derived from three southern hemisphere meteor radar surveys conducted during the 1960s, and again we find no evidence for any Comet 15P/Finlay-related activity. Numerical calculations following the orbital evolution of hypothetical meteoroids ejected from the comet, at each perihelion epoch since 1886, indicate that Jovian perturbations effectively 'drive' the meteoroids to orbits with nodal points beyond the Earth's orbit. The numerical calculations indicate that, even if Comet 15P/Finlay had been a copious emitter of meteoroids during the past 100 years, virtually none of them would have evolved into orbits capable of being sampled by the Earth. There are good observational data, however, to suggest that Comet 15P/Finlay is becoming a transitional comet–asteroid object, and that it has probably not been an efficient producer of meteoroids during the past several hundreds of years.  相似文献   

3.
Differential evolution of the orbits of near-Earth asteroid (NEA) 2003 EH1 and comet 96P/Machholz 1 under perturbing action of planets was investigated for the time interval of 28000 years. The similarity of the orbits was analyzed with the Southworth–Hawkins criterion D SH. It has been shown that both the comet and the asteroid can be fragments of a nucleus of the same larger comet being a progenitor of the Quadrantid complex. A break-up of the parent comet apparently occurred approximately 9500 years ago. NEA 2003 EH1 is actually a dormant fragment of a nucleus of the parent comet. It was concluded that comet 96P/Machholz 1, NEA (186256) 2003 EH1 of the Amore group, and the Quadrantid meteorite swarm form a family of related objects.  相似文献   

4.
Paul Wiegert  Peter Brown 《Icarus》2005,179(1):139-157
The Quadrantids, one of the more active of the annual meteor showers, is unusual for its strong but brief maximum within a broader background of activity. It is also notable for its recent onset, the first observation having been likely made in 1835. Until recently, no parent with a similar orbit had been observed and previous investigators concluded that the stream was quite old, with the stream's recent appearance and sharp peak attributed to a fortuitous convergence of meteoroid orbits. The discovery of the near-Earth Asteroid 2003 EH1 on an orbit very similar to that of the Quadrantids has probably unveiled the parent body of this stream [Jenniskens and Marsden, 2003. 2003 EH1 and the Quadrantids. IAU Circ. 8252]. From simulations of the orbit of this body and of meteoroids released from it at different intervals in the past, we find that both the sharp peak and recent appearance of the Quadrantids can most easily be explained by a release of meteoroids from 2003 EH1 near 1800 AD. This is supported by three lines of evidence. First, the evolution of the observed solar longitude of the Quadrantids over time is consistent with release from 2003 EH1 approximately 200 years ago. Second, numerical simulations of meteoroids released from this parent body at this time match the basic orbital characteristics of the Quadrantid stream well. Finally, these simulations also reveal that the Quadrantid core is well reproduced by a single outburst at perihelion circa 1800, whereas earlier releases result in the shower's appearance in our skies significantly prior to 1835. These results apply to the concentrated central core of the stream: the extended background was likely produced at earlier times. In fact, we find that 2003 EH1 is in a state of Kozai circulation along with a number of other comets and NEAs which may form a larger Quadrantid complex. Using the current total duration of the broader background Quadrantid activity compared to our simulations, we suggest a minimum age of ∼3500 years for the stream as a whole. This also represents the approximate lower limit for the age of the complex. We have further identified five comets as well as nine additional NEAs which may be part of the aforementioned complex, the latter all having Tisserand parameters less than three, further suggesting that the are extinct comet nuclei.  相似文献   

5.
The Leonid meteor storms of 1833 and 1966   总被引:2,自引:0,他引:2  
The greatest Leonid meteor storms since the late eighteenth century are generally regarded as being those of 1833 and 1966. They were evidently due to dense meteoroid concentrations within the Leonid stream. At those times, the orbit of Comet 55P/Tempel–Tuttle was significantly nearer that of the Earth than at most perihelion returns, but still some tens of Earth radii away. Significantly reducing this miss distance can be critical for producing a storm. Evaluation of differential gravitational perturbations, comparing meteoroids with the comet, shows that, in 1833 and 1966 respectively, the Earth passed through meteoroid trails generated at the 1800 and 1899 returns.  相似文献   

6.
The orbit of Comet C/2002C1 (Ikeya–Zhang) has a similarity to that of Comet C/1661C1 (Hevelius), and the numerical integration of the motion of C/2002C1 backward shows a possible linkage of those two comets. Thus, 153P/Ikeya–Zhang was designated a periodic comet. Historical records of comets in 877 and 1273 are also identified with Comet 153P/Ikeya–Zhang. The integrated orbital elements during 77 and 2362, and historical records of the comet are also presented and discussed.  相似文献   

7.
We analyse several mechanisms capable of creating orphan meteoroid streams (OMSs) for which a parent has not been identified. OMSs have been observed as meteor showers since the XIXth century and by the IRAS satellite in the 1980s. We find that the process of close encounters with giant planets (particularly Jupiter) is the most efficient mechanism to create them: only a limited section of the stream is perturbed and follows the parent body on its new orbit, while the majority of the meteoroids remain in their pre-encounter orbit or in an intermediate state, breaking the link with their parent body. Cometary non-gravitational forces can also contribute to the process since they cause the comet to drift away from its stream. However, they are not sufficient by themselves to produce an OMS. Resonances can either split or confine a stream over a long time (>1000 yr). Some meteoroid streams may look like OMSs since their parent comet is dormant or not observable (e.g. long period). Even if new techniques succeed in linking minor objects to meteoroid streams, OMSs will still exist simply because cometary nuclei are subject to complete disruption leading to their disappearance.  相似文献   

8.
Numerical integrations are used to show that the main contribution to the outburst observed in the June Bootid meteor shower in 1998 was a subset of meteoroids released from the parent comet, 7P/Pons–Winnecke, at its 1825 return. A substantial part of the June Bootid stream is in 2:1 resonance with Jupiter. This inhibits chaotic motion, allowing structures in the stream to remain compact enough over centuries that meteor outbursts can still be produced. Circumstances of ejection in 1825 are calculated that exactly result in orbits capable of producing meteors at the observed time in 1998. Required ejection velocities are  10–20 m s-1  .  相似文献   

9.
This study is motivated by the possibility of determining the large-body meteoroid flux at the orbit of Venus. Towards this end, we attempt to estimate the times at which enhanced meteoric activity might be observed in the planet's atmosphere. While a number of meteoroid streams are identified as satisfying common Earth and Venus intercept conditions, it is not clear from the Earth-observed data if these streams contain large-body meteoroids. A subset of the Taurid Complex objects may produce fireball-rich meteor showers on Venus. A total of 11 short-period, periodic comets and 46 near-Earth asteroids approach the orbit of Venus to within 0.1 au, and these objects may have associated meteoroid streams. Comets 27P/Crommelin and 7P/Pons–Winnecke are identified as candidate parents to possible periodic meteor showers at the orbit of Venus.  相似文献   

10.
The orbit of asteroid 2003 EH1 is very similar to the mean orbit of the Quadrantid meteoroid stream so that a close relationship between the two is very likely. It has already been suggested that Comet C/1490 Y1 could be the parent of the Quadrantids. If this is the case, then some relationship between the comet and the asteroid might be expected. The orbit of C/1490 Y1 is based on a short observing arc of about 6 weeks and all the observations were with the naked eye, so that its elements are very poorly determined. Hence, forward integration to determine whether asteroid 2003 EH1 represents the re-discovery of the dormant nucleus of C/1490 Y1 is not feasible. Instead we choose to integrate back in time the orbit of 2003 EH1, which is far better determined, and a family of 3500 clones, all of which are moving on an orbit that is consistent with the present known orbit of 2003EH1. We compare the results primarily with the recorded observations of the comet rather than the orbit of the comet derived by Hasegawa. We find that one clone is consistent with these observations.  相似文献   

11.
P. Brown  R.J. Weryk  D.K. Wong  J. Jones 《Icarus》2008,195(1):317-339
Using a meteor orbit radar, a total of more than 2.5 million meteoroids with masses ∼10−7 kg have had orbits measured in the interval 2002-2006. From these data, a total of 45 meteoroid streams have been identified using a wavelet transform approach to isolate enhancements in radiant density in geocentric coordinates. Of the recorded streams, 12 are previously unreported or unrecognized. The survey finds >90% of all meteoroids at this size range are part of the sporadic meteoroid background. A large fraction of the radar detected streams have q<0.15 AU suggestive of a strong contribution from sungrazing comets to the meteoroid stream population currently intersecting the Earth. We find a remarkably long period of activity for the Taurid shower (almost half the year as a clearly definable radiant) and several streams notable for a high proportion of small meteoroids only, among these a strong new shower in January at the time of the Quadrantids (January Leonids). A new shower (Epsilon Perseids) has also been identified with orbital elements almost identical to Comet 96P/Machholz.  相似文献   

12.
Comet C/ 1857 D1 (d'Arrest) is one of a large number of comets with parabolic orbits. Given that there are sufficient observations of the comet, 299 in right ascension and 279 in declination, it proves possible to calculate a better orbit. The calculations are based on a 12th order predictor‐corrector method. The comet's orbit is highly elliptical, e = 0.99982 and, from calculated mean errors, statistically different from a parabola. The comet will not return for at least 44000 years and thus represents no immediate NEO threat (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The Quadrantids are one of the most active annual meteor showers and have a number of unusual features. One is a sharp brief maximum, 12–14 h in length. A second is the Quadrantids, relatively recent appearance in our skies, the first observation having likely been made in 1835. Until recently no likely parent with a similar orbit had been observed and previous investigators concluded that the stream was quite old, with the stream’s recent appearance and sharp peak attributed to a recent fortuitous convergence of meteoroid orbits. The recent discovery of the near-Earth asteroid 2003 EH1 on an orbit very similar to that of the Quadrantids has almost certainly uncovered the parent body of this stream. From the simulations of the orbit of this body and of meteoroids released at intervals from it in the past, we find that both the sharp peak and recent appearance of the Quadrantids can most easily be explained assuming meteoroids were ejected in substantial numbers near 1800 AD.  相似文献   

14.
Tempel—Tuttle彗星与近年的狮子座流星雨   总被引:1,自引:0,他引:1  
吴光节 《天文学报》2001,42(2):125-133
对狮子座流雨的历史进行了回顾和讨论,并利用“彗星-地球轨道分离(CEOS)及地球滞后彗星时间(TE-C)”统计图进行分析,发现几乎所有的狮子座流星都位于一个倾斜的方框内,而这倾斜方框械右边界的斜率大约为15m/s,方框的宽度大约为4yr,它表明,33年一度的狮子座流星雨一般不会有超过4年的爆发期,更细致的分析表明,最强的流星暴位于一弯曲的细窄条带,在慧星一次回归期,亮流星的比例将年衰减,这些事实,可以用运动,碎裂,扩散和尘埃彗尾模型进行解释,由15m/s速度得到的流星体尺度大小也与事实相容,并且,这表明与地球相遇的流星体粒子是以有限的速度偏离彗星时间(TE-C)就越长,由此倾斜方框的存在,可以对未来狮子座流星雨进行了预报,表明在1998-2000年期间将有较强的狮子座流星雨,中心在1999年,至于2000年以后,要在100多年以后才会有较强的流星暴,而狮子座流星雨的辉煌期可以说已经过去。  相似文献   

15.
Comet C/1860 M1 (Great Comet of 1860) is one of a large number of comets with parabolic orbits. Given that there are sufficient observations of the comet, 261 in right ascension and 251 in declination, it proves possible to calculate a better orbit. The comet's orbit is hyperbolic, and statistically different from a parabola. The comet, therefore, cannot be considered to be a Near Earth Oject. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Detailed visual observations and modelling of the 1998 Leonid shower   总被引:1,自引:0,他引:1  
We present a detailed activity profile for the 1998 Leonid shower from visual observations. The shower displayed at least two distinct components – a broad component peaking between 2344 and 2350, and two narrower filaments near 23521 and 23533 probably of younger origin based on modelling results. This dual-peaked structure in the flux profile has peak fluxes to a limiting magnitude of +6.5 of 0.03 Leonid km−2 h−1. The distribution of particles also changes dramatically across the stream in 1998, with large meteoroids dominating the early peak and smaller meteoroids relatively more abundant near the time of the nodal passage of the comet. Detailed comparison of the observed activity with models in 1998 shows that the early component comes from material ejected between 500 and 1000 yr ago. Our modelling results suggest that the later dual peaks are caused by high- β meteoroids with large ejection velocities released during the 1932 and 1965 passages of Comet 55P/Tempel–Tuttle.  相似文献   

17.
Efforts to link minor meteor showers to their parent bodies have been hampered both by the lack of high-accuracy orbits for weak showers and the incompleteness of our sample of potential parent bodies. The Canadian Meteor Orbital Radar (CMOR) has accumulated over one million meteor orbits. From this large data set, the existence of weak showers and the accuracy of the mean orbits of these showers can be improved. The ever-growing catalogue of near-Earth asteroids (NEAs) provides the complimentary data set for the linking procedure. By combining a detailed examination of the background of sporadic meteors near the orbit in question (which the radar data makes possible) and by computing the statistical significance of any shower association (which the improved NEA sample allows) any proposed shower–parent link can be tested much more thoroughly than in the past. Additional evidence for the links is provided by a single-station meteor radar at the CMOR site which can be used to dispel confusion between very weak showers and statistical fluctuations in the sporadic background. The use of these techniques and data sets in concert will allow us to confidently link some weak streams to their parent bodies on a statistical basis, while at the same time showing that previously identified minor showers have little or no activity and that some previously suggested linkages may simply be chance alignments.  相似文献   

18.
The dynamical evolution of meteoroid streams associated with cornets Encke, Halley, Machholz 1986 VIII and asteroid Phaethon is discussed. It is shown that the planetary perturbations can greatly increase the streams thickness and each stream may produce several couples of meteor showers active in different seasons of the year. The theoretical and observed data are in a satisfactory accordance.  相似文献   

19.
The asteroid 3200 Phaethon is suggested as a candidate for direct impact research. The object is considered to be an extinct comet and the parent of the Geminid meteor shower. One could say that this provides a possible argument for a space mission. Based on such a mission, this paper proposes to investigate the nature of the extinct comet and the additional interesting possibility of artificially generated meteor showers.
Dust trail theory can calculate the distribution of a bundle of trails and be used to show in which years artificial meteors would be expected. Results indicate that meteor showers will be seen on Earth about 200 yr after the event, on 2022 April 12.  相似文献   

20.
In conducting a search through the IAU Meteor Catalogue at Lund, a peak in activity on April 8th, not corresponding to any known shower was discovered. Analysis of the orbit shows that a subset of those meteors originated on very coherent orbits. It is suggested that there could either represent a hither to unidentified stream or that they are meteoroids which, like the April Lyrids, were ejected from Comet Thatcher but have arrived onto their current orbits as a consequence primarily of Poynting - Robertson drag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号