首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relict marginal moraines are commonly used landforms in palaeoglaciological reconstructions. In the Swedish mountains, a large number of relict marginal moraines of variable morphology and origin occur. In this study, we have mapped 234 relict marginal moraines distributed all along the Swedish mountains and classified them into four morphological classes: cirque‐and‐valley moraines, valley‐side moraines, complex moraines and cross‐valley moraines. Of these, 46 moraines have been reclassified or are here mapped for the first time. A vast majority of the relict moraines are shown to have formed during deglaciation of an ice‐sheet, rather than by local mountain glaciers as suggested in earlier studies. The relict marginal moraines generally indicate that deglaciation throughout the mountains was characterised by a retreating ice‐sheet, successively damming glacial lakes, and downwasting around mountains. The general lack of moraines indicating valley and cirque glaciers during deglaciation suggests that climatic conditions were unfavourable for local glaciation during the last phase of the Weichselian. This interpretation contrasts with some earlier studies that have reconstructed the formation of local glaciers in the higher parts of the Swedish mountains during deglaciation.  相似文献   

2.
This paper provides data on the landforms, soils, and sediments within a unique northern Michigan landscape known as the Grayling Fingers, and evaluates these data to develop various scenarios for the geomorphic development of this region. Composed of several large, flat-topped ridges that trend N–S, the physiography of the “Fingers” resembles a hand. Previously interpreted as “remnant moraines”, the Grayling Fingers are actually a Pleistocene constructional landscape that was later deeply incised by glacial meltwater. The sediments that comprise the Fingers form a generally planar assemblage, with thick (>100 m), sandy glacial outwash forming the lowest unit. Above the outwash are several meters of till that is remarkably similar in texture to the outwash below; thus, the region is best described as an incised ground moraine. Finally, a thin silty “cap” is preserved on the flattest, most stable uplands. This sediment package and the physiography of the Fingers are suggestive of geomorphic processes not previously envisioned for Michigan.Although precise dates are lacking, we nonetheless present possible sequences of geomorphic/sedimentologic processes for the Fingers. This area was probably a topographic high prior to the advance of marine isotope stage 2 (Woodfordian) ice. Much of the glacial outwash in the Fingers is probably associated with a stagnant, early Woodfordian ice margin, implying that this interlobate area remained ice-free and ice-marginal for long periods during stage 2. Woodfordian ice eventually covered the region and deposited 5–10 m of sandy basal till over the proglacial outwash plain. Small stream valleys on the outwash surface were palimpsested onto the till surface as the ice retreated, as kettle chains and as dry, upland valleys. The larger of these valleys were so deeply incised by meltwater that they formed the large, through-flowing Finger valleys. The silt cap that occupies stable uplands was probably imported into the region, while still glaciated. The Fingers region, a col on the ice surface, could have acted as a collection basin for silts brought in as loess or in superglacial meltwater. This sediment was let down as the ice melted and preserved only on certain geomorphically stable and fluvially isolated locations. This study demonstrates that the impact of Woodfordian ice in this region was mostly erosional, and suggests that Mississippi Valley loess may have indirectly impacted this region.  相似文献   

3.
T.C. Hales  J.J. Roering 《Geomorphology》2009,107(3-4):241-253
In the Southern Alps, New Zealand, large gradients in precipitation (< 1 to 12 m year− 1) and rock uplift (< 1 to 10 mm year− 1) produce distinct post-glacial geomorphic domains in which landslide-driven sediment production dominates in the wet, rapid-uplift western region, and rockfall controls erosion in the drier, low-uplift eastern region. Because the western region accounts for < 25% of the active orogen, the dynamics of erosion in the extensive eastern region are of equal importance in estimating the relative balance of uplift and erosion across the Southern Alps. Here, we assess the efficacy of frost cracking as the primary rockfall mechanism in the eastern Southern Alps using air photo and topographic analysis of scree slopes, cosmogenic radionuclide dating of headwalls, paleo-climate data, and a numerical model of headwall temperature. Currently, active scree slopes occur at a relatively uniform mean elevation ( 1450 m) and their distribution is independent of hillslope aspect and rock type, consistent with the notion that frost cracking (which is maximized between − 3 and − 8 °C) may control rockfall erosion. Headwall erosion rates of 0.3 to 0.9 mm year− 1, measured using in-situ 10Be and 26Al in the Cragieburn Range, confirm that rockfall erosion is active in the late Holocene at rates that roughly balance rock uplift. Models of the predicted depth of frost activity are consistent with the scale of fractures and scree blocks in our field sites. Also, vegetated, paleo-scree slopes are ubiquitous at elevations lower than active scree slopes, consistent with the notion that lower temperatures during the last glacial advance induced pervasive rockfall erosion due to frost cracking. Our modeling suggests temporally-averaged peak frost cracking intensity occurs at 2300 m a.s.l., the approximate elevation of the highest peaks in the central Southern Alps, suggesting that the height of these peaks may be limited by a “frost buzzsaw.”  相似文献   

4.
地处东南极内陆的格罗夫山地区是研究南极冰川进退和气候演化的理想场所。我国第22次南极考察(2005/2006)进行了该地区冰盖进退和古气候演化专题研究。笔者在野外考察过程中,对格罗夫山地区新生代冰川活动记录(包括冰川侵蚀地貌及冰川堆积物)进行了详细的观测,获得了很多有关该地区冰盖进退及古气候演化方面的第一手材料,同时系统回收了对反映该地区古冰川活动具有重要意义的新生代沉积岩漂砾。本文简要报道本次野外考察在冰盖进退和古气候演化方面所取得的主要成果。  相似文献   

5.
Rock glaciers occur as lobate or tongue-shaped landforms composed of mixtures of poorly sorted, angular to blocky rock debris and ice. These landforms serve as primary sinks for ice and water storage in mountainous areas and represent transitional forms in the debris transport system, accounting for ~ 60% of all mass transport in some alpine regions. Observations of active (flowing) alpine rock glaciers indicate a common association between the debris that originates from cirque headwalls and the depositional lobes that comprise them. The delivery of this debris to the rock glacier is regulated primarily by the rate of headwall erosion and the point of origin of debris along the headwall. These factors control the relative movement of individual depositional lobes as well as the overall rate of propagation of a rock glacier. In recent geophysical studies, a number of alpine rock glaciers on Prins Karls Forland and Nordenskiöldland, Svalbard, Norway, and the San Juan Mountains of southwest Colorado, USA, have been imaged using ground penetrating radar (GPR) to determine if a relationship exists between the internal structure and surface morphology. Results indicate that the overall morphologic expression of alpine rock glaciers is related to lobate deposition during catastrophic episodes of rockfall that originated from associated cirque headwalls. Longitudinal GPR profiles from alpine rock glaciers examined in this study suggests that the difference in gross morphology between the lobate and tongue-shaped rock glaciers can be attributed primarily (but not exclusively) to cirque geometry, frequency and locations of debris discharge within the cirque, and the trend and magnitude of valley gradient in relation to cirque orientation. Collectively, these factors determine the manner in which high magnitude debris discharges, which seem to be the primary mechanism of formation, accumulate to form these rock glaciers.  相似文献   

6.
Interpretation of sediments in the floors of valleys opening into western McMurdo Sound has been so problematic that it has hindered understanding of the late Quaternary history of the Antarctic Ice Sheet. Lateral moraines and enclosed drift sheets so clearly exposed on the headlands are generally absent within the valleys themselves. Instead, valley-floor sediments and landforms consist of hummocky, stratified fine sediment generally capped by coarser, poorly sorted material, small cross-valley and longitudinal ridges, and lateral ridges that superficially resemble shorelines. One clue as to the origin of these deposits is that at least some of the valleys were occupied by large proglacial lakes during the last glacial maximum (e.g. Glacial Lakes Trowbridge and Washburn in Miers and Taylor Valleys, respectively). This paper describes a new mechanism observed in a modern perennially ice-covered proglacial lake that documents the movement of glacial debris beyond the grounding line across the surface of the lake. This mechanism accounts for the absence of moraines and other ice-contact features on the valley floors, as well as for the presence of the other deposits and landforms mentioned above.  相似文献   

7.
According to the glacial landforms and deposits with the optically stimulated luminescence (OSL) dating results, two glacial stages of the last glacial cycle (LGC) and Late Glacial were identified. The Late Glacial stage (Meteorological Station glacier advance) took place about 11 ka (11.3±1.2 ka), and the last glacial maximum (LGM), named Black Wind Mouth glacier advance, occurred at 20 ka (20.0±2.1 ka). Based on the Ohmura’s formula in which there is a relationship between summer (JJA) atmospheric temperature (T) and the annual precipitation (P) at ELA, the present theoretical equilibrium line altitude (ELAt) in Changbai Mountains was 3380±100 m. Six methods of accumulation–area ratio (AAR), maximum elevation of lateral moraines (MELM), toe–to headwall altitude ratios (THAR), the terminal to summit altitudinal (TSAM), the altitude of cirque floor (CF), and the terminal to average elevation of the catchment area (Hofer) were used for calculation of the former ELAs in different stages. These methods provided the ELA for a range of 2250–2383 m with an average value of 2320±20 m during the LGM, which is 200 m higher than the value of previous investigation. The snowlines during the Late Glacial are 2490 m on northern slope, and 2440 m on western slope. The results show that the snowline on northern slope is 50 m higher than that on western slope during the Late Glacial, and the average snowline is 2465m. The ELA △ values were more than 1000 m during the LGM, and about 920 m lower than now during the Late Glacial stage respectively. Compared with Taiwanese and Japanese mountains in East Asia during the LGM, the effect of the uplift on ELA in Changbai Mountains during the glaciations (i.e. 20 m uplift in the LGM and 11 m in the Late Glacial) is not obvious.  相似文献   

8.
The Basin of Ubaté–Chichinquirá (5°28′N, 73°45′ W, c. 2580 m altitude) includes the Fúquene Valley and is located in the central part of the Eastern Cordillera of Colombia. Rocks and sediments were folded and faulted during the Miocene, uplifted during the (late) Pliocene, and affected by glaciers during the Pleistocene. Successive glacial and interglacial periods left significant marks in the landscape which were used to reconstruct six stages in the development of the landscape along a relative chronology. During early Pleistocene episode 1 glaciers formed U-shape valleys. Evidence of the impact of ice sheets has been found as far downslope as ca. 2900 m elevation. During episode 2 moraines developed which were cut by the present San José River. During episode 3 abundant sediment was produced by glacial erosion. It accentuated the sculpturing of hard rock and deepening of the drainage basin. The ancestral Ubaté–Suarez River constituted a dynamic erosive system that gave rise to deep V-shaped valleys and progressively formed a set of intricate valleys with a high sediment production. Finally, intense glacial and fluvio-glacial erosion led to a geomorphological system with high energy levels and intensive sediment transport leading to wide valleys. During episode 4 the Ubaté–Suarez River eroded and deepened its valley until it captured the old El Hato–San José Valley. It caused intense erosion of the moraine and the fluvio-glacial gravels. Deep V-shaped valleys stabilized in the high areas of the main drainage system and these valleys form the present-day fluvial sub-basins. During episode 5 the deep valley in the northern part of the Basin of Ubaté–Chichinquirá developed. During middle Pleistocene episode 6 colluvial sediments formed the Saboya dam and a lake was formed in the river valley of which the present Lake Fúquene is only a small remnant. Lithological changes indicate fluctuating water levels and Lake Fúquene must have expanded periodically up to an area 5 to 10 times the present-day surface.  相似文献   

9.
According to the glacial landforms and deposits with the optically stimulated luminescence (OSL) dating results, two glacial stages of the last glacial cycle (LGC) and Late Glacial were identified. The Late Glacial stage (Meteorological Station glacier advance) took place about 11 ka (11.3±1.2 ka), and the last glacial maximum (LGM), named Black Wind Mouth glacier advance, occurred at 20 ka (20.0±2.1 ka). Based on the Ohmura’s formula in which there is a relationship between summer (JJA) atmospheric temperature (T) and the annual precipitation (P) at ELA, the present theoretical equilibrium line altitude (ELAt) in Changbai Mountains was 3380±100 m. Six methods of accumulation-area ratio (AAR), maximum elevation of lateral moraines (MELM), toe-to headwall altitude ratios (THAR), the terminal to summit altitudinal (TSAM), the altitude of cirque floor (CF), and the terminal to average elevation of the catchment area (Hofer) were used for calculation of the former ELAs in different stages. These methods provided the ELA for a range of 2250–2383 m with an average value of 2320±20 m during the LGM, which is 200 m higher than the value of previous investigation. The snowlines during the Late Glacial are 2490 m on northern slope, and 2440 m on western slope. The results show that the snowline on northern slope is 50 m higher than that on western slope during the Late Glacial, and the average snowline is 2465m. The ΔELA values were more than 1000 m during the LGM, and about 920 m lower than now during the Late Glacial stage respectively. Compared with Taiwanese and Japanese mountains in East Asia during the LGM, the effect of the uplift on ELA in Changbai Mountains during the glaciations (i.e. 20 m uplift in the LGM and 11 m in the Late Glacial) is not obvious. Foundation: National Natural Science Foundation of China, No.40571016 Author: Zhang Wei (1969–), Ph.D and Professor, specialized in Quaternary environment and climate geomorphology.  相似文献   

10.
Only a few very young landforms are the result of currently operating geomorphic processes. Because the time scale for landscape evolution is much longer than the time scale for late Cenozoic climate changes, almost all landscapes are palimpsests, written over repeatedly by various combinations of climate-determined processes. Relict glacial and periglacial landforms are widely identified in mid-latitude regions that have been traditionally described as having been shaped by the “normal” processes of fluvial erosion. Less confidently, deeply weathered regolith and associated relict landforms in the middle and high latitudes are attributed to early Tertiary warmth. However, assemblages of geomorphic processes specific to certain climatic regions, like faunal and floral assemblages, cannot be translated across latitude, so in spite of the many books about the geomorphology of specific modern climate regions, there are few sources that discuss former warm high-latitude, or cold low-latitude, low-altitude geomorphic processes that have no modern analogs. Students and teachers alike who attempt to interpret landforms by extrapolating modern climatic conditions to other latitudinal zones will find their outlook broadened, and they become better prepared to consider the geomorphic impacts of global climate change.  相似文献   

11.
12.
The glacial buzzsaw hypothesis suggests that efficient erosion limits topographic elevations in extensively glaciated orogens. Studies to date have largely focussed on regions where large glaciers (tens of kilometres long) have been active. In light of recent studies emphasising the importance of lateral glacial erosion in lowering peaks and ridgelines, we examine the effectiveness of small glaciers in limiting topography under both relatively slow and rapid rock uplift conditions. Four ranges in the northern Basin and Range, Idaho, Montana, and Wyoming, USA, were chosen for this analysis. Estimates of maximum Pleistocene slip rates along normal faults bounding the Beaverhead–Bitterroot Mountains (~ 0.14 mm y− 1), Lemhi Range (~ 0.3 mm y− 1) and Lost River Range (~ 0.3 mm y− 1) are an order of magnitude lower than those on the Teton Fault (~ 2 mm y− 1). We compare the distribution of glacial erosion (estimated from cirque floor elevations and last glacial maximum (LGM) equilibrium line altitude (ELA) reconstructions) and fault slip rate with three metrics of topography in each range: the along-strike maximum elevation swath profile, hypsometry, and slope-elevation profiles. In the slowly uplifting Beaverhead–Bitterroot Mountains, and Lemhi and Lost River Ranges, trends in maximum elevation parallel ELAs, independent of variations in fault slip rate. Maximum elevations are offset ~ 500 m from LGM ELAs in the Lost River Range, Lemhi Range, and northern Beaverhead–Bitterroot Mountains, and by ~ 350 m in the southern Beaverhead–Bitterroot Mountains, where glacial extents were less. The offset between maximum topography and mean Quaternary ELAs, inferred from cirque floor elevations, is ~ 350 m in the Lost River and Lemhi Ranges, and 200–250 m in the Beaverhead–Bitterroot Mountains. Additionally, slope-elevation profiles are flattened and hypsometry profiles show a peak in surface areas close to the ELA in the Lemhi Range and Beaverhead–Bitterroot Mountains, suggesting that small glaciers efficiently limit topography. The situation in the Lost River Range is less clear as a glacial signature is not apparent in either slope-elevation profiles or the hypsometry. In the rapidly uplifting Teton Range, the distribution of ELAs appears superficially to correspond to maximum topography, hypsometry, and slope-elevations profiles, with regression lines on maximum elevations offset by ~ 700 and ~ 350 m from the LGM and mean Quaternary ELA respectively. However, Grand Teton and Mt. Moran represent high-elevation “Teflon Peaks” that appear impervious to glacial erosion, formed in the hard crystalline bedrock at the core of the range. Glacier size and drainage density, rock uplift rate, and bedrock lithology are all important considerations when assessing the ability of glaciers to limit mountain range topography. In the northern Basin and Range, it is only under exceptional circumstances in the Teton Range that small glaciers appear to be incapable of imposing a fully efficient glacial buzzsaw, emphasising that high peaks represent an important caveat to the glacial buzzsaw hypothesis.  相似文献   

13.
This paper examines the status of the floriculture industry in northwest Ohio, barriers facing firms in this transitioning sector, and strategies to promote industry competitiveness. Specifically, the paper focuses on the business practices of firms and efforts by local policymakers, academics, and business leaders to alter the regional dynamics of the industry vis-à-vis a grassroots “cluster” initiative. Using survey and focus group data, the paper demonstrates that culture, tradition, and shared values are key barriers to change and suggests that local cluster initiatives—like the Maumee Valley Growers—are an effective strategy for overcoming these barriers. From an applied perspective, the paper demonstrates the importance of contextualizing applied geographic research and the potential for geographers to chart, inform, and shape the internal geographies, practices, and trajectories of local actors and industry.  相似文献   

14.
A Holocene loess profile to the west of Xi'an China was studied multi-disciplinarily to investigate the relationships between soil erosion and monsoonal climatic change. The proxy data obtained from this aeolian loess and palaeosol sequence indicate large-scale variations of climate in the southern Loess Plateau since the last glaciation. A rainwash bed, indicative of a wetter climate, excessive runoff and erosion on the loess tablelands, was identified relating to the early Holocene before the onset of the “climatic optimum”. This is synchronous with the early Holocene physiographic erosional stage identified in the valleys in North China. It means that severe erosion took place when the region was undergoing climatic amelioration during the early Holocene. The evidence presented in this paper shows that the erosion occurred as a regional response to a monsoonal climatic shift in the southern Loess Plateau. During the last glaciation, prior to the erosion phase, the land surface on the tablelands had been largely stable except for the rapid accumulation of aeolian dust and the resultant increase in its elevation. Relatively slow dust accumulation and intensive bio-pedogenesis responding to the Holocene “climatic optimum” followed the erosion phase. The loess tablelands were most vulnerable to erosion during the large-scale monsoonal climatic shift from dry-cold glacial to humid-warm post-glacial conditions in the southern Loess Plateau.  相似文献   

15.
ABSTRACT. Eight relict rock-slope failures (RSFs) on Skiddaw Group terrain in the Lake District, northwest England, are described. Five of the failures are rockslides, one is a product of slope deformation, and two are compound features with evidence for sliding and deformation in different sectors. As none appears to have been overrun and modified by glacier ice it is concluded that they all post-date the Last Glacial Maximum (LGM ; c. 21 ± 3 cal. ka bp ). Slope stress readjustments resulting from glacial and deglacial influences are considered to have weakened the slopes, and application of the term paraglacial is appropriate. Permafrost aggradation and degradation, seismic activity and fluvial erosion are among processes that may have contributed to failure at certain sites. The failures are significant as potential debris sources during future ice advances, contributing to valley widening and cirque enlargement and, possibly, for acting as sites of cirque initiation. Previously, Skiddaw Group rocks have been regarded as homogeneous and of limited resistance to the weathering and erosion associated with Quaternary glacial, periglacial and fluvial processes. These characteristics and processes have been used to explain the steep smooth slopes and rounded hills that dominate Skiddaw Group terrain. Rock-slope failure has also helped shape this terrain and should be incorporated in future interpretations of landscape development.  相似文献   

16.
We seek to quantify glacial erosion in a low relief shield landscape in northern Sweden. We use GIS analyses of digital elevation models and field mapping of glacial erosion indicators to explore the geomorphology of three granite areas with the same sets of landforms and of similar relative relief, but with different degrees of glacial streamlining. Area 1, the Parkajoki district, shows no streamlining and so is a type area for negligible glacial erosion. Parkajoki retains many delicate pre‐glacial features, including tors and saprolites with exposure histories of over 1 Myr. Area 2 shows the onset of significant glacial erosion, with the development of glacially streamlined bedrock hills. Area 3 shows extensive glacial streamlining and the development of hill forms such as large crag and tails and roches moutonnées. Preservation of old landforms is almost complete in Area 1, due to repeated covers of cold‐based, non‐erosive ice. In Area 2, streamlined hills appear but sheet joint patterns indicate that the lateral erosion of granite domes needed to form flanking cliffs and to give a streamlined appearance is only of the order of a few tens of metres. The inheritance of large‐scale, pre‐glacial landforms, notably structurally controlled bedrock hills and low relief palaeosurfaces, remains evident even in Area 3, the zone of maximum glacial erosion. Glacial erosion here has been concentrated in valleys, leading to the dissection and loss of area of palaeosurfaces. Semi‐quantitative estimates of glacial erosion on inselbergs and palaeosurfaces and in valleys provide mean totals for glacial erosion of 8 ± 8 m in Area 1 and 27 ± 11 m in Area 3. These estimates support previous views that glacial erosion depths and rates on shields can be low and that pre‐glacial landforms can survive long periods of glaciation, including episodes of wet‐based flow.  相似文献   

17.
This paper reviews permafrost in High Arctic Svalbard, including past and current research, climatic background, how permafrost is affected by climatic change, typical permafrost landforms and how changes in Svalbard permafrost may impact natural and human systems. Information on active layer dynamics, permafrost and ground ice characteristics and selected periglacial features is summarized from the recent literature and from unpublished data by the authors. Permafrost thickness ranges from less than 100 m near the coasts to more than 500 m in the highlands. Ground ice is present as rock glaciers, as ice-cored moraines, buried glacial ice, and in pingos and ice wedges in major valleys. Engineering problems of thaw-settlement and frost-heave are described, and the implications for road design and construction in Svalbard permafrost areas are discussed.  相似文献   

18.
山东中低山丘陵古冰川遗迹质疑   总被引:1,自引:0,他引:1  
近年来,有关山东中低山丘陵“古冰川遗迹”时有报道,使中国东部第四纪冰川问题在某种意义上再起纷争。为作澄清,通过实地考察对业已报道的“古冰川遗迹”进行质疑,指出其列举的“冰碛垄”“古冰斗”“擦痕”“颤痕”等不符合冰川地貌证据的专有属性和判别标准,冰期划分和雪线重建不符合科学发现与科学事实确证所需的充分条件,即不满足“将古论今”、地貌组合三要素系统配套、成因-环境一致性的判别原则和方法。因此认为,山东中低山丘陵不存在第四纪冰川遗迹。部分学者提出“低海拔型古冰川”的论断,是基于例外主义的泛冰川论,必然会引致“雪球地球”事件进而颠覆第四纪为灵生纪的科学基础。  相似文献   

19.
The Mt Anne massif is characterised by spectacular erosional landforms of glacial origin. Evidence of at least two separate Pleistocene glaciations is preserved in valleys that extend east and south of the massif, and also on nearby Schnells Ridge. There is evidence of a much older glaciation beneath the western slopes of the Mt Anne massif. Dense vegetation in the eastern valleys has inhibited mapping of the Quaternary geology there. These glaciations have influenced postglacial evolution of the landscape, including the advent of prominent karst features and Holocene landslip activity.  相似文献   

20.
The Central Karakoram, which includes K2 in Pakistan, is one of the most rapidly rising areas on Earth and exhibits complex topography and extreme relief. Impressive valley fills and glacial landforms are present throughout the valleys. The dynamics of landscape evolution of the region are currently not well understood. Consequently, the landforms were mapped and assessed in the Skardu, Shigar, and Braldu valleys, to elucidate the spatio-temporal scale dependencies of surface processes active in the region. These valleys were examined using geomorphic field methods, remote sensing, geomorphometry, and terrestrial cosmogenic nuclides (TCNs) surface exposure dating. The glaciers in this region have oscillated considerably throughout the Late Quaternary, and four glacial stages have been recognized including at least six glacial advances. Surface processes readjusted after glacier retreat, and ubiquitous mass movements and catastrophic landsliding transported material from steep slopes to valley bottoms, while glaciofluvial meltwater and glacier outburst floods redistributed sediment down valley. Glacier geochronology and late Holocene ages of the outburst flood deposits indicate that landscape evolution has been dominated by glaciation and paraglaciation during the late Quaternary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号