首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water level fluctuations in twenty-one observation wells have been monitored for the last 10 years around the seismically active Koyna–Warna region, western India where earthquakes continue to occur even after four decades of the initiation of the seismic activity in the region. Fourteen of the observation wells act as volume strain meters as their water levels show earth tidal signals. Our analysis suggests three types of response of the well water levels to seismo-tectonic effects, i) one to local earthquakes, ii) to regional and teleseismic events, and iii) to local fluctuations in rock strain on regional scale. We observed five cases of co-seismic step-like well water level changes, of the order of few centimeters in amplitude, related to earthquakes in the magnitude range 4.3 ≤ M ≤ 5.2. All these earthquakes occurred within the network of wells drilled for the study and within 25 km distance of the recording wells. In three cases, drop in well levels preceded co-seismic step-like increases, which may be of premonitory nature. The second type of response is observed to be due to the passing of seismic waves from regional and teleseismic earthquakes like the M 7.7 Bhuj event on January 26, 2001 and the M 9.3 December 26, 2004 Sumatra earthquake. The third type is a well level anomaly of centimeter amplitude coherently occurring in several wells. The anomalies are similar in shape and last for several hours to days.From our studies we conclude that the wells in the network appear to respond to regional strain variations and transient changes due to distant earthquakes. The two factors which are important to co-seismic steps due to local earthquakes are the magnitude and epicentral distance. From the limited number of events we found that all local earthquakes exceeding M ≥ 4.3 have produced co-seismic changes. No such changes were observed for earthquakes below this magnitude threshold.  相似文献   

2.
The reported study contributes to research on earthquake prediction. Between 2007 and 2009, changes were observed in two geothermal and mineral springs located in Eskipazar (~3–5 km to the north of the North Anatolian Fault Zone) in Turkey, in relation to small-magnitude earthquakes. During pre-seismic and post-seismic activities, variations were observed in the hydrogeological parameters of the spring waters. Temperature increases of 0.4–1°C were measured in one of the springs prior to three different earthquakes. There was a slight increase in the spring discharge with respect to the first earthquake, which occurred closest to the spring. This led to a reduction in electrical conductivity (EC), total dissolved solids (TDS), Ca, HCO3, δ13C, Al, Mn, and Fe concentrations in the spring water, whereas tritium and Se values increased. Several days before the third earthquake, which occurred at a shallower depth, a decrease was observed in the discharge, which led to a reduction in tritium, δ13C and Si concentrations. These variations could be explained by changes in the mixing ratio of waters of different genesis, depending on changes in permeability, pore pressure, and flow paths of the aquifer due to regional stress changes.  相似文献   

3.
Large to great earthquakes and related tsunamis generated on the Aleutian megathrust produce major hazards for both the area of rupture and heavily populated coastlines around much of the Pacific Ocean. Here we use paleoseismic records preserved in coastal sediments to investigate whether segment boundaries control the largest ruptures or whether in some seismic cycles segments combine to produce earthquakes greater than any observed since instrumented records began. Virtually the entire megathrust has ruptured since AD1900, with four different segments generating earthquakes >M8.0. The largest was the M9.2 great Alaska earthquake of March 1964 that ruptured ~800 km of the eastern segment of the megathrust. The tsunami generated caused fatalities in Alaska and along the coast as far south as California. East of the 1964 zone of deformation, the Yakutat microplate experienced two >M8.0 earthquakes, separated by a week, in September 1899. For the first time, we present evidence that earthquakes ~900 and ~1500 years ago simultaneously ruptured adjacent segments of the Aleutian megathrust and the Yakutat microplate, with a combined area ~15% greater than 1964, giving an earthquake of greater magnitude and increased tsunamigenic potential.  相似文献   

4.
Iran has long been known as one of the most seismically active areas of the world, and it frequently suffers destructive and catastrophic earthquakes that cause heavy loss of human life and widespread damage. The Alborz region in the northern part of Iran is an active EW trending mountain belt of 100 km wide and 600 km long. The Alborz range is bounded by the Talesh Mountains to the west and the Kopet Dagh Mountains to the east and consists of several sedimentary and volcanic layers of Cambrian to Eocene ages that were deformed during the late Cenozoic collision. Several active faults affect the central Alborz. The main active faults are the North Tehran and Mosha faults. The Mosha fault is one of the major active faults in the central Alborz as shown by its strong historical seismicity and its clear morphological signature. Situated in the vicinity of Tehran city, this 150-km-long N100° E trending fault represents an important potential seismic source. For earthquake monitoring and possible future prediction/precursory purposes, a test site has been established in the Alborz mountain region. The proximity to the capital of Iran with its high population density, low frequency but high magnitude earthquake occurrence, and active faults with their historical earthquake events have been considered as the main criteria for this selection. In addition, within the test site, there are hot springs and deep water wells that can be used for physico-chemical and radon gas analysis for earthquake precursory studies. The present activities include magnetic measurements; application of methodology for identification of seismogenic nodes for earthquakes of M ≥ 6.0 in the Alborz region developed by International Institute of Earthquake Prediction Theory and Mathematical Geophysics, IIEPT RAS, Russian Academy of Science, Moscow (IIEPT&MG RAS); a feasibility study using a dense seismic network for identification of future locations of seismic monitoring stations and application of short-term prediction of medium- and large-size earthquakes is based on Markov and extended self-similarity analysis of seismic data. The establishment of the test site is ongoing, and the methodology has been selected based on the IASPEI evaluation report on the most important precursors with installation of (i) a local dense seismic network consisting of 25 short-period seismometers, (ii) a GPS network consisting of eight instruments with 70 stations, (iii) magnetic network with four instruments, and (iv) radon gas and a physico-chemical study on the springs and deep water wells.  相似文献   

5.
Richter magnitudes ML have been determined for 718 well recorded South Australian earthquakes by converting amplitudes derived from existing seismograph stations to equivalent Wood‐Anderson amplitudes, and substituting in Richter's formula (Richter 1935), derived for such instruments and for Southern California. The magnitudes so determined were generally found to increase with distance A for each earthquake, at least for events at distances below a few hundred kilometres, reflecting lower attenuation of crustal S waves in South Australia.

A distance‐dependent correction, which must be subtracted from Richter magnitudes, was obtained by integrating the weighted least squares fit to the (A, dML/dA) data. The correction increases to one‐half of a magnitude unit at a distance of 400 km, and thereafter decreases smoothly to 0.3 units at 600 km. Station corrections, due to local geological variations, have also been determined. Values range from ‐0.6 to + 0.2 units.

Empirical relationships between the revised ML scale and the previously used local magnitude scales mL and MN (White 1968; Stewart 1975) and the body wave magnitude scale mb have been established. The latter yields results consistent with the well known Gutenberg‐Richter formula (Richter 1958)  相似文献   

6.
A persistent 10-km seismicity gap along the Calaveras fault appears to be related to the presence of the Leroy Anderson Reservoir in the Calaveras-Silver Creek fault zones southeast of San Jose, California. A magnitude-4.7 earthquake occurred at a depth of 5 km in the centre of the gap on October 3, 1973. The sequence of immediate aftershocks usually accompanying shallow earthquakes of this magnitude in central California did not occur. A bridge crossing the reservoir near its southeast end has been severely deformed, apparently the result of tectonic creep on the Calaveras fault. The occurrence of creep and absence of small earthquakes along the Calaveras in the vicinity of the reservoir suggest a transition from stick slip to stable sliding, possibly brought about by increased pore pressure.  相似文献   

7.
Even though central Virginia is far from the nearest plate boundaries, the region is well-known for minor-to-moderate shocks, which have occurred frequently since at least the eighteenth century. Many of its people have experienced small earthquakes, while infrequent larger ones have caused damage. The largest destructive earthquake (magnitude 5.8) in this seismic zone was recorded in August 2011. Smaller earthquakes that cause little or no damage are felt each year or two. It is difficult to link the earthquakes of this zone to known small faults which are numerous, deeply buried and do not show up at the surface. The mean earthquake depth since 1960 is 6.7 km. On the other hand, central Virginia is a big collector and transporter of precipitation water, which flows to the Atlantic Ocean through the James River and its tributaries. There are about 2,000 abandoned mining sites in Virginia with underground openings that can facilitate the interception and conveyance of surface water. This paper presents evidence that seismic activity in certain zones can be associated clearly with the hydrological effects of abundant precipitation. Such effects can increase tectonic stress, which surpasses the marginal amount when an earthquake occurs. We analyze the cross-correlation between precipitation or water discharge in the rivers and earthquake occurrence in the central Virginia seismic zone. This correlation is examined both over a long-term span (57–92 years) and with regard to individual cases in which earthquakes have followed the occurrence of intense hydrological phenomena such as torrential rainfall or hurricanes. As we probe for a correlation between earthquake time series for central Virginia and the monthly precipitation series at hydrometeorological stations located in the zone, we observe that the best cross-correlation is obtained for a time period of 3 months. The same time period applies to certain historical earthquakes that were preceded by large amounts of precipitation. These results support the hydroseismicity hypothesis, which points to the role of water in the generation of intraplate seismicity.  相似文献   

8.
For Swedish earthquakes, the average magnitude increases gently with the focal depth, whereas the seismic wave energy exhibits significant maxima at 15, 23 and 28 km depth. The earthquake fracture risk is estimated to be about 10?6 for an underground storage facility in a carefully selected site.  相似文献   

9.
An updated list of earthquakes and earthquake parameters (location, homogenized magnitude, macroseismic data) for the southern Baltic Sea area reveals activity north of the sea, whereas there are very few epicentres in the sea itself and in the region south of it. This is the first study to combine seismological data for the whole region to cover also the sea. Macroseismic data for the 1930 earthquake were reinvestigated leading to an intensity of V–VI (MM or MSK scale), a radius of perceptibility of 135 km and an unusually big focal depth of about 40 km. It is difficult to correlate individual earthquakes with specific faults, but some seismotectonic relations are suggested, e.g. for the Tornquist zone, the predominant structure of the region. Only few reliable focal-mechanism solutions exist. Possible seismogenic processes (ridge push, isostasy, etc) are discussed.  相似文献   

10.
深井水温观测在中国已经开展了20多年,但目前对于水温响应机理的研究还不充分.而且利用温泉水对水温响应机理研究甚少.本文在2008年5月12日汶川8.0级地震前后,即2008年5月1日至7月4日,对重庆北温泉水(距震中约400 km)进行采样监测,发现泉水水温水量发生较大变化:震后水温下降了1℃:海拔相对较高的BWQ-2、BWQ-3、BWQ-4相继断流,监测点BWQ-1的水量增加了15 L/s;与此同时.各泉点Fe~(3+)、Mn~(2+)浓度于地震当日成倍增长,随后逐渐减小,7月4日时浓度与5月1日相当.重庆北温泉位于四川盆地东部边缘地带,受汶川地震强烈影响导致冷水下渗作用,海拔相对较高而温度较低的温泉水改道,并有其他来自裂隙或者地表的低温水汇入温泉含水层,Fe~(3+)、Mn~(2+)浓度的变化从水化学上印证了冷水下渗学说.  相似文献   

11.
Seismic shear‐wave splitting (SWS) monitors the low‐level deformation of fluid‐saturated microcracked rock. We report evidence of systematic SWS changes, recorded above small earthquakes, monitoring the accumulation of stress before earthquakes that allows the time and magnitude of impending large earthquakes to be stress‐forecast. The effects have been seen with hindsight before some 15 earthquakes ranging in magnitude from an M1.7 seismic swarm event in Iceland to the Ms7.7 Chi‐Chi Earthquake in Taiwan, including a successfully stress‐forecast of a M5.0 earthquake in SW Iceland. Characteristic increases in SWS time‐delays are observed before large earthquakes, which abruptly change to deceases shortly before the earthquake occurs. There is a linear relationship between magnitudes and logarithms of durations of both increases and decreases in SWS time‐delays before large impending earthquakes. However, suitably persistent swarms of small earthquakes are too scarce for routine stress‐forecasting. Reliable forecasting requires controlled‐source cross‐hole seismics between neighbouring boreholes in stress‐monitoring sites (SMS). It would be possible to stress‐forecast damaging earthquakes worldwide by a global network of SMS in real time.  相似文献   

12.
The preparation process of an impending earthquake may leave fingerprints on the earth??s surface. Elastic strain in rocks, formation of micro-cracks, gas releases and other chemical or physical activities in the earth??s crust before and during earthquakes has been reported to cause rises in temperature, surface latent heat flux (SLHF), upwelling index and chlorophyll-a (Chl-a) concentration on the ground or sea surface. Changes in surface temperature can be monitored with thermal infrared sensors such as NOAA-AVHRR and microwave radiometers like AMSR-E/Aqua. SLHF data and upwelling indices are provided by National Centers for Environmental Prediction (NCEP) Reanalysis Project and Pacific Fisheries Environmental Laboratory, respectively. This study examines behaviors of the above four factors prior to the past three oceanic and coastal earthquakes occurred at the Pacific Ocean (Northern California of June 15, 2005, Central California of September 28, 2004, and December 22, 2003). We were successful in detecting pre-earthquake anomalies prior to all three earthquakes. Our detailed analysis revealed 1?C5?°C rises in surface temperature in epicentral areas. Considerable anomalies in Chl-a concentration, 1?C2?weeks before the day of the main earthquakes, were spotted, which are attributed to the rise in upwelling index. Time series of SLHF showed meaningful rises from 1?month to a fortnight before the earthquake events. One problem in our research was the low resolution of the data which makes the graphs that are generated from NCEP database affected by all sources of anomalies, other than seismic activities, within an about 1.8°?C2.5° (200?km) area.  相似文献   

13.
We observe the spatial distributions of the magnitude of aftershocks following the six earthquakes of focal depth shallower than 20 km with magnitude more than 5.0 from 1983 to 1987 in Japan. The upper limit of the aftershock magnitude is examined as a function of the distance from mainshock hypocentre. The observed spatial distributions of the upper limit are bimodal, with a tendency of the upper limit to decrease as the distance from mainshock hypocentre increases. Moreover, we observe the correlations between the aftershock spatial distribution and earthquake fault length. We focus on the largest aftershocks in each of two aftershock sequences constituting the bimodal distribution. The distances of the two largest aftershocks from the mainshock hypocentre are equal to the fault lengths of shallow earthquakes in Japan and to the maximum earthquake fault lengths.  相似文献   

14.
The August 1, 1975 earthquake near Oroville, California, occurred along the Sierra foothills in a region characterized by occasional moderate earthquakes. Several earthquakes in the general region, including those in 1869, 1875, and 1909, appear to have had significant aftershock sequences. The general character of the aftershock sequence of the Oroville earthquake thus does not appear to be anomalous when measured against the known seismic history of this area.

Four smoked-paper micro-earthquake recorders were deployed immediately following the occurrence of the main earthquake to attempt to define the structural associations of the principal earthquake by location and analysis of aftershocks. Focal locations for 243 micro-earthquakes in the magnitude range of 1–3 were selected from the 30-day period (August 2–September 1), during which monitoring was continued. The aftershocks clearly define a planar surface striking north–south and dipping west at 62° from the surface to a depth of about 12 km. Aftershocks during the first two days of monitoring defined a surface of active faulting of approximately 100 km2. Extension of this surface both to the north and south began on August 5 at focal depths of 5–10 km, resulting in a total ruptured area of approximately 125 km2. The number of aftershocks per day decreased at the rate oft−1.1, but the decay curve was punctuated by several secondary aftershock sequences. No. direct relationship between the aftershock sequence and the presence of Oroville Reservoir was observed.  相似文献   


15.
2008年5月12日汶川特大地震震害调查及分析表明,目前以活动断裂和历史地震调查为重点的工程区域构造稳定性评价方法存在漏判与误判特大地震问题,从而为工程安全埋下重大安全隐患。以龙门山活动推覆体为例,在已有研究成果基础上,利用岩体结构控制论、拜尔利定律等普适性原理对龙门山地壳岩体结构力学特征、控震结构面的抗剪强度与地震震级的线性相关性、地震震级与抗震设防烈度的关系进行了定量研究,对评价区域构造稳定性的关键问题进行了探讨。结果表明,推覆体型活动地块边界带中的滑脱层是对推覆体区域构造稳定性起主要控制作用的构造结构面--控震结构面,地震震级与滑脱层的埋深、抗剪切强度存在显著相关性:8级地震的震源深度接近20 km、7级地震的震源深度接近14 km、6级地震的震源深度接近10 km,据此对研究区及邻近的古地震进行了深度核定,圈定了龙门山活动推覆体-岷山地块的6级以上强震可能发生的范围、对应Ⅶ-Ⅺ度的抗震设防烈度范围。此研究成果弥补了以往根据活动断裂-发震断裂-历史最大震级与对应地震烈度评价工程区域构造稳定性,因历史地震资料疏漏不全、活动断裂带研究平面与深度范围局限以及忽视区域构造稳定性的岩体力学实质而导致评价结果常常出现误判与漏判的诸多缺陷。  相似文献   

16.
Several thousand aftershocks of the August 1, 1975 Oroville, California, earthquake (ML = 5.7) were recorded by an 8-station field-seismic network. Focal coordinates of 104 of these events were fitted by least-squares to a plane striking N07°W and dipping 59°W; the strike (but not the dip) of this plane is in good agreement with that (N09°W) obtained from a fault-plane solution for a large foreshock 8 sec before the main shock, and it agrees fairly well with the trend (N15°W) of structural lineaments in the vicinity of Lake Oroville. The surface trace of the plane of foci passes through the Oroville Dam, as well as through surface cracking 12 km south of the dam. The main shock occurred 7 years after the filling of Lake Oroville, but only a month after the most rapid filling since 1968. The rate of aftershock occurrence during the first month decayed approximately as1/t. Event duration was measured for more than 2,000 aftershocks during August and September; average log-duration, taken over samples of 100 events, decreased gradually during this period. Close-in spectra obtained from strong-motion recordings of several of the larger aftershocks have corner frequencies that are quite high compared to other western U.S. earthquakes of similar magnitude. The Oroville earthquakes had several features in common with another Sierra Nevada earthquake sequence, near Truckee, California, in September, 1966.  相似文献   

17.
汶川震区文家沟泥石流成灾机理与特征   总被引:4,自引:0,他引:4  
文家沟位于绵竹市清平乡,属于5·12汶川Ms8.0级地震极重灾区.地震发生后的3个汛期内,文家沟曾先后发生5次典型泥石流灾害,其中以2010年8月13日泥石流灾害最为严重,规模与灾情巨大,社会影响深远.在对文家沟泥石流跟踪调查的基础上,探讨了泥石流的成灾机理和特征.研究表明:(1)文家沟泥石流是地震和强降雨共同作用的结...  相似文献   

18.
Coseismic geochemical variations have been detected in some gaseous vents and natural springs during the last seismic crisis occurred in Umbria region (Central Apennines), that started on September 26th, 1997 with several moderate earthquakes (up to M1 5.8). The results of chemical analyses performed on both gas and water samples taken at a weekly rate, combined with analyses on continuous gas flow rate nearby San Faustino site, suggest that the variations can be interpreted as possible consequence of the crustal permeability changes induced by earthquake shaking.  相似文献   

19.
Koyna-Warna region of western India is an active seismic zone due to the Reservoir Triggered Seismicity (RTS). Earthquake precursor studies are carried out monitoring hydrochemical and stable isotope signatures in the groundwater from 15 bore wells since January 2005, for more than 12 years (January 2005 to February 2017). Depth of these boreholes ranges from 100 to 250 m. Cyclic or temporal variation in hydrochemistry is observed in few sensitive wells in Koyna region. The Govare well in Koyna is found to be most sensitive and the observed hydrochemical cycle is closely associated with local earthquakes of M > 5. The earthquakes M <5 occurring either in Warna cluster or close to the observation wells, did not generate hydrochemical precursory changes. The increase in hydrochemistry is hypothesized as mixing of two aquifer waters with different hydrochemistry. It is noted that a precursory hydrochemical cycle is observed during first quarter of 2015, but no earthquake M > 5.0 occurred till date. The cyclic changes in hydrochemistry, however, indicate on-going earthquake processes and an impending earthquake of M > 5 in the region.  相似文献   

20.
On December 26, 2004 the world's fourth largest earthquake since 1900 and the largest since the 1964 Prince William Sound, Alaska earthquake, occurred off the west coast of northern Sumatra with a magnitude of 9.3. On March 28, 2005 another event of magnitude 8.7 took place in the same region. The December 26, 2004 earthquake has prompted scientists to investigate possible electromagnetic signatures of this event, using ground magnetic observations. Iyemori et al. [Iyemori, T. et al., 2005. Geomagnetic pulsations caused by the Sumatra earthquake on December 26, 2004. Geophys. Res. Lett., 32, L20807, doi:10.1029/2005GL024083.] have suggested that a 3.6 min long geomagnetic pulsation, observed shortly after this event, was generated by the earthquake. They have speculated that a 30 s magnetic pulsation was also caused by the earthquake. Here for the first time, CHAMP satellite magnetic and electron density data are examined to find out if electromagnetic signatures which are possibly related to these recent megathrust earthquakes are observed in satellite magnetic data. We have shown that some specific features are observed after the two earthquakes, with periods of about 16 and 30 s. Our results favor an external source origin for the 30 s pulsation. Moreover, after more than 1 h, CHAMP magnetic data indicate the existence of a feature characterized by the same parameters (duration, amplitude, and frequency content), which could be associated with each earthquake, respectively. Further investigations are required in order to answer the question of whether these signals can be associated with earthquakes and to assign their possible usefulness with respect to earthquake development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号