首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental assessments are conducted prior to mineral development at proposed mining operations. Among the objectives of these assessments is prediction of solute release from mine wastes projected to be generated by the proposed mining and associated operations. This paper provides guidance to those engaged in these assessments and, in more detail, provides insights on solid-phase characterization and application of kinetic test results for predicting solute release from waste rock. The logic guiding the process is consistent with general model construction practices and recent publications. Baseline conditions at the proposed site are determined and a detailed operational plan is developed and imposed upon the site. Block modeling of the mine geology is conducted to identify the mineral assemblages present, their masses and compositional variations. This information is used to select samples, representative of waste rock to be generated, that will be analyzed and tested to describe characteristics influencing waste rock drainage quality. The characterization results are used to select samples for laboratory dissolution testing (kinetic tests). These tests provide empirical data on dissolution of the various mineral assemblages present as waste rock. The data generated are used, in conjunction with environmental conditions, the proposed method of mine waste storage, and scientific and technical principles, to estimate solute release rates for the operational scale waste rock.Common concerns regarding waste rock are generation of acidic drainage and release of heavy metals and sulfate. Key solid phases in the assessments are those that dissolve to release acid and sulfate (iron sulfides, soluble iron sulfates, hydrated iron-sulfate minerals, minerals of the alunite–jarosite group), those that dissolve to neutralize acid (calcium and magnesium carbonates, silicate minerals), and those that release trace metals (trace metal sulfides, hydrated trace metal-sulfate minerals). Conventional mineralogic, petrographic, and geochemical analyses generally can be used to determine the quantities of these minerals present and to describe characteristics that influence their dissolution. A key solid-phase characteristic is the mineral surface area exposed for reaction, which is influenced by mode of occurrence (included, interstitial, liberated) and the extent of mineral surface coating. Short-term dissolution tests can estimate the extent of hydrated sulfate minerals present. Longer term dissolution tests are necessary to describe the dependence of drainage pH and solute release rates on solid-phase variation. The extensive data compiled from baseline pre-development definition, the operational plan, solid-phase characterization, and dissolution testing are ultimately synthesized by means of a modeling exercise requiring considerable technical and scientific expertise. The predicted rates (model outputs) are expressed as probability distributions to allow assessment of risk. This exercise must be technically defensible and transparent so that regulators can confidently assess the results and evaluate the operational plan proposed. Technical and non-technical challenges involved in implementing such programs are identified to benefit management planning for both industry and government.  相似文献   

2.
Weathering reactions producing and consuming acid in fresh waste rock samples from the Aitik Cu mine in northern Sweden have been investigated. Batch-scale (0.15 kg) acid titrations with waste rock of different particle sizes were operated for 5 months. The pH was adjusted to a nearly constant level, similar to that in effluents from waste rock dumps at the site (pH near 3.5). The reactions were followed by analysing for all major dissolved elements (K, Na, Mg, Ca, Si, Al, SO4, Cu, Zn, Fe) in aliquots of solution from the reaction vessels. In addition, the solids were physically and chemically characterised in terms of mineralogy, chemical composition, particle size distribution, surface area and porosity. The results show that the alkalinity production is initially dominated by a rapid dissolution of small amounts of calcite and rapidly exchangeable base cations on silicate surfaces. Steady-state dissolution of primary silicate minerals also generates alkalinity. The total alkalinity is nearly balanced by input of acid from the steady-state oxidation of sulphides, such that the pH 3.1–3.4 can be maintained without external input of acid or base. There is a large difference in weathering rates between fine materials and larger waste rock particles (diameters (d) >0.25 mm) for both sulphides and silicates. As a result particles with d smaller than 0.25 mm contribute to approximately 80% of the sulphide and silicate dissolution. Calcite dissolution can initially maintain a neutral pH but with time becomes limited by intra-particle diffusion. Calcite within particles larger than 5–10 mm reacts too slowly to neutralise the acid produced from sulphides.  相似文献   

3.
岩石矿物的微生物风化是地球表层系统最为活跃和普遍发生的地质营力之一。微生物对含钾岩石(以硅酸盐矿物为主)的风化能够释放其中的钾、硅和钙等元素,并在合适的环境条件下促进矿物元素的碳酸化沉淀,这是地表元素地球化学循环的重要环节之一。微生物对岩石的生物转化作用既涉及微生物的生长繁殖和代谢调控,也与元素的迁移转化和次生矿物的演化序列有关,具有重要研究价值。采用矿物学、微生物学和分子生物学等相结合的研究方法,有助于系统地研究微生物促进含钾硅酸盐矿物的风化并耦联碳酸化过程及其分子调控机制。研究证实,在纯培养条件下,微生物风化含钾矿物主要采用酸解、螯合、氧化还原等多种方式的协同作用,并可通过调控相关功能基因的表达来响应缺钾的环境以实现其对含钾矿物的有效风化,显然这有赖于微生物通过长期进化而形成的精细的分子调控机制。在土壤生态环境中,微生物对矿物风化的显著特征是该生态环境中微生物群落协同互作的群体作用效应。微生物碳酸酐酶参与的硅酸盐矿物风化伴随碳酸盐矿物的形成过程可能是个长期被忽视的地表碳增汇过程,对该问题的深入探索有助于进一步理解地质演化历史中微生物对碳素迁移转化的驱动机制。加入含钾硅酸盐矿粉的有机肥已经显示出其在土壤改良、作物生长和增加土壤碳汇等方面的正面应用效果,这为利用硅酸盐矿物的生物风化作用来延缓大气CO2浓度的持续升高提供了新的思路。介绍了有关微生物对含钾岩石生物转化释放钾素的分子机理及其碳汇效应方面的研究进展,以期抛砖引玉,推动该领域研究的快速发展。  相似文献   

4.
Heavy-metal dispersion around the Vigonzano copper mine has been investigated by the analysis of waste dump material, surface soils, stream sediments and stream waters. Factors controlling their distribution have been investigated by means of mineralogical analyses, grain-size separation, and sequential extractions. Sheet silicates (chlorite and talc) and quartz dominate the mineralogy of the waste dump which is characterized by goethite, a product of sulfide weathering. Smectite, chlorite and talc are abundant in the <2 µm fraction. Chromium, Ni, Co and Cu have high enrichment levels within the waste area, but with the exception of Cu, are related to the occurrence of barren ultramafic rocks. Cu and, to a lesser extent, also Zn derive from ore minerals and are associated with their weathering products. Acid drainage has been observed but it is restricted to the waste area. Dissolved metal concentrations are locally high (e.g. 63 mg/l for Cu) in surface runoff from the waste area, but do not severely affect the surroundings because of precipitation of amorphous Cu-Al sulfate, related to an alkaline geochemical barrier. The limited impact of the mine is also due to the geological setting of this type of mineralization (Cyprus type), characterized by the association of the ore with mafic and ultramafic rock because the latter are characterized by alkaline drainage.  相似文献   

5.
Active acid mine drainage (AMD) processes at the Libiola Fe-Cu sulphides mine are mainly triggered by water–rock interaction occurring within open-air tailing and waste-rock dumps. These processes are mainly controlled by exposure to weathering agents, the grain size of the dumped materials, and by the quantity of sulphides, the sulphide types, and their mode of occurrence. Due to these factors, several paragenetic stages of evolution have been recognised at different depths at different sites and within the same site. The dump samples were investigated with mineralogical (reflected- and transmitted-light optical microscopy, XRPD, and SEM-EDS) and geochemical (ICP-AES, Leco) techniques. The AMD evaluation of the tailing and waste-rock samples was performed by calculating the Maximum Potential Acidity, the Acid Neutralising Capacity, (and the Net Acid Producing Potential. The results allowed us to demonstrate that the open-air tailings had already superseded their AMD apex and are now practically inert material composed mainly of stable goethite ± lepidocrocite ± hematite assemblages. On the contrary, the sulphide-rich waste rocks still have a strong potential to produce long term AMD, causing the acidification of circulating waters and the release of several hazardous elements.  相似文献   

6.
The rise of vascular land plants in the Paleozoic is hypothesized to have driven lower atmospheric CO2 levels through enhanced weathering of Ca and Mg bearing silicate minerals and rocks. However, this view overlooks the co-evolution of roots and mycorrhizal fungi, with many of the weathering processes ascribed to plants potentially being driven by the combined activities of roots and fungi. Here mesocosm scale controlled laboratory experiments quantifying the effects of plant and fungal evolution on silicate rock weathering under ambient and elevated CO2 concentrations are described. A snapshot is presented of C allocation through roots and mycorrhizal fungi and biological activity associated with geochemical changes in weathered mineral substrates via transfer of elements from solid phases into solution.  相似文献   

7.
Small-scale mining and mineral processing at the Webbs Consols polymetallic PbZnAg deposit in northern New South Wales, Australia has caused a significant environmental impact on streams, soils and vegetation. Unconfined waste rock dumps and tailings dams are the source of the problems. The partly oxidised sulphidic mine wastes contain abundant sulphides (arsenopyrite, sphalerite, galena) and oxidation products (scorodite, anglesite, smectite, Fe-oxyhydroxides), and possess extreme As and Pb (wt% levels) and elevated Ag, Cd, Cu, Sb and Zn values. Contemporary sulphide oxidation, hardpan formation, crystallisation of mineral efflorescences and acid mine drainage generation occur within the waste repositories. Acid seepages (pH 1.9–6.0) from waste dumps, tailings dams and mine workings display extreme As, Pb and Zn and elevated Cd, Cu and Sb contents. Drainage from the area is by the strongly contaminated Webbs Consols Creek and although this stream joins and is diluted by the much larger Severn River, contamination of water and stream sediments in the latter is evident for 1–5 km, and 12 km respectively, downstream of the mine site. The pronounced contamination of local and regional soils and sediments, despite the relatively small scale of the former operation, is due to the high metal tenor of abandoned waste material and the scarcity of neutralising minerals. Any rehabilitation plan of the site should include the relocation of waste materials to higher ground and capping, with only partial neutralisation of the waste to pH 4–5 in order to limit potential dissolution of scorodite and mobilisation of As into seepages and stream waters.  相似文献   

8.
The hydrochemical balance of the Yaou catchment in French Guiana was determined over a period of 1 year, combined with a detailed characterization of the primary minerals and their weathering products, in order to estimate ultramafic rock weathering rates in a rainforest environment. The time required to develop the main horizons of the laterite profile was obtained from estimations of the weathering rates and dissolution kinetics of some major parent minerals (chlorite, serpentine, biotite, calcite).

The specific transport of solute matter in the catchment is 205 kg/ha/a. The Cl and NO3 net outputs shows that the system is in dynamic equilibrium, notably with respect to the biomass reservoir. The output flux of Mg in solution is mainly supplied from the weathering of primary minerals, whereas that of Ca comes both from atmospheric contributions and from the dissolution of carbonates. The fluxes of K and, more particularly, Na derive essentially from the atmosphere. Knowing the weathering rate of primary minerals, the total CO2 consumption rate by silicate weathering is estimated at 1430 mol/ha/a.

The weathering rates of chlorite, serpentine and biotite range from 18 to 65 mol/ha/a, and those of talc and calcite are, respectively 51 and 153 mol/ha/a. Weathering rates normalized to mineral modal proportions give a decreasing order of stability resistance to weathering (calcitebiotitechlorite>serpentine>talc) that agrees with their vertical distribution in the weathering profile. The dissolution kinetics of chlorite, biotite and serpentine, expressed in relation to the Si release rate, were calculated using estimations of the mineral exchange surface by (a) optical microscope image processing of crystal outlines, and (b) BET specific surface measurements. The release rate of Si, computed for biotite, chlorite and serpentine, ranges around 10−13 and 10−14 mol/m2/s using microscope images on particle sizes. The estimated dissolution kinetics is two orders of magnitude lower when using the BET measured exchange surface, which is 100 times larger.

The saprolitization rate, calculated from the weathering rates of calcite, chlorite and biotite, is on average 7.5 m/Ma. The rate of latosol development, calculated from the weathering rate of serpentine at the saprolite–latosol interface, is estimated at 4.5 m/Ma. That means that the profile is chemically thickening at a rate of 3 m/Ma.  相似文献   


9.
The water chemistry of Pichola lake revealed that it is dominated by Na and HCO3. The lake water chemistry strongly reflects the dominance of continental weathering aided by anthropogenic activity, such as tourist influx, developmental activities in the catchment area, and disposal of untreated municipal and domestic sewage into the lake basin. The supply of major ions is mainly through weathering of the silicate rock exposed in the drainage basin and the contribution from saline and alkaline soils/groundwater because of the semiarid conditions of the region. The increase in phosphate loading and consequent depletion of silica suggests biological consumption of the latter. The observed chemical data of Pichola lake was used to predict the mineral assemblages in the carbonate and aluminosilicate system. It demonstrates that calcite and dolomite are the possible minerals that are in equilibrium with the lake water system and that the lake water chemistry is in the range of stability of kaolinite.  相似文献   

10.
Chemical weathering of silicate minerals consumes atmospheric CO2 and is a fundamental component of geochemical cycles and of the climate system on long timescales. Artificial acceleration of such weathering (“enhanced weathering”) has recently been proposed as a method of mitigating anthropogenic climate change, by adding fine-grained silicate materials to continental surfaces. The efficacy of such intervention in the carbon cycle strongly depends on the mineral dissolution rates that occur, but these rates remain uncertain. Dissolution rates determined from catchment scale investigations are generally several orders of magnitude slower than those predicted from kinetic information derived from laboratory studies. Here we present results from laboratory flow-through dissolution experiments which seek to bridge this observational discrepancy by using columns of soil returned to the laboratory from a field site. We constrain the dissolution rate of olivine added to the top of one of these columns, while maintaining much of the complexity inherent in the soil environment. Continual addition of water to the top of the soil columns, and analysis of elemental composition of waters exiting at the base was conducted for a period of five months, and the solid and leachable composition of the soils was also assessed before and after the experiments. Chemical results indicate clear release of Mg2+ from the dissolution of olivine and, by comparison with a control case, allow the rate of olivine dissolution to be estimated between 10−16.4 and 10−15.5 moles(Mg) cm−2 s−1. Measurements also allow secondary mineral formation in the soil to be assessed, and suggest that no significant secondary uptake of Mg2+ has occurred. The olivine dissolution rates are intermediate between those of pure laboratory and field studies and provide a useful constraint on weathering processes in natural environments, such as during soil profile deepening or the addition of mineral dust or volcanic ash to soils surfaces. The dissolution rates also provide critical information for the assessment of enhanced weathering including the expected surface-area and energy requirements.  相似文献   

11.
Fine fractions of soils on the Barton Peninsula, King George Island, West Antarctica have been forming during the last 6000 yr since the last deglaciation. Texturally, they are mostly composed of mineral and rock fragments with some volcanic ashes, which are also indicated by geochemical compositions representing for the nonclay silicate minerals and low values of chemical index of alteration. No significant changes are observed in major- and trace element abundances. Such geochemical characteristics suggest that chemical weathering of bedrocks on the Barton Peninsula seems insignificant and that the soils are composed of physically weathered mineral and rock fragments which are mixed with eolian additions of volcanic ashes and Patagonian dusts. Chondrite-normalized rare earth element (REE) distribution patterns of the Barton Peninsula soils are slightly different from those of bedrocks, indicating that the REE abundances and characteristics were influenced by eolian additions. Mixing calculations, which mass-balance the REEs, suggest that volcanic ashes blown from Deception Island were the major eolian contributor, followed by atmospheric dusts sourced from Patagonia, South America. Even in the warmer and humid climatic conditions in the maritime Antarctic region, the chemical weathering of bedrocks appears to be insignificant, probably due to the relatively short duration of weathering since the last deglaciation.  相似文献   

12.
青藏高原东部金沙江流域盆地陆地风化特征   总被引:2,自引:0,他引:2       下载免费PDF全文
青藏高原东部金沙江流域是研究高原隆升与陆地风化的理想地区。本文通过对金沙江河流系统的取样,从河流溶质载荷主要离子和悬浮载荷粘土矿物等方面揭示青藏高原东部金沙江流域盆地陆地风化特征。研究表明,金沙江流域盆地陆地岩石风化主要是碳酸盐岩、蒸发盐岩和硅酸盐岩。利用S i、S i/TZ+*、S i/Na*+K和S i/K以及(Na*+K)/TZ+等5个指标结合流域区域岩石分布和土壤特征揭示出流域硅酸盐岩为浅表性初级风化,风化产物主要是富含阳离子的次生粘土矿物。  相似文献   

13.
下庄铀矿为一花岗岩型铀矿,矿田地处湿热气候条件下,沥青铀矿普遍产于破碎带中,这种特定的产出环境致使该区沥青铀矿经受了强烈的风化,形成种类繁多、数量丰富的铀酰矿物;而我国高放废物地质处置库拟建在花岗岩体中。因此,下庄铀矿田是开展核废料氧化的天然类比研究的理想地区,并对我国的高放废物地质处置库的安全性评价有重要的指导作用。下庄铀矿田的铀酰矿物组合为铀酰氢氧化物、铀酰硅酸盐和铀酰磷酸盐,包括柱铀矿、黄钙铀矿、calciouranoite、红铀矿、富硅铀酰相、硅钙铀矿、钙铀云母和盈江铀矿等。根据它们的空间分布特征可划分成两个风化系列,即硅酸盐风化系列和磷酸盐风化系列,其共生次序分别为:沥青铀矿→铀酰氢氧化物(氧化物)→富硅铀酰相→硅钙铀矿和沥青铀矿→铀酰氢氧化物(氧化物)→钙铀云母→盈江铀矿。在该矿田中,铀酰氢氧化物是亚稳定相矿物,常常被铀酰硅酸盐或磷酸盐取代,因此,铀酰氢氧化物仅出现在少数样品中,而铀酰硅酸盐和铀酰磷酸盐矿物则非常普遍。矿田中的铀酰矿物在化学成分上以富钙为其显著特征,由于核废料地质处置库近场地下水中的Ca^2+含量应该明显比下庄矿田地下水中的高,因此,我们预测含Ca的铀酰硅酸盐和铀酰磷酸盐矿物等热力学上的稳定物相很可能是地质处置系统中最主要的铀酰矿物,处置库内放射性核素的迁移主要是由这些矿物控制的。  相似文献   

14.
Usually, equilibrium constants for aqueous geochemical reactions in the unsaturated zone are assumed to be equal to those for free water solutions (at atmospheric pressure) considered in classical water chemistry. This paper shows that high negative pressures in pore water may essentially change these constants in dry soils and sediments. The influence of negative capillary pressures on equilibrium constants for some important reactions occurring in the upper part of the unsaturated zone is analyzed. It is shown that values of these constants at low water contents may differ from those normally used by orders of magnitude. Sediment drying usually decreases the equilibrium constant for salt dissolution-precipitation reactions (makes precipitation easier) and for silicate weathering (delays it), whilst in the case of dedolomitization, orthoclase-albite transition and some types of cation exchange the equilibrium constant grows and these processes in dry soils and sediments have to be enhanced. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The mineralogy and geochemistry of the waste rocks distributed at Taojiang Mn-ore deposit, central Hunan province, China, were studied using X-ray powder diffraction (XRD), electron microprobe analysis (EMPA) fitted with energy dispersive spectrometer (EDS) and inductively coupled plasma mass spectrum (atomic emission spectra) ICP-MS (AES), with the aim of predicting the environmental impacts of weathering of the waste rocks. The mineralogical results from microscope observation and XRD and EMPA studies show that the waste rock is composed of black shale and minor Mn carbonates. The oxidation of sulfide minerals such as galena, pyrite and chalcopyrite is accompanied by decomposition of Mn carbonates and K-feldspar during exposure to atmospheric O2. The geochemical characteristics of major, rare earth elements (REE) and trace elements of the waste rocks also show that the waste rock can be divided into black shale and Mn carbonate, and both of them are currently under chemical weathering. The major alkalies and alkaline elements (Ca, Mg, Na, K, Rb, Sr and Cs) and major elements (Fe, S and P) and heavy metals (Sc, V, Cr, Th, U, Sn, Co, Ni, Cu, Zn, Pb, Mo, Cd, Sb, an Tl) are being released during weathering. The mobility of alkalis and alkaline elements Ca, Mg, Na, K, Rb, Sr and Cs is controlled by decomposition of Mn carbonates. The dispersion of Cr, Sc and Th (U) might be related to weathering of K-feldspar, and the release of the heavy metals Co, Ni, Cu, Zn, Pb, Mo, Cd Sb and Tl is dominated by the breaking of sulfide minerals. The REE of the waste rocks and surrounding soils and the spidery distribution patterns of heavy metals in the waste rocks, the surrounding soils and the surface waters show that weathering of the waste rocks and bedrock might be the sources of heavy metal contamination for the surrounding soils and surface water system for the mining area. This is predicted by the mass-balance calculation by using Zr as an immobile element. Therefore, it is urgently necessary take measures to treat the waste rocks distributed throughout the area for the local environmental protection.  相似文献   

16.
A general model is presented for geochemical processes occurring in the unsaturated zone of a carbonate-depleted, pyritic tailings deposit. Quantification of slow geochemical reactions, using published, empirical rate laws from small-scale experiments on monomineralic samples, and geochemical equilibrium reactions successfully reproduced the relative rates of field processes in the case study, Impoundment 1 in Kristineberg. Reproduction of absolute rates was achieved by scaling down all laboratory-derived mineral weathering rates by two orders of magnitude. The sensitivity of the modelled groundwater composition and pH to rates of pH-buffering processes and redox reactions indicated that inclusion and accurate quantification of all dominant geochemical processes on the field scale is necessary for reliable prediction of groundwater composition and pH.  相似文献   

17.
In the southern Upper Rhine Valley, groundwater has undergone intensive saline pollution caused by the infiltration of mining brines, a consequence of potash extraction carried out during the 20th century. Major and trace elements along with Sr and U isotopic ratios show that groundwater geochemical characteristics along the saline plumes cannot reflect conservative mixing between saline waters resulting from the dissolution of waste heaps and one or more unpolluted end-members. The results imply the occurrence of interactions between host rocks and polluted waters, and they suggest that cationic exchange mechanisms are the primary controlling process. A coupled hydrogeochemical model has been developed with the numerical code KIRMAT, which demonstrates that cationic exchange between alkalis from polluted waters and alkaline-earth elements from montmorillonite present in the host rock of the aquifer is the primary process controlling the geochemical evolution of the groundwater. The model requires only a small amount of montmorillonite (between 0.75% and 2.25%), which is in agreement with the observed mineralogical composition of the aquifer. The model also proves that a small contribution of calcite precipitation/dissolution takes places whereas other secondary mineral precipitation or host rock mineral dissolution do not play a significant role in the geochemical signature of the studied groundwater samples. Application of the model demonstrates that it is necessary to consider the pollution history to explain the important Cl, Na and Ca concentration modifications in groundwater samples taken over 2 km downstream of waste heaps. Additionally, the model shows that the rapidity of the cationic exchange reactions insures a reversibility of the cation fixation on clays in the aquifer.  相似文献   

18.
发育完整的灰岩风化壳及其矿物学和地球化学特征   总被引:25,自引:5,他引:20  
对于碳酸盐岩土覆土壤成因、尽管碳酸盐岩风化残积成土说被多数学者认同,但由于碳酸盐岩中酸不溶物含量极低,在风化成土过程中会伴随着巨大的体积缩小变化,原岩结构和半风化带无法保留,从而缺失了探索上覆土壤物质来源的重要中间环节,使得这种观点缺乏野外宏观证据的支持。最近,我们在贵州、湖南等地发现了数个以泥质灰岩和泥质白云岩为基岩的碳酸盐岩风化壳剖面,尚保留有较好的原岩结构,具有明显的风化壳分带和过渡现象。这些风化壳剖面的发现为深入研究碳酸盐岩风化成土过程提供了良好的研究场所。本文选取了较为典型的吉首泥灰岩风化壳剖面,从矿物学地球化学的角度来探讨碳酸盐岩风化壳的形成过程和发育特征,结果表明该风化壳既遵循非碳酸盐岩(主要是结晶岩类)风化壳的发育特征,也具有自己独特的地球化学演化规律。风化壳总体特点受碳酸盐中的酸不溶物矿物组合及化学成分的影响甚至控制,风化非碳酸盐风壳相似的发育特征。吉首泥灰岩风化壳剖面的发育特征和作者早先提出 的碳酸盐岩风化成土的两阶段模式是一致的,即以碳酸盐矿物大量淋失、酸不溶物逐渐堆积或残积为特征的早期阶段和残积物进一步风化成土的阶段,后一阶段的演化类似非碳酸盐岩类的风化过程。  相似文献   

19.
水系演化研究是揭示流域地貌—构造—气候演化之间相互作用的重要途径。松花江水系演化研究目前还相对薄弱,尤其是第四纪松花江中上游是否发生流向反转存在争议。自动定量矿物分析系统TIMA(TESCAN Integrated Mineral Analyzer)在源区识别和古地理重建方面有极大的应用潜力。为此,本文利用TIMA技术对位于松花江T2阶地的哈尔滨荒山岩心沉积物进行重矿物及全岩矿物地球化学组成分析。结果表明,以深度62.3 m为界,岩心上、下地层沉积物的重矿物(例如,锆石、磷灰石、金红石、榍石、石榴石、钛铁矿、铁磁矿物和硅铁矿)及全岩矿物地球化学组成均存在明显差异。62.3 m以上地层沉积物的重矿物组合是闪石类+帘石类+榍石+铁磁矿物,硅铁锂钠石在上段地层中出现,全岩矿物地球化学元素较为稳定,波动幅度较小;62.3 m以下地层沉积物的重矿物组合是闪石类+帘石类+钛铁矿+榍石,方解石、铬铁矿、蛇纹石、黄铁矿和磁黄铁矿仅在下段地层中出现,全岩矿物地球化学元素波动幅度较大。TIMA重矿物和全岩矿物地球化学组成反映了岩心沉积物的物源发生明显变化,进而指示了松花江的水系演化。结合在依兰发现的河湖相地层,我们提出了松花江水系演化的新模式。早更新世时期,佳依(佳木斯—依兰)分水岭将松嫩水系和三江平原水系分隔开,作为松花江上游的牡丹江向东流经依兰—通河—哈尔滨,最终注入松嫩古湖。在0.94 Ma B. P.之后,松辽分水岭局部隆升,古松花江发生反转,从西向东流至通河—依兰地区形成古大湖。湖泊水位不断升高致使湖水溢流切穿佳依分水岭,形成现代松花江水系的基本格局。这挑战了以前的向源侵蚀导致佳依分水岭被切穿的水系演化模式。  相似文献   

20.
The behavior of the platinum group elements (PGE) and Re in felsic magmas is poorly understood due to scarcity of data. We report the concentrations of Ni, Cu, Re, and PGE in the compositionally diverse Boggy Plain zoned pluton (BPZP), which shows a variation of rock type from gabbro through granodiorite and granite to aplite with a SiO2 range from 52 to 74 wt %. In addition, major silicate and oxide minerals were analyzed for Ni, Cu, and Re, and a systematic sulfide study was carried out to investigate the role of silicate, oxide, and sulfide minerals on chalcophile element geochemistry of the BPZP. Mass balance calculation shows that the whole rock Cu budget hosted by silicate and oxide minerals is <13 wt % and that Cu is dominantly located in sulfide phases, whereas most of the whole rock Ni budget (>70 wt %) is held in major silicate and oxide minerals. Rhenium is dominantly hosted by magnetite and ilmenite. Ovoid-shaped sulfide blebs occur at the boundary between pyroxene phenocrysts and neighboring interstitial phases or within interstitial minerals in the gabbro and the granodiorite. The blebs are composed of pyrrhotite, pyrite, chalcopyrite, and S-bearing Fe-oxide, which contain total trace metals (Co, Ni, Cu, Ag, Pb) up to ~16 wt %. The mineral assemblage, occurrence, shape, and composition of the sulfide blebs are a typical of magmatic sulfide. PGE concentrations in the BPZP vary by more than two orders of magnitude from gabbro (2.7–7.8 ppb Pd, 0.025–0.116 ppb Ir) to aplite (0.05 ppb Pd, 0.001 ppb Ir). Nickel, Cu, Re, and PGE concentrations are positively correlated with MgO in all the rock types although there is a clear discontinuity between the granodiorite and the granite in the trends for Ni, Rh, and Ir when plotted against MgO. Cu/Pd values gradually increase from 6,100 to 52,600 as the MgO content decreases. The sulfide petrology and chalcophile element geochemistry of the BPZP show that sulfide saturation occurred in the late gabbroic stage of magma differentiation. Segregation and distribution of these sulfide blebs controlled Cu and PGE variations within the BPZP rocks although the magma of each rock type may have experienced a different magma evolution history in terms of crustal assimilation and crystal fractionation. The sulfide melt locked in the cumulate rocks must have sequestered a significant portion of the chalcophile elements, which restricted the availability of these metals to magmatic-hydrothermal ore fluids. Therefore, we suggest that the roof rocks that overlay the BPZP were not prospective for magmatic-hydrothermal Cu, Au, or Cu–Au deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号