首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plane models of the magnetopause are investigated under the assumption that ionospheric electrons are able to short-circuit electric fields (exact charge neutrality). Using the Vlasov theory a general method is presented for constructing distribution functions that lead to given magnetic field and tangential bulk velocity profiles. As an example we describe the magnetic field transition in terms of error functions and obtain particle distributions in explicit form, including bulk velocities.It is thus shown that bulk velocities in the direction of the magnetic field do not necessarily lead to a non-equilibrium magnetopause which investigations by Parker and Lerche seem to suggest.Of the European Space Research Organisation (ESRO).  相似文献   

2.
This paper is an exploration of the possibility that the large-scale equilibrium of plasma and magnetic fields in the solar corona is a minimum energy state. Support for this conjecture is sought by considering the simplest form of that equilibrium in a dipole solar field, as suggested by the observed structure of the corona at times of minimum solar activity. Approximate, axisymmetric solutions to the MHD equations are constructed to include both a magnetically closed, hydrostatic region and a magnetically open region where plasma flows along field lines in the form of a transonic, thermally-driven wind. Sequences of such solutions are obtained for various degrees of magnetic field opening, and the total energy of each solution is computed, including contributions from both the plasma and magnetic field. It is shown that along a sequence of increasingly closed coronal magnetic field, the total energy curve is a non-monotonic function of the parameter measuring the degree of magnetic field opening, with a minimum occurring at moderate field opening.For reasonable choices of model parameters (coronal temperature, base density, base magnetic field strength, etc.), the morphology of the minimum energy solution resembles the observed quiet, solar minimum corona. The exact location energy minimum along a given sequence depends rather sensitively on some of the adopted parameter values. It is nevertheless argued that the existence of an energy minimum along the sequences of solutions should remain a robust property of more realistic coronal wind models that incorporate the basic characteristics of the equilibrium corona- the presence of both open and closed magnetic regions.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

3.
A new method using an integral equation has been proposed in this paper for calculating the magnetic field enclosed within a perfect diamagnetic material. A magnetic field is assumed to exist inside an arbitrary cavity in a perfect diamagnetic material. Self-consistent magnetic fields inside the cavity and currents on its surface are calculated, resulting as it should in zero magnetic field outside the cavity. This method has been tested in a special case and the results have been compared to the analytical solutions. This method should be also applicable to any case concerning the interaction between magnetic fields and perfect diamagnetic materials, e.g., to cases where a perfect diamagnetic material is surrounded by a magnetic field.  相似文献   

4.
5.
To seek nonlinear solutions of force-free magnetic fields, some symmetries or approximations are usually invoked. We consider magnetic fields lying on coordinate surfaces of an orthogonal curvilinear coordinate system. We conclude that only fields on parallel planes or spherical shells can be expressed in the form provided by Low in 1980s. These force-free fields are stable against small perturbations with rigid boundaries. Fields on cylindrical shells are also considered.  相似文献   

6.
B. C. Low 《Solar physics》1982,75(1-2):119-131
We present a simple magnetostatic theory of the thin vertical filaments that make up the quiescent prominence plasma as revealed by fine spatial resolution H photographs. A class of exact equilibrium solutions is obtained describing a horizontal row of long vertical filaments whose weights are supported by bowed magnetic field lines. A free function is available to generate different assortments of filament sizes and spacings, as well as different density and temperature variations. The classic Kippenhahn-Schlüter solution for a long sheet without filamentary structures is a particular member of this class of solutions. The role of the magnetic field in supporting and thermally shielding the filament plasma is illustrated. It is found that the filament can have a sharp transition perpendicular to the local field, whereas the transition in the direction of the local field is necessarily diffuse. A consequence of the filamentary structure is that its support by the Lorentz force requires the electric current to have a component along the magnetic field. This electric current flowing into the rarefied region around the prominence can contain substantial energy stored in the form of force-free magnetic fields. This novel feature has implications for the heating and the disruption of prominences.  相似文献   

7.
For application to the auroral ionosphere we have calculated ion velocity distributions for a weakly-ionized plasma subjected to crossed electric and magnetic fields. By replacing the Boltzmann collision integral with a simple relaxation model, we have been able to obtain an exact solution to Boltzmann's equation. This solution has the advantage over a series expansion in that all the higher order velocity moments are inherent in it. The exact solution is particularly advantageous when studying large departures of the distribution from its Maxwellian form because these departures are caused by the higher velocity moments. In general, however, a simple relaxation model can only be used to obtain qualitative information on the distribution function. Consequently, we can determine when the higher order velocity moments affect the ion velocity distribution and the nature of their effect, but we cannot obtain accurate quantitative results. The higher velocity moments have their greatest effect on the distribution function above about 120 km, where the ion-neutral collision frequency is less than the ion cyclotron frequency. As the magnitude of the electric field increases, these higher moments act to decrease the number of ions at the peak of the distribution function. Peak densities are reduced by a few per cent for perpendicular electric fields of about 20 mV m?1.  相似文献   

8.
Topology of Magnetic Field and Coronal Heating in Solar Active Regions   总被引:2,自引:0,他引:2  
Force-free magnetic fields can be computed by making use of a new numerical technique, in which the fields are represented by a boundary integral equation based on a specific Green's function. Vector magnetic fields observed on the photospheric surface can be taken as the boundary conditions of this equation. In this numerical computation, the following two points are emphasized: (1) A new method for data reduction is proposed, for removing uncertainties in boundary data and determining the parameter in this Green's function, which is important for solving the boundary integral equation. In this method, the transverse components of the observed boundary field are calibrated with a linear force-free field model without changing their azimuth. (2) The computed 3-D fields satisfy the divergence-free and force-free conditions with high precision. The alignment of these field lines is mostly in agreement with structures in Hα and Yohkoh soft X-ray images. Since the boundary data are calibrated with a linear force-free field model, the computed 3-D magnetic field can be regarded as a quasi-linear force-free field approximation. The reconstruction of 3-D magnetic field in active region NOAA 7321 was taken as an example to quantitatively exhibit the capability of our new numerical technique.  相似文献   

9.
Evangelidis  E.A.  Vaughan  L.L.  Botha  G.J.J. 《Solar physics》2000,193(1-2):17-32
Incontrovertible evidence is presented that the force-free magnetic fields exhibit strong stochastic behavior. Arnold's solution is given with the associated first integral of energy. A subset of the solution is shown to be non-ergodic whereas the full solution is shown to be ergodic. The first integral of energy is applied to the study of these fields to prove that the equilibrium points of such magnetic configurations are saddle points. Finally, the potential function of the first integral of energy is shown to be a member of the Helmholtz family of solutions. Numerical results corroborate the theoretical conclusions and demonstrate the robustness of the energy integral, which remains constant for arbitrarily long computing times.  相似文献   

10.
This paper considers the structural properties of a sunspot-like magnetic flux tube which lacks perfect axisymmetry. The flux tube is taken to be in static equilibrium with an atmosphere in a uniform gravity. Assuming the departure from axisymmetry to be slight, the equations for the first order non-axisymmetric part of the equilibrium are derived in cylindrical coordinates. These first order equations reduce to a linear second order hyperbolic partial differential equation in the r-z plane. Whereas Cauchy type boundary conditions are appropriate for hyperbolic equations, physical considerations dictate the specification of boundary conditions on a closed surve for our problem of interest. The construction of solutions to this boundary value problem is illustrated with three analytically soluble cases, where the zero-order axisymmetric equilibria are chosen to have magnetic field geometry of different complexity. A physical discussion of the results is given.  相似文献   

11.
The equations of motion of a rigid body about a fixed point in a central Newtonian field is reduced to the equation of plane motion under the action of potential and gyroscopic forces, using the isothermal coordinates on the inertia ellipsoid.The construction of periodic solutions near the equilibrium points, by using the Lipaunov theorem of holomorphic integral, is obtained and the necessary and sufficient conditions for the stability of the system are given.  相似文献   

12.
The equations of motion of a rigid body about a fixed point in a central Newtonian field is reduced to the equation of plane motion under the action of potential and gyroscopic forces, using the isothermal coordinates on the inertia ellipsoid.The construction of periodic solutions nearby equilibrium points, by using the Liapunov theorem of holomorphic integral are obtained and the necessary and sufficient conditions for the stability of the system are given.  相似文献   

13.
We find general relativistic solutions of equilibrium magnetic field configurations in magnetars, extending previous results of Colaiuda et al. Our method is based on the solution of the relativistic Grad–Shafranov equation, to which Maxwell's equations can be reduced. We obtain equilibrium solutions with the toroidal magnetic field component confined into a finite region inside the star, and the poloidal component extending to the exterior. These so-called twisted torus configurations have been found to be the final outcome of dynamical simulations in the framework of Newtonian gravity, and appear to be more stable than other configurations. The solutions include higher-order multipoles, which are coupled to the dominant dipolar field. We use arguments of minimal energy to constrain the ratio of the toroidal to the poloidal field.  相似文献   

14.
G. M. Webb 《Solar physics》1986,106(2):287-313
The equations of magnetohydrostatic equilibria for a plasma in a gravitational field are investigated analytically. For equilibria with one ignorable spatial coordinate, the equations reduce to a single nonlinear elliptic equation for the magnetic potential A. Similarity solutions of the elliptic equation are obtained for the case of an isothermal atmosphere in a uniform gravitational field. The solutions are obtained from a consideration of the invariance group of the elliptic equation. The importance of symmetries of the elliptic equation also appears in the determination of conservation laws. It turns out that the elliptic equation can be written as a variational principle, and the symmetries of the variational functional lead (via Noether's theorem) to conservation laws for the equation. As an example of the application of the similarity solutions, we construct a model magnetostatic atmosphere in which the current density J is proportional to the cube of the magnetic potential, and falls off exponentially with distance vertical to the base, with an e-folding distance equal to the gravitational scale height. The solutions show the interplay between the gravitational force, the J × B force (B, magnetic field induction) and the gas pressure gradient.  相似文献   

15.
The structure of a strong MHD shock wave which radiates thermally downstream of the shock is studied by asymptotic expansion. The exact integral equation for radiation is adopted for the study. Hence, the optically thick (and thin), the general differential approximate and the exact integral equation solutions may now be compared.  相似文献   

16.
I. Lerche  B. C. Low 《Solar physics》1980,67(2):229-243
We consider the mechanical equilibrium of a cylinder of plasma suspended horizontally by magnetic fields in uniform gravity. This configuration is what may be expected if a quiescent prominence were to condense in a region initially filled with a uniform magnetic field. A set of exact solutions describing the equilibrium situation is presented. Although the plasma distribution is assumed to be cylindrically symmetric to obtain tractibility of the problem, exact force balance between plasma pressure, the Lorentz force and gravity is achieved everywhere in space. The set of solutions covers a particular case of a uniform temperature as well as cases where the temperature rises from zero at the center of the plasma cylinder to rapidly reach a constant asymptotic value outside the cylinder. The physical properties of these solutions are described. A suggestion is made for future development, based on the present work, to construct a prominence model in which the requirements of both mechanical and radiative equilibrium are satisfied.  相似文献   

17.
The present theory assumes that solar eruptive processes - such as flares or eruptive prominences - occur at a critical stage when a configuration evolves in a quasi-static way. The onset criterion is not based on standard linear stability considerations but on the fact that under suitable conditions static equilibrium configurations cease to exist. This starting point leads us to present a general discussion of existence properties of the corresponding set of equations. It turns out that the existing mathematical literature provides very useful pertinent information. In fact, some important questions of the existence can be answered without even solving the equations. Nevertheless, several explicit examples are discussed for reasons of illustration.For the major part of the paper the configurations are characterized by a single parameter. In a particularly simple (one-dimensional) case we also discuss solutions depending on two parameters. The results can be discussed in terms of catastrophe theory.The theory is valid for two space dimensions and contains topological changes of the magnetic field, although the latter feature is not necessary for the theory to apply. The theory of two-dimensional force-free fields is contained as a special case.  相似文献   

18.
We define the topology of an (axisymmetric) magnetic field, a set of qualitative labels characterizing the connectivity of the lines of force. Under the special continuous deformations of theB-field defined by time evolution under the dynamo equation in the convective regime (where the frozen-in behavior dominates the diffusion), this topology is preserved. This theorem should have applications to the study of time-varying magnetic fields in that regime in the case that exact or even approximate solutions are difficult to obtain. A partial generalization to the general case of convection and diffusion is made. As an application, a critique of Hibberd's recent theory of a time-dependent axisymmetric geomagnetic dynamo whose dipole-like field undergoes successive reversals is given.  相似文献   

19.
The paper considers the fully-developed slip flow in a vertical channel with radiative heat transfer and mass transfer in the presence of an externally applied magnetic field. The problem is modelled by the compressible Navier-Stokes equations, so that the gas is only slightly rarefied. Invoking the exact integral equation for radiation, the problem is reduced to a set of ordinary integro-differential equations. By realistic assumptions, the set is linearized and the temperature is reduced to a mixed Fredholm-Volterra integral equation which is solved by standard iterative procedure. Thereafter the concentration equation is solved by the WKB approximation while the velocity is obtained by the finite difference scheme. These solutions are discussed qualitatively.  相似文献   

20.
We investigate the influence of the finite Alfvén velocity on the evolution of an active region filament. In general, variations of a current result in variations of the magnetic fields which spread around with the Alfvén velocity. As a consequence of the fact that a magnetic field can only change with the Alfvén velocity, a filament will experience the photospheric boundary conditions as these were at an Alfvén travel time back in time. The inclusion of this retardation effect in the momentum equation of a filament leads effectively to an extra force term. This force contribution acts in the direction in which the filament moves and has therefore a destabilizing effect on the filament. Because a moving filament acts as an antenna of Alfvén waves, the filament loses energy by the emission process. This leads to a radiative damping term in the equation of motion of the filament. In general, the radiative damping will be sufficiently strong to counteract the retardation instability. Numerical simulations show that during the energy build-up phase a filament follows the van Tend-Kuperus equilibrium curve. After the van Tend-Kuperus equilibrium has disappeared the filament goes through a transient phase moving with a sub-Alfvénic velocity upward. At greater heights the repulsive Lorentz force of the photospheric surface current magnetic field is balanced by the radiative damping, resulting in a decreasing filament velocity.Parts of this paper were presented at the 4th CESRA Workshop in Ouranopolis (Greece) in 1991.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号