首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the framework of a previously developed procedure the evolution of small spherically symmetric perturbations in a homogeneous R-W-F universe is analyzed. It turns out that the evolution tendency is mainly predicted by the state of the cosmic background. In the radiation dominated period the universe does not stimulate growing processes, a perturbation will be in a frozen state or it will diffuse. It is found that a dust dominated universe stimulates the perturbation masses to grow. The rate of this cosmic affected growing process is proportional to (R)–1/2 (R being the scale factor). Consequently almost all galaxies were formed at the beginning of the dust dominated era.  相似文献   

2.
This paper deals with the study of dynamical or phase space analysis of Bianchi I universe in Brans-Dicke gravity with chameleon scalar field. For this purpose, the matter contents are taken to be perfect fluid with magnetic field effects described by the non-linear Maxwell Lagrangian density. By taking some ansatz for the field potential and the interaction function in chameleon cosmology, we discuss three cases: Bianchi I universe with perfect fluid, FRW universe with magnetized perfect fluid and Bianchi I universe with magnetized perfect fluid. In all cases, we calculate fixed or critical points and discuss stability of the respective configuration for radiation as well as matter dominated eras. We also evaluate some cosmological parameters in each case for matter dominated era only and investigate their cosmological implications.  相似文献   

3.
In this paper we present a class of solutions of Einstein's field equations describing two-fluid models of the universe in a locally rotationally symmetric Bianchi type II space-time. In these models one fluid is the radiation distribution which represents the cosmic microwave background and the other fluid is the perfect fluid representing the matter content of the universe. It is found that both the fluids are comoving in the locally rotationally symmetric Bianchi type II space-time. The behaviour of the radiation density, matter density, the ratio of the matter density to the radiation density and the pressure has been discussed. A subclass of solutions is found to describe models of a spatially homogeneous and partially isotropic universe evolving from a radiation dominated era to a pressure free matter dominated era. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
A previously studied theory of gravitation in flat space-time is applied to homogeneous, isotropic cosmological models. In addition to radiation a two-component fluid model consisting of dust and of a background field is studied. This universe starts from a nonsingular state and expands for ever. The energy of radiation, of dust and of the background are emerged from the gravitational energy. Entropy is produced. The age of the universe is infinite measured in units of absolute time whereas the proper-time of the universe is finite. The sum of the density parameters of dust, of radiation and of the background field is about one. There is no flatness and no monopole problem.  相似文献   

5.
The present work deals with irreversible thermodynamics of universe containing interacting dark fluids. Recent observational evidences reveal that the universe is dominated by two dark components-dark matter and dark energy. The interaction between them leads to spontaneous heat flow between the horizon and the fluid system and as a result the system will no longer be in thermal equilibrium. In this paper dark matter is chosen as pressureless dust while modified Chaplygin gas has been considered as dark energy. In two separate cases we have considered the universe to be bounded by apparent horizon and event horizon and the validity of generalized second law of thermodynamics in the context of irreversible thermodynamics has been studied for both the cases.  相似文献   

6.
We have studied the evolution of homogeneous and anisotropic Bianchi type-I cosmological models filled with perfect fluid in Barber second self-creation theory by assuming a special law of variation for Hubble’s parameter that yield a constant value of deceleration parameter. Some physical consequences of the models have been discussed in case of Zel’dovich fluid and radiation dominated fluid.  相似文献   

7.
The study of Einstein field equations describing the Robertson-Walker universe with the Brans-Dicke field and perfect fluid has been made. It is found that the exact solutions to the B-D field interacting with perfect fluid reduce to a false vaccum with cosmological constant and without cosmological constant the solution reduce to the exact solution of the matter dust distribution in the Brans-Dicke cosmology. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The solution of three new interesting studies,a rotating anisotropic twofluid universe coupled with radiation and a scalar field,are studied here,where the anisotropic pressure is generated by the presence of two non-interacting perfect fluids which are in relative motion with respect to each other.In this problem,special discussion is made of the physically interesting class of models in which one fluid is a perfect comoving radiative fluid which is taken to model the cosmic microwave background and the se...  相似文献   

9.
A slow rotation perturbation of Robertson-Walker universes filled with perfect fluid has been investigated. It is found that the unit-four vector of perfect fluid hasno angular velocity in the perturbed cosmological models. The slow rotation which is related to the dragging of the local inertial frames, is compatible only with the cases of positive and negative curvatures of the cosmological universe. The intrinsic velocity vector field of the Universe isexpanding as well asshearing.  相似文献   

10.
Power-law solutions for f(G) gravity coupled with perfect fluid have been studied for spatially flat universe. It is shown that despite the matter dominated and accelerating power-law solutions, the power-law solution exists for an special form of f(G) when this universe enters a Phantom phase.  相似文献   

11.
During the nineteenth century, it was common for physicists to believe in the existence of a material vacuum composed of an incompressible fluid that fills the whole universe. This fluid was called the aether. Its original purpose was to provide an elastic tenuous medium for light propagation through space. Although it is well understood today that no such medium is needed for light propagation, the existence of a cosmic aether medium in space is still possible and its physical properties can be understood on models of cosmology that have nothing to do with Big-Bang cosmology. It is possible that electromagnetic radiation emitted by the cosmic aether medium has already been detected. The low-frequency electromagnetic radiation emitted by the aether is called the cosmic microwave background radiation. The present study outlines a model for an aether medium that explains the genesis of the microwave background radiation in a closed static (nonexpanding) universe. It is shown that the spectrum of the microwave background radiation is a perfect blackbody with a temperature T rad=2.77 K in harmony with the perfect cosmological principle. It is further shown that the aether medium is opaque at radio and microwave frequencies. This particular feature of the model does not contradict any observations regarding the existence of distant radio galaxies and quasars.  相似文献   

12.
Scalar tensor (ST) theories of gravitation contain an attractor mechanism towards general relativity. The mechanism is supposed to start back at time of inflation. Consequently the characteristic coupling function of the ST theories could attain a very large value during the radiation epoch. Here ST cosmology in the radiation dominated universe is studied under such situation. A general solution of the scale factor in the radiation dominated flat universe is obtained that is characterized by an additional degree of freedom. An implication of this extra parameter is discussed.   相似文献   

13.
The previously developed equations for the propagation of perturbations in a homogeneous, isotropic cosmological model are studied. At the beginning of the universe spherically symmetric inhomogeneities can arise. In the dust dominated universe the growth of spherically symmetric perturbations is given in form of infinite series. The increase of the inhomogeneity is faster than in general relativity.  相似文献   

14.
In a previous paper the equations of small cosmological perturbations of a theory of gravitation in flat space-time are derived. They are applied to a homogeneous, isotropic, nonsingular cosmological model with radiation, matter and background field. At the beginning of the universe small spherically symmetric inhomogeneities on almost all scales can arise by instability. Later on the density contrast of dust grows exponentially during a short time epoch. The solution during this time period is given analytically.  相似文献   

15.
We present photometric evolution models of galaxies, in which, in addition to the stellar component, the effects of an evolving dusty interstellar medium have been included with particular care. Starting from the work of Calura et al., in which chemical evolution models have been used to study the evolution of both the gas and dust components of the interstellar medium in the solar neighbourhood, elliptical and irregular galaxies, it has been possible to combine these models with a spectrophotometric stellar code that includes dust reprocessing ( grasil ) to analyse the evolution of the spectral energy distributions (SEDs) of these galaxies. We test our models against observed SEDs both in the local universe and at high redshift, and use them to predict how the percentage of reprocessed starlight evolves for each type of galaxy. The importance of following the dust evolution is investigated by comparing our results with those obtained by adopting simple assumptions to treat this component.  相似文献   

16.
There is now evidence that the cosmological constant Λ has a non-zero positive value. Alternative scenarios to a pure cosmological constant model are provided by quintessence, an effective negative pressure fluid permeating the Universe. Recent results indicate that the energy density ρ and the pressure p of this fluid are constrained by − ρ ≤ p ≲−0.6 ρ . As p =− ρ is equivalent to the pure cosmological constant model, it is appropriate to analyse this particular, but important, case further.
We study the linear theory of perturbations in a Friedmann–Robertson–Walker universe with a cosmological constant. We obtain the equations for the evolution of the perturbations in the fully relativistic case, for which we analyse the single-fluid and two-fluid cases. We obtain solutions to these equations in appropriate limits. We also study the Newtonian approximation. We find that for a positive cosmological constant universe (i) the perturbations will grow more slowly in the relativistic regime for a two-fluid composed of dark matter and radiation, and (ii) in the Newtonian regime the perturbations stop growing.  相似文献   

17.
The present work deals with the accretion of two minimally interacting fluids: dark matter and a hypothetical isotropic fluid as the holographic dark energy components onto black hole and wormhole in a spatially homogeneous and anisotropic Bianchi type-V universe. To obtain an exact solution of the Einstein’s field equations, we use the assumption of linearly varying deceleration parameter. Solution describes effectively the actual acceleration and indicates a big rip type future singularity of the universe. We have studied the evolution of the mass of black hole and the wormhole embedded in this anisotropic universe in order to reproduce a stable universe protected against future-time singularity. It is observed that the accretion of these dark components leads to a gradual decrease and increase of black hole and wormhole mass respectively. Finally, we have found that contrary to our previous case (Sarkar in Astrophys. Space. Sci. 341:651, 2014a), the big rip singularity of the universe with a divergent Hubble parameter of this dark energy model may be avoided by a big trip.  相似文献   

18.
Exact solution of Einstein’s field equations is obtained for massive string cosmological model of Bianchi III space-time using the technique given by Letelier (Phys. Rev. D 20:2414, 1983) in presence of perfect fluid and decaying vacuum energy density Λ. To get the deterministic solution of the field equations the expansion θ in the model is considered as proportional to the eigen value s2 2\sigma^{2}_{~2} of the shear tensor sj i\sigma^{j}_{~i} and also the fluid obeys the barotropic equation of state. The vacuum energy density Λ is found to be positive and a decreasing function of time which is supported by the results from recent supernovae Ia observations. It is also observed that in early stage of the evolution of the universe string dominates over the particle whereas the universe is dominated by massive string at the late time. Some physical and geometric properties of the model are also discussed.  相似文献   

19.
This paper presents anisotropic, homogeneous two-fluid cosmological models in a Bianchi type I space–time with a variable gravitational constant G and cosmological constant Λ. In the two-fluid model, one fluid represents the matter content of the universe and another fluid is chosen to model the CMB radiation. We find a variety of solutions in which the cosmological parameter varies inversely with time t. We also discuss in detail the behavior of associated fluid parameters and kinematical parameters. This paper pictures cosmic history when the radiation and matter content of the universe are in an interactive phase. Here, Ω is closing to 1 throughout the cosmic evolution.   相似文献   

20.
The Einstein static model of the universe as a whole is considered. The Hubble law is explained by the Doppler effect due to the downward inertial acceleration along a certain radius experienced by an observer in the center of the universe, with the total acceleration over all radii being equal zero. Evolution of the universe is introduced through the wave function of the universe dependent on time. This yields the energy density of the universe hence the temperature of the universe dependent on time. On the contrary, the energy, forth and intensity of radiation are fixed with time that allows to develop the Newtonian physics in the whole universe. The time-temperature relation of the universe in the model considered is the same as in the radiation dominated universe in the Friedmann model that allows to explain primordial nucleosynthesis as it is in the standard scenario. The modern parameters of the universe in the model considered are consistent with the observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号