首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss the nature of the various modes of pulsation of superfluid neutron stars using comparatively simple Newtonian models and the Cowling approximation. The matter in these stars is described in terms of a two-fluid model, where one fluid is the neutron superfluid, which is believed to exist in the core and inner crust of mature neutron stars, and the other fluid represents a conglomerate of all other constituents (crust nuclei, protons, electrons, etc.). In our model, we incorporate the non-dissipative interaction known as the entrainment effect, whereby the momentum of one constituent (e.g. the neutrons) carries along part of the mass of the other constituent. We show that there is no independent set of pulsating g-modes in a non-rotating superfluid neutron star core, even though the linearized superfluid equations contain a well-defined (and real-valued) analogue to the so-called Brunt–Väisälä frequency. Instead, what we find are two sets of spheroidal perturbations whose nature is predominately acoustic. In addition, an analysis of the zero-frequency subspace (i.e. the space of time-independent perturbations) reveals two sets of degenerate spheroidal perturbations, which we interpret to be the missing g-modes, and two sets of toroidal perturbations. We anticipate that the degeneracy of all these zero-frequency modes will be broken by the Coriolis force in the case of rotating stars. To illustrate this we consider the toroidal pulsation modes of a slowly rotating superfluid star. This analysis shows that the superfluid equations support a new class of r-modes, in addition to those familiar from, for example, geophysical fluid dynamics. Finally, the role of the entrainment effect on the superfluid mode frequencies is shown explicitly via solutions to dispersion relations that follow from a 'local' analysis of the linearized superfluid equations.  相似文献   

2.
A recent laboratory experiment suggests that a Kelvin–Helmholtz (KH) instability at the interface between two superfluids – one rotating and anisotropic, the other stationary and isotropic – may trigger sudden spin-up of the stationary superfluid. This result suggests that a KH instability at the crust–core (  1 S03 P2  –superfluid) boundary of a neutron star may provide a trigger mechanism for pulsar glitches. We calculate the dispersion relation of the KH instability involving two different superfluids including the normal fluid components and their effects on stability, particularly entropy transport. We show that an entropy difference between the core and crust superfluids reduces the threshold differential shear velocity and threshold crust–core density ratio. We evaluate the wavelength of maximum growth of the instability for neutron star parameters and find the resultant circulation transfer to be within the range observed in pulsar glitches.  相似文献   

3.
We investigate the role of neutron star superfluidity for magnetar oscillations. Using a plane-wave analysis, we estimate the effects of a neutron superfluid in the elastic crust region. We demonstrate that the superfluid imprint is likely to be more significant than the effects of the crustal magnetic field. We also consider the region immediately beneath the crust, where superfluid neutrons are thought to coexist with a type II proton superconductor. Since the magnetic field in the latter is carried by an array of fluxtubes, the dynamics of this region differ from standard magnetohydrodynamics. We show that the presence of the neutron superfluid (again) leaves a clear imprint on the oscillations of the system. Taken together, our estimates show that the superfluid components cannot be ignored in efforts to carry out 'magnetar seismology'. This increases the level of complexity of the modelling problem, but also points to the possibility of using observations to probe the superfluid nature of supranuclear matter.  相似文献   

4.
There is a 3P2 neutron superfluid region in NS (neutron star) interior. For a rotating NS the 3P2 superfluid region is like a system of rotating magnetic dipoles. It will give out electromagnetic radiation, which may provide a new heating mechanism of NSs. This mechanism plus some cooling agent may give a sound explanation to NS glitches.  相似文献   

5.
We present a model of a freely precessing neutron star, which is then compared against pulsar observations. The aim is to draw conclusions regarding the structure of the star, and to test theoretical ideas of crust–core coupling and superfluidity. We argue that, on theoretical grounds, it is likely that the core neutron superfluid does not participate in the free precession of the crust. We apply our model to the handful of proposed observations of free precession that have appeared in the literature. Assuming crust-only precession, we find that all but one of the observations are consistent with there being no pinned crustal superfluid at all; the maximum amount of pinned superfluid consistent with the observations is about 10−10 of the total stellar moment of inertia. However, the observations do not rule out the possibility that the crust and neutron superfluid core precess as a single unit. In this case the maximum amount of pinned superfluid consistent with the observations is about 10−8 of the total stellar moment of inertia. Both of these values are many orders of magnitude less than the 10−2 value predicted by many theories of pulsar glitches. We conclude that superfluid pinning, at least as it affects free precession, needs to be reconsidered.  相似文献   

6.
The forces acting on the solid crust of a differentially rotating neutron star are examined when a nonuniform excess of chemical potential exists. The resultant of the external forces, a stress force, is expressed in terms of a centrifugal buoyancy force and the deformation of the star’s crust under the action of this force is calculated. It is shown that there is a region within the star where the resulting stresses lead to fracture of the crust when the difference in the angular velocities of the superfluid and normal components reaches a critical value. The “centrifugal buoyancy” mechanism for generating a glitch is used to estimate the parameters of glitches in the Vela pulsar. __________ Translated from Astrofizika, Vol. 50, No. 2, pp. 183–197 (May 2007).  相似文献   

7.
Using time evolutions of the relevant linearized equations, we study non-axisymmetric oscillations of rapidly rotating and superfluid neutron stars. We consider perturbations of Newtonian axisymmetric background configurations and account for the presence of superfluid components via the standard two-fluid model. Within the Cowling approximation, we are able to carry out evolutions for uniformly rotating stars up to the mass-shedding limit. This leads to the first detailed analysis of superfluid neutron star oscillations in the fast rotation regime, where the star is significantly deformed by the centrifugal force. For simplicity, we focus on background models where the two fluids (superfluid neutrons and protons) corotate, are in β-equilibrium and co-exist throughout the volume of the star. We construct sequences of rotating stars for two analytical model equations of state. These models represent relatively simple generalizations of single fluid, polytropic stars. We study the effects of entrainment, rotation and symmetry energy on non-radial oscillations of these models. Our results show that entrainment and symmetry energy can have a significant effect on the rotational splitting of non-axisymmetric modes. In particular, the symmetry energy modifies the inertial mode frequencies considerably in the regime of fast rotation.  相似文献   

8.
Many radio pulsars exhibit glitches wherein the star's spin rate increases fractionally by ∼10−10–10−6. Glitches are ascribed to variable coupling between the neutron star crust and its superfluid interior. With the aim of distinguishing among different theoretical explanations for the glitch phenomenon, we study the response of a neutron star to two types of perturbations to the vortex array that exists in the superfluid interior: (1) thermal motion of vortices pinned to inner crust nuclei, initiated by sudden heating of the crust, (e.g., a starquake), and (2) mechanical motion of vortices (e.g., from crust cracking by superfluid stresses). Both mechanisms produce acceptable fits to glitch observations in four pulsars, with the exception of the 1989 glitch in the Crab pulsar, which is best fitted by the thermal excitation model. The two models make different predictions for the generation of internal heat and subsequent enhancement of surface emission. The mechanical glitch model predicts a negligible temperature increase. For a pure and highly conductive crust, the thermal glitch model predicts a surface temperature increase of as much as ∼2 per cent, occurring several weeks after the glitch. If the thermal conductivity of the crust is lowered by a high concentration of impurities, however, the surface temperature increases by ∼10 per cent about a decade after a thermal glitch. A thermal glitch in an impure crust is consistent with the surface emission limits following the 2000 January glitch in the Vela pulsar. Future surface emission measurements coordinated with radio observations will constrain glitch mechanisms and the conductivity of the crust.  相似文献   

9.
It is usually assumed that pulsar glitches are caused by the large-scale unpinning of superfluid neutron vortices in the solid crust of a neutron star and that vortex motion relative to the crust is highly dissipative at low velocities, owing to the excitation of long-wavelength Kelvin waves. The force per unit length acting on a vortex as a result of Kelvin wave excitation has been calculated for a polycrystalline structure using the free-vortex Green function. An approximate upper limit for the maximum pinning force has been obtained which, for the form of structure anticipated, is many orders of magnitude too small for consistency with the observed size and frequency of glitches. The corollary is that glitches do not originate in the crust: the necessary pinning may be given by the interaction between neutron and proton vortices in the liquid core of the star.  相似文献   

10.
We develop a new perturbative framework for studying the r modes of rotating superfluid neutron stars. Our analysis accounts for the centrifugal deformation of the star, and considers the two-fluid dynamics at linear order in the perturbed velocities. Our main focus is on a simple model system where the total density profile is that of an   n = 1  polytrope. We derive a partially analytic solution for the superfluid analogue of the classical r mode. This solution is used to analyse the relevance of the vortex-mediated mutual friction damping, confirming that this dissipation mechanism is unlikely to suppress the gravitational-wave-driven instability in rapidly spinning superfluid neutron stars. Our calculation of the superfluid r modes is significantly simpler than previous approaches, because it decouples the r mode from all other inertial modes of the system. This leads to the results being clearer, but it also means that we cannot comment on the relevance of potential avoided crossings (and associated 'resonances') that may occur for particular parameter values. Our analysis of the mutual friction damping differs from previous studies in two important ways. First, we incorporate realistic pairing gaps which means that the regions of superfluidity in the star's core vary with temperature. Secondly, we allow the mutual friction parameters to take the whole range of permissible values rather than focusing on a particular mechanism. Thus, we consider not only the weak drag regime, but also the strong drag regime where the fluid dynamics are significantly different.  相似文献   

11.
The internal properties of the neutron star crust can be probed by observing the epoch of thermal relaxation. After the supernova explosion, powerful neutrino emission quickly cools the stellar core, while the crust stays hot. The cooling wave then propagates through the crust, as a result of its finite thermal conductivity. When the cooling wave reaches the surface (age 10–100 yr) , the effective temperature drops sharply from 250 eV to 30 or 100 eV, depending on the cooling model. The crust relaxation time is sensitive to the (poorly known) microscopic properties of matter of subnuclear density, such as the heat capacity, thermal conductivity, and superfluidity of free neutrons. We calculate the cooling models with the new values of the electron thermal conductivity in the inner crust, based on a realistic treatment of the shapes of atomic nuclei. Superfluid effects may shorten the relaxation time by a factor of 4. The comparison of theoretical cooling curves with observations provides a potentially powerful method of studying the properties of the neutron superfluid and highly unusual atomic nuclei in the inner crust.  相似文献   

12.
Minimal models of cooling neutron stars with accreted envelopes   总被引:1,自引:0,他引:1  
We study the 'minimal' cooling scenario of superfluid neutron stars with nucleon cores, where the direct Urca process is forbidden and enhanced cooling is produced by neutrino emission due to the Cooper pairing of neutrons. Extending our recent previous work, we include the effects of surface accreted envelopes of light elements. We employ the phenomenological density-dependent critical temperatures   T cp(ρ)  and   T cnt(ρ)  of singlet-state proton and triplet-state neutron pairing in a stellar core, as well as the critical temperature   T cns(ρ)  of singlet-state neutron pairing in a stellar crust. We show that the presence of accreted envelopes simplifies the interpretation of observations of thermal radiation from isolated neutron stars in the scenario of our recent previous work and widens the class of models for nucleon superfluidity in neutron star interiors consistent with the observations.  相似文献   

13.
We show that the crust–core interface in neutron stars acts as a potential barrier to the peripheral neutron vortices approaching the interface in the model in which these are coupled to the proton vortex clusters. This elementary barrier arises because of the interaction of vortex magnetic flux with the Meissner currents set up by the crustal magnetic field at the interface. The dominant part of the force is derived from the cluster–interface interaction. As a result of the stopping of the continuous neutron vortex current through the interface, angular momentum is stored in the superfluid layers in the vicinity of the crust–core interface during the interglitch period. Discontinuous annihilation of proton vortices at the boundary restores the neutron vortex current and spins up the observable crust on short time-scales, leading to a glitch in the spin characteristics of a pulsar.  相似文献   

14.
We study low-amplitude crustal oscillations of slowly rotating relativistic stars consisting of a central fluid core and an outer thin solid crust. We estimate the effect of rotation on the torsional toroidal modes and on the interfacial and shear spheroidal modes. The results compared against the Newtonian ones for wide range of neutron star models and equations of state.  相似文献   

15.
It is shown that the radius of curvature of magnetic field lines in the polar region of a rotating magnetized neutron star can be significantly less than the usual radius of curvature of the dipole magnetic field. The magnetic field in the polar cap is distorted by toroidal electric currents flowing in the neutron star crust. These currents close up the magnetospheric currents driven by the electron–positron plasma generation process in the pulsar magnetosphere. Owing to the decrease in the radius of curvature, electron–positron plasma generation becomes possible even for slowly rotating neutron stars, with   PB −2/312 < 10 s  , where P is the period of star rotation and   B 12= B /1012 G  is the magnitude of the magnetic field on the star surface.  相似文献   

16.
The evolution of neutron stars in close binary systems with a low-mass companion is considered, assuming the magnetic field to be confined within the solid crust. We adopt the standard scenario for the evolution in a close binary system, in which the neutron star passes through four evolutionary phases ('isolated pulsar'–'propeller'– accretion from the wind of a companion – accretion resulting from Roche-lobe overflow). Calculations have been performed for a great variety of parameters characterizing the properties of both the neutron star and the low-mass companion. We find that neutron stars with more or less standard magnetic field and spin period that are processed in low-mass binaries can evolve to low-field rapidly rotating pulsars. Even if the main-sequence life of a companion is as long as 1010 yr, the neutron star can maintain a relatively strong magnetic field to the end of the accretion phase. The model that is considered can account well for the origin of millisecond pulsars.  相似文献   

17.
We study thermal relaxation in a neutron star after internal heating events (outbursts) in the crust. We consider thin and thick spherically symmetric heaters, superfluid and non-superfluid crusts, stars with open and forbidden direct Urca processes in their cores. In particular, we analyze long-term thermal relaxation after deep crustal heating produced by nuclear transformations in fully or partly accreted crusts of transiently accreting neutron stars. This long-term relaxation has a typical relaxation time and an overall finite duration time for the crust to thermally equilibrate with the core. Neutron superfluidity in the inner crust greatly affects the relaxation if the heater is located in the inner crust. It shortens and unifies the time of emergence of thermal wave from the heater to the surface. This is important for the interpretation of observed outbursts of magnetars and transiently accreting neutron stars in quasi-persistent low-mass X-ray binaries.  相似文献   

18.
The gravitational radiation from millisecond pulsars owing to glitches in their angular velocity is examined. It is assumed that the energy transferred from interior superfluid regions to the crust of a neutron star is converted into gravitational wave energy by damping oscillations of the matter in the star. The gravitational wave intensity and amplitude are calculated for fourteen millisecond pulsars. Gravitational radiation can explain the observed spin-down of millisecond pulsars and an estimate is given for the magnetic field at which the proposed mechanism predominates in the spin-down of these pulsars. __________ Translated from Astrofizika, Vol. 51, No. 3, pp. 479–486 (August 2008).  相似文献   

19.
Interactions among a neutron star’s superfluid neutrons, superconducting protons, and solid crust cause predictable spin-down and spin-up driven crustal motion and magnetic field changes. Applications and unsolved problems are discussed for millisecond pulsar evolution and properties, glitches and post-glitch responses, and transcient gamma-ray emission.  相似文献   

20.
We apply the model of flux expulsion from the superfluid and superconductive core of a neutron star, developed by Konenkov & Geppert, both to neutron star models based on different equations of state and to different initial magnetic field structures. Initially, when the core and the surface magnetic field are of the same order of magnitude, the rate of flux expulsion from the core is almost independent of the equation of state, and the evolution of the surface field decouples from the core field evolution with increasing stiffness. When the surface field is initially much stronger than the core field, the magnetic and rotational evolution resembles that of a neutron star with a purely crustal field configuration; the only difference is the occurrence of a residual field. In the case of an initially submerged field, significant differences from the standard evolution only occur during the early period of the life of a neutron star, until the field has been re-diffused to the surface. The reminder of the episode of submergence is a correlation of the residual field strength with the submergence depth of the initial field. We discuss the effect of the re-diffusion of the magnetic field on the difference between the real and the active age of young pulsars and on their braking indices. Finally, we estimate the shear stresses built up by the moving fluxoids at the crust–core interface and show that these stresses may cause crust cracking, preferentially in neutron stars with a soft equation of state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号