首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.

Coral reef ecosystems worldwide are now being harmed by various stresses accompanying the degradation of fish habitats and thus knowledge of fish-habitat relationships is urgently required. Because conventional research methods were not practical for this purpose due to the lack of a geospatial perspective, we attempted to develop a research method integrating visual fish observation with a seabed habitat map and to expand knowledge to a two-dimensional scale. WorldView-2 satellite imagery of Spermonde Archipelago, Indonesia obtained in September 2012 was analyzed and classified into four typical substrates: live coral, dead coral, seagrass and sand. Overall classification accuracy of this map was 81.3% and considered precise enough for subsequent analyses. Three sub-areas (CC: continuous coral reef, BC: boundary of coral reef and FC: few live coral zone) around reef slopes were extracted from the map. Visual transect surveys for several fish species were conducted within each sub-area in June 2013. As a result, Mean density (Ind. / 300 m2) of Chaetodon octofasciatus, known as an obligate feeder of corals, was significantly higher at BC than at the others (p < 0.05), implying that this species’ density is strongly influenced by spatial configuration of its habitat, like the “edge effect.” This indicates that future conservation procedures for coral reef fishes should consider not only coral cover but also its spatial configuration. The present study also indicates that the introduction of a geospatial perspective derived from remote sensing has great potential to progress conventional ecological studies on coral reef fishes.

  相似文献   

3.
The spatial size distribution of grunts and snappers have previously indicated the separation of juveniles in nursery habitats from the adults on the coral reef. This implies life cycle migrations from nursery habitats (such as seagrass beds and mangroves) to the coral reef. If diet shifts are related to such migrations, then the diets of these fish must change before or around the fish size at which such migrations take place. A wide size range of juveniles of two grunt species (Haemulon sciurus and Haemulon flavolineatum) and of two snapper species (Lutjanus apodus and Ocyurus chrysurus) were caught in seagrass beds and mangroves, and their gut contents identified and quantified. Regression analysis between fish size and dietary importance of small crustaceans showed a negative relationship in all four species. Positive relations were found for H. sciurus, L. apodus and O. chrysurus between fish length and the dietary importance of decapods, and for L. apodusand O. chrysurus between fish length and prey fish importance. Critical changes in the fish diets with fish size were examined by application of a Canonical Correspondence Analysis (CCA). The CCA yielded three clusters of size-classes of fishes with similar diets, and application of a Mantel test showed that each of these clusters had significantly different diets, and that each cluster diet was significantly specialised. The size at which a fish species ‘switched’ from one cluster to another was compared with size-at-maturity data and with the typical size at which these species migrate from the nursery habitats to the coral reef. H. sciurus and H. flavolineatum may be prompted to migrate from the nursery habitats to coral reef habitats because of dietary changes, or because of the development of the gonads. For L. apodus and O. chrysurus, a dietary changeover forms a more likely explanation for nursery-to-reef migrations than does sexual maturation because these species reach maturity at sizes much larger than the maximum size of individuals found in nursery habitats. Although other factors may theoretically initiate or promote the migration patterns, the results of this study indicate that ontogenetic dietary changes may crucially influence the nursery-to-coral reef migrations of these reef fish species.  相似文献   

4.
Effective conservation requires knowledge of the effects of habitat on distribution and abundance of organisms. Although the structure of coral reef fish assemblages is strongly correlated with attributes of reef structure, data relating reef types to fish assemblages are scarce. In this study we describe the influence of gross habitat characteristics and seasonality on coral reef fish assemblages of fringing and patch reefs in Kenya. Results showed that total fish abundance was not significantly different between the reefs; however, the fringing reef had higher species diversity during both the northeast (42 spp.) and southeast (36 spp.) monsoon seasons when compared to the patch reef. The more fished species (e.g. Siganus sutor and Lethrinus mahsena) were more abundant on the patch reef in both seasons. Statistical analysis indicated common species between the reefs were more abundant on the fringing reef. Seasons affected abundance of the more vagile species (S. sutor), whereas the reef‐attached sky emperor, L. mahsena was affected more by reef type than by seasons. No significant interaction effects of habitat and seasons were found, indicating independence of habitat and environmental variability in affecting fish assemblages on the reefs. Smaller sized fish dominated the fringing reef more than the patch reef, whereas the skewness index (Sk) indicated a normal‐sized frequency distribution on the patch reef. Trophic structure of the fishes varied more within than between reefs, whereas fish assemblage structure was affected more by seasons on the fringing reef. These results suggest that conservation measures such as marine protected area (MPA) design and setting should consider effects of reef morphology and environmental variability on coral‐reef fish assemblage structure.  相似文献   

5.
While the importance of top‐down control by grazers in maintaining tropical reef community structure is well known, the effect of ‘fishing down the food web’, which simultaneously changes the abundance and size of herbivorous fishes, has received less attention. As many fishing practices target the biggest fish and regulations often set minimum size limits, understanding size‐dependency of this controlling force is important. We evaluated the hypothesis that reduction in the abundance and size of fish, regardless of species identity, reduces the role of herbivory in controlling algal abundance on reefs and assessed variation in efficacy of this top‐down control on different types of common macroalgae. We quantified herbivory rates within cages of differing opening sizes on assemblages of four common algal species (Padina boryana, Dictyota bartayresiana, Halimeda opuntia and Galaxaura fasciculata) on two fringing reefs in Moorea, French Polynesia. Small acanthurids (<15 cm length) were the dominant herbivorous fish while other herbivorous fish were rare. For the two most palatable algae, the majority of herbivory occurred in open plots, with herbivory reduced by >50% in the largest opening cages (6 × 6 cm) where the maximum size fish entering was 12 cm in length (mean = 7.6, SE = 0.4). Fish entering medium (4.5 × 4.5 cm openings, maximum fish length = 8 cm, mean = 6.3, SE = 0.4) and small (3 × 3 cm openings, no fish observed entering) cages had herbivory rates approximately equal to the control treatment (1 × 1 cm openings). Consumption varied among algal species, with minimal consumption of physically and chemically defended algae and no pattern across treatments. Our results demonstrate a need for management plans to not only maintain the overall abundance of herbivorous fish but to protect the largest sizes for effective top‐down control of algal communities.  相似文献   

6.
Although underwater visual census (UVC) is the most frequently used technique for quantifying reef fish assemblages, remote video analysis has been gaining attention as a potential alternative. In the South Atlantic Ocean, Millepora spp. (class Hydrozoa) are the only branching coral species; however, little is known about the ecological role that they play for reef fish communities. We compared these two observation methods (remote video and UVC) to estimate reef fish abundance and species richness associated with colonies of the fire‐coral Millepora alcicornis at Tamandaré Reefs, Northeast Brazil. Additionally, the two different techniques were used to compare species behaviour in association with fire‐corals in order to examine the biases associated with each technique and provide useful information for behavioural ecologists studying fish–coral associations. There were no differences in reef fish abundance or species richness sampled by remote video or UVC. However, a significant difference in the behaviour of associated fish was recorded between the two methods. In the presence of a diver carrying out a UVC, fish were observed spending more time sheltered amongst the coral branches compared with passively swimming on coral colonies with the remote video technique. Specifically, on the remote video recordings agonistic interactions between fish and passive swimming accounted for 33.3% and 22.2% of the census time, respectively. By comparison, when observed by a diver fish spent 34.8% of their time sheltering amongst the coral branches. We demonstrate that both techniques are similarly effective for recording fish abundance and species richness associated with fire‐corals. However, differences were observed in the ability of each method to detect the behaviour of coral‐associated fishes. Our findings show that behavioural ecologists studying complex fish–coral associations need to ensure that their aims are clearly defined and that they choose the most appropriate technique for their study in order to minimize methodological biases.  相似文献   

7.
Groupers are highly targeted and vulnerable reef fishes. The effects of fishing pressure on the density of three reef fishes were investigated in 21 islands outside (n=15) and inside (n=6) a Marine Protected Area (MPA) at the Paraty Bay, Brazilian southeastern coast. Two valued groupers (Epinephelus marginatus and Mycteroperca acutirostris) and a non-target grunt (Haemulon aurolineatum) were studied. The total biomass of fish caught in each island was considered as a measure of current fishing pressure, while the island distance from the villages was considered as a measure of past fishing pressure. Fish densities were recordedin number and biomass. The biomass of M. acutirostris was inversely related to current fishing pressure, which did not affect the other two fishes. The density of E. marginatus increased with the island distance from one of the fishing villages, which indicated that past fishing may have had decreased the abundance of E. marginatus. Densities of the three fishes and fishing pressure did not differ between islands inside and outside the MPA. Data on fishing pressure, densities of groupers and coral cover were combined here to assign conservation scores to islands. A redefinition of MPA boundaries to reconcile fish conservation, fishing activities and fishers’ food security was proposed.  相似文献   

8.
As coral reef ecosystems decline in health worldwide, reef‐associated fishes are being impacted by changes to their coral reef habitats. While previous studies have shown coral reef structure to affect the demography of reef fishes, changes in reef conditions may also impact the behavior of reef fishes as they cope with altered habitats. In this study, we examined spatial patterns of intraspecific behavioral variation in the bicolor damselfish (Stegastes partitus) across the fringing reefs of Curaçao (Caribbean Sea), and explored how this behavioral variation associated with physical and social conditions on the reef. Principal components analysis (PCA) condensed physical parameters of the reef into principal component 1 (PC1), comprising depth, coral cover (%), rugosity, and average hole size (cm2), and principal component 2 (PC2), which represented the number of holes. PC1, but not PC2, increased spatially across the reef as the habitat transitioned from coral rubble in the shallows to live coral on the reef slope. This transition in reef structure was paralleled by changes in social conditions including decreases in bicolor damselfish density in habitats with higher PC1 values. The behavior of bicolor damselfish also varied spatially with greater aggression and more frequent shelter use in habitats with lower PC1 values. Path analysis revealed robust associations between this behavioral variation and physical habitat conditions of the reef, indicating that physical – rather than social – habitat variation is the primary determinant of these spatial patterns of intraspecific behavioral variation. Taken as a whole, this coupling between physical reef structure and behavior suggests that reef fish may show altered behaviors on coral reefs degraded by anthropogenic impacts.  相似文献   

9.
The food and feeding habits of hoki (Macruronus novaezelandiae), southern blue whiting (Micromesistius australis), javelin fish (Lepi‐dorhynchus denticulatus), ling (Genypterus blacodes), smooth rattail (Coelorinchus aspercephalus), silverside (Argentina elongata), and small‐scaled notothenid (Notothenia microlepidota) sampled from the Campbell Plateau in 1979 were examined. The importance of prey items in the diet has been assessed by an ‘index of relative importance’, which combines measurements of frequency of occurrence, number, and weight of prey. Hoki, southern blue whiting, and javelin fish are pelagic feeders. Hoki preyed largely on natant decapod crustaceans, amphipods, and myctophid and photichthyid fishes. The main prey of southern blue whiting were amphipods, natant decapods, and euphausiids. Javelin fish fed on natant decapods, amphipods, and small squid. Seasonal and regional differences in feeding, and dietary changes with length of fish were evident. Ling, smooth rattail, silverside, and small‐scaled notothenid are predominantly benthic feeders. Ling preyed on natant decapods, macrourid fishes, and small hoki. The diet of rattail comprised natant decapod crustaceans, opal fishes (Hemerocoetes spp.), and poly‐chaetes. Silverside fed almost solely on salps. Salps, amphipods, brachyuran crustaceans, and opal fishes were the main prey of small‐scaled notothenid.  相似文献   

10.
Fish were surveyed by visual census on offshore reefs in Mozambique and eastern South Africa to compare (a) fully-protected ‘sanctuary’ areas, (b) ‘partly protected’ areas where recreational diving and limited fishing are permitted, and (c) ‘open’ unprotected areas. Community composition differed between coral-dominated reefs and those covered mainly by algae and sponges, but not among treatments. Larger size classes were significantly diminished in unprotected areas compared to protected and sanctuary zones. Within coral-dominated reefs, abundances of indicator taxa showed three patterns: (1) greatest abundance in sanctuaries, intermediate in partly protected and least in open areas; (2) greatest abundance in sanctuaries but equal diminishment in partly protected and open areas; and (3) greater depletion in partly protected than either sanctuary or open areas. We conclude that partial protection does not effectively conserve reef fish, and there are indications that partly protected areas concentrate fishing effort on ‘pelagic’ gamefish. Sanctioned shore-angling and offshore ‘gamefishing’, illegal fishing and diver disturbance may collectively undermine the efficacy of partially protected areas. The depletion of reef fish species inside protected areas and reconsideration of the classification of pelagic gamefish require managerial attention. Partly protected areas in Mozambique need to be supplemented with no-take zones.  相似文献   

11.
The harlequin fish (Othos dentex) is the largest serranid found in the temperate waters of southern Australia. Acoustic telemetry was used to continuously track the movements and activity patterns of 10 harlequin fish (330–620?mm total length; 0.5–3?kg weight) for a 16-month period at a coastal reef site. Data showed that the harlequin fish is a site-attached, diurnal predator, with a relatively small home range in comparison with other temperate reef fishes from Australia and New Zealand. These characteristics indicate that the harlequin fish is susceptible to localised depletions from fishing, but that it can be protected within no-take marine protected areas and can be detected with appropriate daytime monitoring techniques. Individuals also displayed discrete depth preferences on the reef slope, evidence of a nocturnal home base, and homing ability following disturbance from an extreme storm event.  相似文献   

12.
Habitat choice of reef fish larvae at settlement is one of the mechanisms proposed to explain spatial patterns in the distribution of fishes and the corresponding spatial structure of communities. Field experiments using Pomacentridae were conducted at Iriomote Island, southern Japan, in order to determine if rare recruitment of coral reef fishes in seagrass beds is due to larval settlement preference. When three types of natural patch treatments (branching coral patch, seagrass patch, and control without patches) were established in cleared seagrass squares in the center of a seagrass bed, four pomacentrid species, Amblyglyphidodon curacao, Dischistodus prosopotaenia, Cheiloprion labiatus, and Dascyllus aruanus, recruited exclusively onto the coral patches, indicating that larvae distributed in the seagrass bed may have preferred a coral rather than seagrass substrate as a settlement habitat. The effects of differences in physical shape (grid structure for branching coral vs. vertical structure for seagrass leaves) and rigidity (rigid substrate for coral vs. flexible substrate for seagrass) between coral and seagrass substrates on such recruitment patterns were investigated using artificial coral and seagrass units. When artificial habitat units with predator exclusion cages were established in the cleared seagrass squares as above, high densities of A. curacao and D. prosopotaenia recruits were observed on the rigid rather than flexible habitat units (both unit types having similar shape), whereas differences in recruit numbers of the two species were unclear in differently shaped units. These results demonstrated that even though pomacentrid larvae are distributed in the seagrass bed, they do not settle on the seagrass substrate owing to their habitat choice being partially based on a preference for substrate rigidity. Moreover, non-recruitment of C. labiatus and D. aruanus on artificial habitat units suggested that the presence of living coral substrates rather than physical shape/rigidity of substrates are an important cue for habitat choice of these fishes.  相似文献   

13.
Octopuses are active predators that feed on a wide range of prey including crustaceans, fishes, and mollusks. They are important components of coral reef systems and support local and artisanal fisheries in the Gulf of México. Octopus insularis has been found to be one of the most relevant components in catches from the coral reef system of Veracruz in the southwestern Gulf of Mexico, and its role in the ecosystem requires assessment. To corroborate the morphological identification of O. insularis, six octopuses were identified by genetic methods. And to understand the trophic relationships between this octopus species and its prey, 394 octopuses caught during 2016 and 2017 by an artisanal fleet were sampled and their stomach contents analyzed. Results showed that crustaceans are the most frequently consumed group, with the genera Mithraculus and Etisus being the most important in the diet. Fishes, bivalves, and gastropods were identified as uncommon prey items in the diet. Their presence in the stomachs could be related to the movement of this octopus outside of the coral reef. Considering that our samples were of medium‐ and large‐sized individuals, cannibalism could be discarded for O. insularis in this size range in the Veracruz reef system. These findings suggest a generalist and opportunistic predation of O. insularis on the most abundant and available prey in the study area, namely the crustaceans. These represents an effective transfer of biomass from the low trophic levels to top predators in the coral reef system.  相似文献   

14.
Deep-sea or cold-water corals form substantial habitat along many continental slopes, including the southeastern United States (SEUS). Despite increasing research on deep coral systems and growing appreciation of their importance to fishes, quantitative data on fish communities occupying these ecosystems are relatively lacking. Our overall goals were to document the fish species and their relative abundances and to describe the degree of general habitat specificity of the fishes on and around deep coral habitats on the SEUS slope. From 2000 to 2006, we used the Johnson-Sea-Link (JSL) submersible (65 dives, 366–783 m), supplemented with otter trawls (33 tows, 365–910 m) to document fishes and habitats from off North Carolina to east-central Florida. Eight areas with high concentrations of deep-sea corals were surveyed repeatedly. Three general habitat types (prime reef, transition reef, and off reef) were defined to determine large-scale habitat use patterns. Throughout the area, at least 99 fish species were identified, many (19%) of which yielded new distributional data. Most species observed with the JSL were on prime reef (n=50) and transition reef (n=42) habitats, but the off reef habitat supported a well developed, but different fauna (n=25 species). Prime reef was characterized by Laemonema melanurum (21% of total), Nezumia sclerorhynchus (17% of total), Beryx decadactylus (14% of total), and Helicolenus dactylopterus (10% of total). The off reef areas were dominated by Fenestraja plutonia (19% of total), Laemonema barbatulum (18% of total), Myxine glutinosa (8% of total), and Chlorophthalmus agassizi (7% of total). Transition habitat exhibited a mixture of species that were also found on either prime reef or off reef habitats. Nezumia sclerorhynchus was the most abundant (25% of total) transition habitat species, followed by L. barbatulum (16% of total) and L. melanurum (14% of total). Several species (e.g., Anthias woodsi, B. decadactylus, Conger oceanicus, and Dysommina rugosa) demonstrated specificity to deep-reef habitats, while others (e.g., C. agassizi, Benthobatis marcida, F. plutonia, and Phycis chesteri) were always more common away from reefs. In addition to new distributional data, we provide behavioral and biological observations for dominant species.  相似文献   

15.
Deep‐water coral habitats are scattered throughout slope depths (360–800 m) off the Southeastern United States (SEUS, Cape Lookout, North Carolina, to Cape Canaveral, Florida), contributing substantial structure and diversity to bottom habitats. In some areas (e.g. off North Carolina) deep corals form nearly monotypic (Lophelia pertusa) high profile mounds, and in other areas (e.g. off Florida) many species may colonize hard substrata. Deep coral and hard substrata ecosystems off the SEUS support a unique fish assemblage. Using the Johnson‐Sea‐Link submersible (in 2000–2005, 65 dives), and a remotely operated vehicle (in 2003, five dives), fishes were surveyed in nine deep reef study areas along the SEUS slope. Forty‐two benthic reef fish species occurred in deep reef habitats in these study areas. Species richness was greatest on the two coral banks off Cape Lookout, North Carolina (n = 23 and 27 species) and lowest on the two sites off Cape Canaveral, Florida (n = 7 and 8 species). Fish assemblages exhibited significantly (ANOSIM, Global R = 0.69, P = 0.001) different patterns among sites. Stations sampled off North Carolina (three study areas) formed a distinct group that differed from all dives conducted to the south. Although several species defined the fish assemblages at the North Carolina sites, Laemonema barbatulum, Laemonema melanurum, and Helicolenus dactylopterus generally had the most influence on the definition of the North Carolina group. Fish assemblages at three sites within the central survey area on the Blake Plateau were also similar to each other, and were dominated by Nezumia sclerorhynchus and L. melanurum. Synaphobranchus spp. and Neaumia sclerorhynchus differentiated the two southern sites off Cape Canaveral, Florida, from the other station groups. Combinations of depth and habitat type had the most influence on these station groups; however, explicit mechanisms contributing to the organization of these assemblages remain unclear.  相似文献   

16.
Fish stocks associated with seamounts may be particularly susceptible to overexploitation. From January to July 2001, the Spanish Oceanographic Institute (IEO) conducted an experimental fishing survey entitled ‘Palguinea-2001’ on the seamounts of the Sierra Leone Rise. Beryx splendens (commonly called alfonsino) is the main commercial demersal fish associated with this area. The aim of this study was to investigate the effects of a demersal longline fishery targeting B. splendens on the previously unexploited small Machucambo Seamount over a short time-scale, and also to consider trends in pooled catch rate at another four seamounts. During 110 fishing days at Machucambo, a total catch of 207 tonnes of B. splendens was taken with a fishing effort of 1 309 070 hooks. A spectral analysis and red-noise spectra procedure (REDFIT) algorithm was used to identify the red-noise spectrum from the gaps in the observed time-series of catch per unit effort by weight. Our results show the potential impact of longline fishing pressure on an unexploited ecosystem – after approximately 50 fishing days, the stock appeared to decline substantially, as reflected by a marked drop in catch per unit effort. The apparent rapid decline of the stock might be related to the small size and the virgin state of the Sierra Leone seamounts. The results could be extrapolated to similar small seamounts elsewhere.  相似文献   

17.
Management of fish populations is often focused on the exploitation of adult fish. Maintaining the habitat requirements of all life stages may also be an important consideration. We investigated the value of structured habitat to juvenile fishes within a northeastern New Zealand harbour using artificial seagrass units (ASUs). Specifically, we deployed ASUs across treatments with high vs. low habitat manipulations. We hypothesised that if the abundance of recruiting juvenile fishes was greater on the high habitat availability treatments this would suggest that the availability of habitat was limiting juvenile fish abundance. Our analyses were focused on the four most abundant fishes that settled on our ASUs: snapper (Pagrus auratus); spotty (Notolabrus celidotus); trevally (Pseudocaranx dentex); and an assemblage of pipefish species. For snapper, spotty and pipefish, abundance was greater on the high habitat availability treatments. This result would be unlikely to occur if the availability of juvenile fishes was limiting, suggesting that juvenile fish abundance is more likely to be limited by habitat. In terms of spatial gradients, spotty abundance and size increased with distance into the harbour. The spatial gradient present for spotty indicates the importance of placing the habitat dependency of juvenile fish into a landscape context. Overall, these results demonstrate that maintaining structured habitats may be an important consideration for some valuable inshore fish populations in northeastern New Zealand.  相似文献   

18.
为探究烟台近岸人工鱼礁区的底层渔业群落与自然岩礁区的差异,本研究于2018年5月—2019年2月在位于山东烟台近岸的养马岛自然岩礁区、牟平人工鱼礁区及毗邻泥沙区开展4个季度的渔业调查。调查共发现渔业生物15目37科53种,自然岩礁区与人工鱼礁区的平均物种数的差异不显著,但均明显高于泥沙区(Kruskal-Wallis test, P0.05)。两礁石区的CPUE(catch per unit effort)在各季节均显著高于泥沙区(ANOVA,P0.05),春、夏季自然岩礁的CPUE显著高于人工鱼礁(ANOVA, P0.05)。三个区域的优势种存在一定相似性,但各优势种的CPUE呈现出明显的区域差异,尤其对于许氏平鲉及大泷六线鱼,人工鱼礁的生境优势高于其他两个区域。多样性分析结果显示,自然岩礁区的Shannon-Wiener多样性指数H′最高,其次为人工鱼礁区和泥沙区。自然岩礁与人工鱼礁区Magalef丰富度指数D的差异不显著,但都明显高于泥沙区(ANOVA, P0.05)。ANOSIM分析表明三个海区的群落组成在各季节均存在显著差异(P0.05),主要原因是优势种资源量和分布存在明显的区域差异,这也反映了优势种对群落结构的塑造作用。RDA分析发现,温度、溶氧及水深依次为影响群落结构的主控环境因子,可解释部分群落结构的异质性。本研究证实人工鱼礁可以有效提高以岩礁性鱼类为主的渔业资源量,然而其群落结构复杂度、生物多样性水平与相对成熟的自然岩礁区仍存在一定差距,未来其能否取代或超越自然岩礁的功能,仍需要长时间的积累和观测。  相似文献   

19.
雪卡毒素(Ciguatoxins,CTXs)是一种高度氧化的环状聚醚梯类毒素,主要由冈比亚藻(Gambierdiscus)和福氏藻(Fukuyoa)两个属的底栖甲藻的一些产毒种类的株系产生。毒素通过海洋食物链在珊瑚礁鱼类中进行生物转化和积累,可引起常见的非细菌性海产中毒——雪卡毒素中毒(Ciguatera Poisoning,CP),食用被CTXs污染的鱼类会引起消费者产生胃肠道、心血管、神经方面的症状甚至导致死亡,但目前雪卡毒素中毒在全球引发的关注度与重视度不足。然而受全球气候变化和人类活动的影响,底栖甲藻在全球扩张趋势明显,特别是在亚洲地区,雪卡毒素中毒事件频繁爆发,雪卡毒素中毒对人类健康和生态系统健康构成了重大威胁。本文重点综述了产雪卡毒素底栖甲藻的种类多样性、化学多样性、生理生态学研究、以及毒素的生物合成机制与生物转化和累积方面的研究,并探讨了亚洲地区作为雪卡毒素潜在的爆发地点未来值得研究的领域以更好地保障亚洲海域的生态安全及居民健康。  相似文献   

20.
In 2004, we surveyed demersal fishes and habitats on the continental shelf off central California (65–110 m depth) using the occupied submersible Delta. Our objectives were to estimate the relative abundance of habitats and to examine demersal fish species composition, diversity, density, and sizes relative to these habitats. A total of 112 transects were completed covering 32 km of seafloor. A higher density of fishes was estimated in boulder and cobble habitats than in mud and brachiopod beds. More than 80% of the fishes were small, measuring 20 cm or less in total length. Species with small maximum size (primarily pygmy rockfish, Sebastes wilsoni, and blackeye gobies, Rhinogobiops nicholsii) accounted for nearly half (49%) of the total number of 12,441 fishes. Most fishes were immature, with only 4 of 20 harvested species having more than 50% of the individuals larger than the size at first maturity. Our study area on the continental shelf may be an ontogenetic transition zone for immature fishes before they move to their adult habitat on the slope. Alternatively, historical fishing pressure may have contributed to the lack of large, mature fishes in the survey area. Understanding the importance of these habitats to fishes at various life stages will improve our ability to assess these deepwater fish stocks and effectively manage these living resources on an ecosystem basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号