首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Western Hong Kong is home to two species of marine mammals: Indo-Pacific humpbacked dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides). Both are threatened in many parts of their range in southeast Asia [for example, International Biological Research Institute Reports 9 (1997), 41; Asian Marine Biology 14 (1997) 111]. In 1998, when the new Hong Kong International Airport opened in western Hong Kong, small tankers (about 100 m long, cargo capacity about 6300 metric tons) began delivering fuel to the Aviation Fuel Receiving Facility (AFRF) just off Sha Chau Island, north of the airport. Calibrated sound recordings were taken over a 4-day period from a quiet, anchored boat at distances 80-2000 m from aviation fuel delivery activities at the AFRF. From the recordings, 143 sections were selected for analysis. Narrowband spectral densities on the sound pressures were computed, and one-third octave band levels were derived for center frequencies from 10 to 16,000 Hz. Broadband levels, viz. 10-20,000 Hz. were also computed. The results showed that the Sha Chau area is normally noisy underwater, with the lowest broadband levels measured corresponding to those expected during a storm at sea (sea state 6). This background noise is believed to come largely from heavy vessel traffic in the Urmston Road to the north and east of Sha Chau and from vessels in the Pearl River Estuary to the West. The sound levels from the AFRF tankers are comparable to the levels measured from similar- and smaller-sized supply vessels supporting offshore oil exploration. The strongest sounds recorded were from a tanker leaving the AFRF at distance 100 m from the hydrophone, for which the one-third octave band level at 100 Hz was 141 dB re 1 microPa (spectrum level 127 dB re 1 microPa2/Hz) and the 10-20,000 Hz broadband level was 146 dB. At distances of 100 m or more and frequencies above 300 Hz, the one-third octave band levels were less than 130 dB (spectrum level 111 dB re 1 microPa2/Hz) and decreased with increasing frequency and distance. At distances greater than about 500 m, AFRF-associated sounds were negligible, masked by the generally high noise level of the area and attenuated by poor transmission in the very shallow water (<10 m). Because it is believed that humpbacked dolphins and finless porpoises are not very sensitive to sounds below 300 Hz, the Airport Authority Hong Kong (AA) stipulated that dedicated terminal vessels not radiate underwater sounds at spectrum levels greater than 110 dB re 1 microPa2/Hz at frequencies above 300 Hz and distances greater than 300 m. The spectrum levels at 300 Hz and higher frequencies of sounds from the tankers arriving, departing, or off-loading at AFRF were less than 110 dB re 1 microPa2/Hz even at distances of 200 m or less. The AA stipulation was met. However, it is presently unknown whether the generally strong noise levels of western Hong Kong inhibit acoustically based feeding and communication, or result in increased stress or permanent shifts in hearing thresholds.  相似文献   

2.
Two harbor porpoises in a floating pen were subjected to five pure tone underwater signals of 70 or 120kHz with different signal durations, amplitudes and duty cycles (% of time sound is produced). Some signals were continuous, others were intermittent (duty cycles varied between 8% and 100%). The effect of each signal was judged by comparing the animals' surfacing locations and number of surfacings (i.e. number of respirations) during test periods with those during baseline periods. In all cases, both porpoises moved away from the sound source, but the effect of the signals on respiration rates was negligible. Pulsed 70kHz signals with a source level (SL) of 137dB had a similar effect as a continuous 70kHz signal with an SL of 148dB (re 1muPa, rms). Also, a pulsed 70kHz signal with an SL of 147dB had a much stronger deterring effect than a continuous 70kHz signal with a similar SL. For pulsed 70kHz signals (2s pulse duration, 4s pulse interval, SL 147dB re 1muPa, rms), the avoidance threshold sound pressure level (SPL), in the context of the present study, was estimated to be around 130dB (re 1muPa, rms) for porpoise 064 and around 124dB (re 1muPa, rms) for porpoise 047. This study shows that ultrasonic pingers (70kHz) can deter harbor porpoises. Such ultrasonic pingers have the advantage that they do not have a "dinner bell" effect on pinnipeds, and probably have no, or less, effect on other marine fauna, which are often sensitive to low frequency sounds.  相似文献   

3.
To prevent grounding of ships and collisions between ships in shallow coastal waters, an underwater data collection and communication network (ACME) using underwater sounds to encode and transmit data is currently under development. Marine mammals might be affected by ACME sounds since they may use sound of a similar frequency (around 12 kHz) for communication, orientation, and prey location. If marine mammals tend to avoid the vicinity of the acoustic transmitters, they may be kept away from ecologically important areas by ACME sounds. One marine mammal species that may be affected in the North Sea is the harbour seal (Phoca vitulina). No information is available on the effects of ACME-like sounds on harbour seals, so this study was carried out as part of an environmental impact assessment program. Nine captive harbour seals were subjected to four sound types, three of which may be used in the underwater acoustic data communication network. The effect of each sound was judged by comparing the animals' location in a pool during test periods to that during baseline periods, during which no sound was produced. Each of the four sounds could be made into a deterrent by increasing its amplitude. The seals reacted by swimming away from the sound source. The sound pressure level (SPL) at the acoustic discomfort threshold was established for each of the four sounds. The acoustic discomfort threshold is defined as the boundary between the areas that the animals generally occupied during the transmission of the sounds and the areas that they generally did not enter during transmission. The SPLs at the acoustic discomfort thresholds were similar for each of the sounds (107 dB re 1 microPa). Based on this discomfort threshold SPL, discomfort zones at sea for several source levels (130-180 dB re 1 microPa) of the sounds were calculated, using a guideline sound propagation model for shallow water. The discomfort zone is defined as the area around a sound source that harbour seals are expected to avoid. The definition of the discomfort zone is based on behavioural discomfort, and does not necessarily coincide with the physical discomfort zone. Based on these results, source levels can be selected that have an acceptable effect on harbour seals in particular areas. The discomfort zone of a communication sound depends on the sound, the source level, and the propagation characteristics of the area in which the sound system is operational. The source level of the communication system should be adapted to each area (taking into account the width of a sea arm, the local sound propagation, and the importance of an area to the affected species). The discomfort zone should not coincide with ecologically important areas (for instance resting, breeding, suckling, and feeding areas), or routes between these areas.  相似文献   

4.
Marine seismic surveying discerns subsurface seafloor geology, indicative of, for example, petroleum deposits, by emitting high-intensity, low-frequency impulsive sounds. Impacts on fish are uncertain. Opportunistic monitoring of acoustic signatures from a seismic survey on the inner continental shelf of North Carolina, USA, revealed noise exceeding 170 dB re 1 μ Pa peak on two temperate reefs federally designated as Essential Fish Habitat 0.7 and 6.5 km from the survey ship path. Videos recorded fish abundance and behavior on a nearby third reef 7.9 km from the seismic track. During seismic surveying, reef-fish abundance declined by 78% during evening hours when fish habitat use was highest on the previous three days without seismic noise. Despite absence of videos documenting fish returns after seismic surveying, the significant reduction in fish occupation of the reef represents disruption to daily pattern. This numerical response confirms that conservation concerns associated with seismic surveying are realistic.  相似文献   

5.
To prevent grounding of ships and collisions between ships in shallow coastal waters, an underwater data collection and communication network is currently under development: Acoustic Communication network for Monitoring of underwater Environment in coastal areas (ACME). Marine mammals might be affected by ACME sounds since they use sounds of similar frequencies (around 12 kHz) for communication, orientation, and prey location. If marine mammals tend to avoid the vicinity of the transmitters, they may be kept away from ecologically important areas by ACME sounds. One marine mammal species that may be affected in the North Sea is the harbour porpoise. Therefore, as part of an environmental impact assessment program, two captive harbour porpoises were subjected to four sounds, three of which may be used in the underwater acoustic data communication network. The effect of each sound was judged by comparing the animals' positions and respiration rates during a test period with those during a baseline period. Each of the four sounds could be made a deterrent by increasing the amplitude of the sound. The porpoises reacted by swimming away from the sounds and by slightly, but significantly, increasing their respiration rate. From the sound pressure level distribution in the pen, and the distribution of the animals during test sessions, discomfort sound level thresholds were determined for each sound. In combination with information on sound propagation in the areas where the communication system may be deployed, the extent of the 'discomfort zone' can be estimated for several source levels (SLs). The discomfort zone is defined as the area around a sound source that harbour porpoises are expected to avoid. Based on these results, SLs can be selected that have an acceptable effect on harbour porpoises in particular areas. The discomfort zone of a communication sound depends on the selected sound, the selected SL, and the propagation characteristics of the area in which the sound system is operational. In shallow, winding coastal water courses, with sandbanks, etc., the type of habitat in which the ACME sounds will be produced, propagation loss cannot be accurately estimated by using a simple propagation model, but should be measured on site. The SL of the communication system should be adapted to each area (taking into account bounding conditions created by narrow channels, sound propagation variability due to environmental factors, and the importance of an area to the affected species). The discomfort zone should not prevent harbour porpoises from spending sufficient time in ecologically important areas (for instance feeding areas), or routes towards these areas.  相似文献   

6.
Military sonar has the potential to negatively impact marine mammals. To investigate factors affecting behavioral disruption in California sea lions (Zalophus californianus), fifteen sea lions participated in a controlled exposure study using a simulated tactical sonar signal (1 s duration, 3250–3450 Hz) as a stimulus. Subjects were placed into groups of three and each group received a stimulus exposure of 125, 140, 155, 170, or 185 dB re: 1 μPa (rms). Each subject was trained to swim across an enclosure, touch a paddle, and return to the start location. Sound exposures occurred at the mid-point of the enclosure. Control and exposure sessions were run consecutively and each consisted of ten, 30-s trials. The occurrence and severity of behavioral responses were used to create acoustic dose–response and dose–severity functions. Age of the subject significantly affected the dose–response relationship, but not the dose–severity relationship. Repetitive exposures did not affect the dose–response relationship.  相似文献   

7.
The underwater acoustic noise of five representative whale-watching boats used in the waters of west Maui was measured in order to study the effects of boat noise on humpback whales. The first set of measurements were performed on 9 and 10 March, close to the peak of the whale season. The ambient noise was relatively high with the major contribution from many chorusing humpback whales. Measurements of boat sounds were contaminated by this high ambient background noise. A second set of measurements was performed on 28 and 29 April, towards the end of the humpback whale season. In both sets of measurements, two of the boats were inflatables with outboard engines, two were larger coastal boats with twin inboard diesel engines and the fifth was a small water plane area twin hull (SWATH) ship with inter-island cruise capabilities. The inflatable boats with outboard engines produced very complex sounds with many bands of tonal-like components. The boats with inboard engines produced less intense sounds with fewer tonal bands. One-third octave band measurements of ambient noise measured on 9 March indicated a maximum sound pressure level of about 123 dB re 1 microPa at 315 Hz. The maximum sound pressure level of 127 dB at 315 Hz was measured for the SWATH ship. One of the boats with outboard engines produced sounds between 2 and 4 kHz that were about 8-10 dB greater than the level of background humpback whale sounds at the peak of the whale season. We concluded that it is unlikely that the levels of sounds produced by the boats in our study would have any grave effects on the auditory system of humpback whales.  相似文献   

8.
Variations in the nutrient concentrations were studied during two cruises to the Arabian Sea. The situation towards the end of the southwest monsoon season (September/October 1994) was compared with the inter-monsoonal season during November and December 1994. Underway surface transects showed the influence of an upwelling system during the first cruise with deep, colder, nutrient-rich water being advected into the surface mixed layer. During the southwesterly monsoon there was an area of coastal Ekman upwelling, bringing colder water (24.2°C) into the surface waters of the coastal margin. Further offshore at about 350 km there was an area of Ekman upwelling, as a result of wind-stress curl, north of the Findlater Jet axis; this area also had cooler surface water (24.6°C). Further offshore (>1000 km) the average surface temperatures increased to >27°C. These waters were oligotrophic with no evidence of the upwelling effects observed further inshore. In the upwelling regions nutrient concentrations in the close inshore coastal zone were elevated (NO3=18 μmol l-1, PO4=1.48 μmol l-1); higher concentrations also were measured at the region of offshore upwelling off the shelf, with a maximum nitrate concentration of 12.5 μmol l-1 and a maximum phosphate concentration of 1.2 μmol l-1. Nitrate and phosphate concentrations decreased with increasing distance offshore to the oligotrophic waters beyond 1400 km, where typical nitrate concentrations were 35.0 nmol l-1 (0.035 μmol l-1) in the surface mixed layer. A CTD section from the coastal shelf, to 1650 km offshore to the oligotrophic waters, clearly showed that during the monsoon season, upwelling is one of the major influences upon the nutrient concentrations in the surface waters of the Arabian Sea off the coast of Oman. Productivity of the water column was enhanced to a distance of over 800 km offshore. During the intermonsoon period a stable surface mixed layer was established, with a well-defined thermocline and nitracline. Surface temperature was between 26.8 and 27.4°C for the entire transect from the coast to 1650 km offshore. Nitrate concentrations were typically between 2.0 and 0.4 μmol l-1 for the transect, to about 1200 km where the waters became oligotrophic, and nitrate concentrations were then typically 8–12 nmol l-1. Ammonia concentrations for the oligotrophic waters were typically 130 nmol l-1, and are reported for the first time in the Indian Ocean. The nitrogen/phosphorus (N/P) ratios suggest that phytoplankton production was potentially nitrogen-limited in all the surface waters of the Arabian Sea, with the greatest nitrogen limitation during the intermonsoon period.  相似文献   

9.
海上风电场建设期风机打桩会产生高强度的水下噪声,研究水下冲击打桩噪声的监测方法、特性分析及对海洋生物的影响是非常重要的。采用自容式水下声音记录仪,多点同步测量了福建省兴化湾海上风电场二期工程建设期单次完整的水下冲击打桩噪声,从时频域特性进行了分析,并利用最小二乘法拟合得到了打桩声源级和声暴露级。结果表明:水下冲击打桩噪声是典型的低频、高强度的脉冲信号,单个脉冲持续时间约90~100 ms,峰值声源级约209.4±2 dB,声暴露级约197.7±2 dB;主要能量分布在50 Hz~1 kHz频段,750 m测量点的该频段声压级相比海洋环境背景噪声,提高了约40~50 dB。水下冲击打桩噪声频域能量分布与大黄鱼的听觉敏感频段相重叠,对大黄鱼影响程度和范围较大,实际工程应用中宜采用声暴露级作为评价指标。  相似文献   

10.
近年来,国内外海上平台开始采用桶形基础(几米浅基础)代替一直沿用的桩基础(几十米深基础),其安装就位采用与打桩施工完全不同的负压沉贯的施工方法.介绍了一种用于桶形基础平台在负压沉贯施工中的智能化测控装置.该装置成功地用于我国首座桶形基础平台(胜利油田CB20B平台)的安装就位施工,取得了预期的效果.为我国今后桶形基础平台负压沉贯施工中的智能化测控提供了有益的借鉴.  相似文献   

11.
Abstract

In this article, the drivability of stepped and tapered offshore piles with the same length and volume has been investigated under hammer blows. To justify the obtained results from field testing and numerical methods, this pile driving procedure has been analyzed and discussed with wave propagation mechanism. It will be shown that tapered pile can be confidently idealized as a number of prismatic segments connected rigidly to each other. This is an interesting finding that fully tapered or stepped piles have a better performance in pile driving and enable users to apply simple one dimensional numerical analysis for simulating pile drivability.  相似文献   

12.
Measurements of sub-surface light attenuation (Kd), Secchi depth and suspended particulate material (SPM) were made at 382 locations in transitional, coastal and offshore waters around the United Kingdom (hereafter UK) between August 2004 and December 2005. Data were analysed statistically in relation to a marine water typology characterised by differences in tidal range, mixing and salinity. There was a strong statistically significant linear relationship between SPM and Kd for the full data set. We show that slightly better results are obtained by fitting separate models to data from transitional waters and coastal and offshore waters combined. These linear models were used to predict Kd from SPM. Using a statistic (D) to quantify the error of prediction of Kd from SPM, we found an overall prediction error rate of 23.1%. Statistically significant linear relationships were also evident between the log of Secchi depth and the log of Kd in waters around the UK. Again, statistically significant improvements were obtained by fitting separate models to estuarine and combined coastal/offshore data – however, the prediction error was improved only marginally, from 31.6% to 29.7%. Prediction was poor in transitional waters (D = 39.5%) but relatively good in coastal/offshore waters (D = 26.9%).SPM data were extracted from long term monitoring data sites held by the UK Environment Agency. The appropriate linear models (estuarine or combined coastal/offshore) were applied to the SPM data to obtain representative Kd values from estuarine, coastal and offshore sites. Estuarine waters typically had higher concentrations of SPM (8.2–73.8 mg l−1) compared to coastal waters (3.0–24.1 mg l−1) and offshore waters (9.3 mg l−1). The higher SPM values in estuarine waters corresponded to higher values of Kd (0.8–5.6 m−1). Water types that were identified by large tidal ranges and exposure typically had the highest Kd ranges in both estuarine and coastal waters. In terms of susceptibility to eutrophication, large macrotidal, well mixed estuarine waters, such as the Thames embayment and the Humber estuary were identified at least risk from eutrophic conditions due to light-limiting conditions of the water type.  相似文献   

13.
14.
Since the advent of Global Navigation Satellite Systems, it has been possible to perform hydrographic survey reductions through the ellipsoid, which has the potential to simplify operations and improve bathymetric products. This technique requires a spatially continuous separation surface connecting chart datum (CD) to a geodetic ellipsoid. The Canadian Hydrographic Service (CHS), with support from the Canadian Geodetic Survey, has developed a new suite of such surfaces, termed Hydrographic Vertical Separations Surfaces, or HyVSEPs, for CD and seven tidal levels. They capture the spatial variability of the tidal datum and levels between tide gauges and offshore using semiempirical models coupling observations at tide stations with relative sea-level rise estimates, dynamic ocean model solutions, satellite altimetry, and a geoid model. HyVSEPs are available for all tidal waters of Canada, covering over seven million square kilometers of ocean and more than 200,000 kilometers of shoreline. This document provides an overview of the CHS's modeling approach, tools, methods, and procedures.

The HyVSEP for CD defines the new hydrographic datum for the tidal waters of Canada. HyVSEPs for other tidal levels are fundamental for coastal studies, climate change adaptation and the definition of the Canadian shoreline and offshore boundaries. HyVSEPs for inland waters are not discussed.  相似文献   


15.
Fine sediment resuspension dynamics in a large semi-enclosed bay   总被引:3,自引:0,他引:3  
Zai-Jin You   《Ocean Engineering》2005,32(16):261-1993
A field study was conducted to investigate fine sediment resuspension dynamics in Moreton Bay, a large semi-enclosed bay situated in South East Queensland, Australia. One S4ADW current meter and three OBS sensors were used to collect the field data on tides, mean currents, waves and suspended sediment concentrations in a mean water depth of 6.1 m for about 3 weeks. Two small cleaning units were specially designed to automatically clean the OBS sensors several times every hour to avoid biological growth on the OBS sensors. Based on the collected field data, the main driving force for fine sediment resuspension is found to be the storm wind-waves generated locally in the Bay, not the tidal current or penetrated ocean swell. The critical wind-wave orbital velocity for sediment resuspension was determined to be Urms=7 cm/s and the critical bed shear stress τcr=0.083–0.095 Pa at this study site.  相似文献   

16.
Our understanding of the significance of sound production to the ecology of deep-sea fish communities has improved little since anatomical surveys in the 1950s first suggested that sound production is widespread among slope-water fishes. The recent implementation of cabled ocean observatory networks around the world that include passive acoustic recording instruments provides scientists an opportunity to search for evidence of deep-sea fish sounds. We examined deep-sea acoustic recordings made at the NEPTUNE Canada Barkley Canyon Axis Pod (985 m) located off the west coast of Vancouver Island in the Northeast Pacific between June 2010 and May 2011 to determine the presence of fish sounds. A subset of over 300 5-min files was examined by selecting one day each month and analyzing one file for each hour over the 24 h day. Despite the frequent occurrence of marine mammal sounds, no examples of fish sounds were identified. However, we report examples of isolated unknown sounds that might be produced by fish, invertebrates, or more likely marine mammals. This finding is in direct contrast to recent smaller studies in the Atlantic where potential fish sounds appear to be more common. A review of the literature indicates 32 species found off British Columbia that potentially produce sound could occur in depths greater than 700 m but of these only Anoplopoma fimbria and Coryphaenoides spp. have been previously reported at the site. The lack of fish sounds observed here may be directly related to the low diversity and abundance of fishes present at the Barkley Canyon site. Other contributing factors include possible masking of low amplitude biological signals by self-generated noise from the platform instrumentation and ship noise. We suggest that examination of data both from noise-reduced ocean observatories around the world and from dedicated instrument surveys designed to search for deep-sea fish sounds to provide a larger-scale, more conclusive investigation into the role, or potential lack thereof, of sound production.  相似文献   

17.
A novel shipboard gas tension device (GTD) that measures total dissolved air pressure in ocean surface waters is described and demonstrated. In addition, an improved method to estimate dissolved N2 levels from simultaneous measurements of gas tension, dissolved O2, water temperature, and salinity is described. Other than a flow-through plenum, the shipboard GTD is similar to the previously described moored-mode GTD (McNeil et al., 1995, Deep-Sea Research I 42, 819–826). The plenum has an integrated water-side screen to protect the membrane, and prevent the membrane from flexing in super-saturated near surface waters. The sampling scheme uses a well mixed and thermally insulated 15 L container that is flushed by the ship's seawater intake at a rate of 3–15 L min−1. Dissolved gas sensors are placed inside this container and flushed with a small recirculation pump. Laboratory data that characterize the response of the modified GTD are presented. The modified GTD has a constant, isothermal, characteristic (e-folding) response time of typically 11±2 min at 20 °C. The response time decreases with increasing temperature and varies by ±35% over a temperature range of 5–35 °C. Results of field measurements, collected on the R.V. Brown between New York and Puerto Rico during September 2002, are presented, and provide the first look at co-variability in surface ocean N2, O2, and CO2 levels over horizontal length scales of several kilometers. Dissolved N2 concentrations decreased by approximately 16% as the ship sailed from the colder northern continental shelf waters, across the Gulf Stream, and into the warmer northwestern Atlantic Ocean. Historical database measurements, buoy time series, and satellite imagery, are used to aid interpretation of the dissolved gas levels.  相似文献   

18.
World-wide, underwater background noise levels are increasing due to anthropogenic activities. Little is known about the effects of anthropogenic noise on marine fish, and information is needed to predict any negative effects. Behavioural startle response thresholds were determined for eight marine fish species, held in a large tank, to tones of 0.1-64 kHz. Response threshold levels varied per frequency within and between species. For sea bass, the 50% reaction threshold occurred for signals of 0.1-0.7 kHz, for thicklip mullet 0.4-0.7 kHz, for pout 0.1-0.25 kHz, for horse mackerel 0.1-2 kHz and for Atlantic herring 4 kHz. For cod, pollack and eel, no 50% reaction thresholds were reached. Reaction threshold levels increased from approximately 100 dB (re 1 microPa, rms) at 0.1 kHz to approximately 160 dB at 0.7 kHz. The 50% reaction thresholds did not run parallel to the hearing curves. This shows that fish species react very differently to sound, and that generalisations about the effects of sound on fish should be made with care. As well as on the spectrum and level of anthropogenic sounds, the reactions of fish probably depend on the context (e.g. location, temperature, physiological state, age, body size, and school size).  相似文献   

19.
The intermediate and deep waters of the Labrador Sea are dominated by recently ventilated water masses (ventilation ages <20 yr). Atmospheric gases such as CO2 and chlorofluorocarbons are incorporated into these water masses at the time of formation and subsequently transported via boundary currents into the North Atlantic interior. Recent measurements of total carbonate were used in tandem with total alkalinity and oxygen to estimate the levels of anthropogenic carbon dioxide in the Labrador Sea region. Upper water column anthropogenic CO2 estimated in this manner showed good agreement with levels calculated from CO2 increase in the atmosphere. In spring 1997, anthropogenic contributions to total carbonate (CTant) were 40±3 μmol/kg in water penetrated by deep convection the previous winter and slightly lower (37±2 μmol/kg) in the deeper convective layer formed in the winters of 1992–1994. Consistent with the concurrent profiles of CFC-11, levels decrease into the older NEADW (North East Atlantic Deep Water) with levels of 30±3 μmol/kg and then increase near bottom within the layer of DSOW (Denmark Strait Overflow Water). The distribution of CTant shows the flow of new LSW southwards with the western boundary current and also eastwards into the Irminger Sea. We estimate that 0.15–0.35 Gt carbon of anthropogenic origin flow through the Labrador Sea within the Western Boundary Undercurrent per year.  相似文献   

20.
Ocean acidification results from an increase in the concentrations of atmospheric carbon dioxide (CO2) impacts on marine calcifying species, which is predicted to become more pronounced in the future. By the end of this century, atmospheric pCO2 levels will have doubled relative to the pre‐industrial levels of 280 ppm. However, the effects of pre‐industrial pCO2 levels on marine organisms remain largely unknown. In this study, we investigated the effects of pre‐industrial pCO2 conditions on the size of the pluteus larvae of sea urchins, which are known to be vulnerable to ocean acidification. The larval size of Hemicentrotus pulcherrimus significantly increased when reared at pre‐industrial pCO2 level relative to the present one, and the size of Anthocidaris crassispina larvae decreased as the pCO2 levels increased from the pre‐industrial level to the near future ones after 3 days' exposure. In this study, it is suggested that echinoid larvae responded to pre‐industrial pCO2 levels. Ocean acidification may be affecting some sensitive marine calcifiers even at the present pCO2 level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号