首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylmercury (MeHg) and trace elements (TE), mercury, selenium, cadmium, lead and copper, were determined in a microbial loop composed by three size classes of autotrophic and heterotrophic microorganism samples, 1.2–70 μm (seston, SPM), 70–290 μm (microplankton) and ≥290 μm (mesoplankton) from five sampling stations within a polluted eutrophic estuary in the Brazilian Southeast coast and one external point under the influence of the bay. TE concentrations were within the range reported for marine microorganisms from uncontaminated locations. Microplankton was primarily composed of proto-zooplankton and diatoms (>90%) while approximately 50% of mesoplankton was composed mainly of copepods. MeHg and TE in samples did not differ among the five sampling stations within the bay. Cd, Pb and Cu in seston were higher in the stations sampled inside Guanabara Bay (0.67 μg Cd g−1, 9.26 μg Pb g−1, 8.03 μg Cu g−1) than in the external one (0.17 μg Cd g−1, 3.98 μg Pb g−1 and 2.09 μg Cu g−1). Hg, MeHg and Se did not differ among the five points within the more eutrophic waters of the estuary and the external sampling station. The trophic transfer of MeHg and Se was observed between trophic levels from prey (seston and microplankton) to predator (mesoplankton). The successive amplification of the ratios of MeHg to Hg with increasing trophic levels from seston (43%), to microplankton (59%) and mesoplankton (77%) indicate that biomagnification may be occurring along the microbial food web. Selenium, that is efficiently accumulated by organisms through trophic transference, was biomagnified along the microbial food web, while Hg, Cd, Pb, Cu did not present the same behavior. Concentrations differed between the three size classes, indicating that MeHg and TE accumulation were size-dependent. MeHg and TE concentrations were not related to the taxonomic groups' composition of the planktonic microorganisms. Results suggest the importance of the role of the trophic level and microorganism size in regulating element transfers. Eutrophication dilution may provide a process-oriented explanation for lower MeHg and TE accumulation by the three size classes of microorganisms collected at the five sampling stations within the bay.  相似文献   

2.
The bathymetric distribution, abundance and diel vertical migrations (DVM) of zooplankton were investigated along the axis of the Cap-Ferret Canyon (Bay of Biscay, French Atlantic coast) by a consecutive series of synchronous net hauls that sampled the whole water column (0–2000 m in depth) during a diel cycle. The distribution of appendicularians (maximum 189 individuals m−3), cladocerans (maximum 287 individuals m−3), copepods (copepods<4 mm, maximum 773 individuals m−3, copepods>4 mm, maximum 13 individuals m−3), ostracods (maximum 8 individuals m−3), siphonophores (maximum >2 individuals m−3) and peracarids (maximum >600 individuals 1000 m−3) were analysed and represented by isoline diagrams. The biomass of total zooplankton (maximum 18419 μg C m−3, 3780 μg N m−3) and large copepods (>4 mm maximum 2256 μg C m−3, 425 μg N m−3) also were determined. Vertical migration was absent or affected only the epipelagic zone for appendicularians, cladocerans, small copepods and siphonophores. Average amplitude of vertical migration was about 400–500 m for ostracods, some hyperiids and mysids, and large copepods, which were often present in the epipelagic, mesopelagic, and bathypelagic zones. Large copepods can constitute more than 80% of the biomass corresponding to total zooplankton. They may play an important role in the active vertical transfer of carbon and nitrogen.  相似文献   

3.
In two experiments, the human pharmaceutical propranolol negatively affected the physiology of two test organisms, Fucus vesiculosus and Gammarus spp. from a Baltic Sea littoral community in a concentration of 1000 μg l−1. Some effects were also observed for the lower, more ecologically relevant concentrations (10 μg l−1 and 100 μg l−1). The effects on F. vesiculosus not only increased with increasing concentration, but also with exposure time; while the effects on Gammarus spp. were more inconsistent over time. No clear effects of the pharmaceuticals diclofenac and ibuprofen were observed for any of the organisms. Physiological parameters measured were GP:R-ratio, chlorophyll fluorescence and release of coloured dissolved organic matter, respiration and ammonium excretion. Pharmaceutical substances are repeatedly detected in the Baltic Sea which is the recipient for STP effluents from more than 85 million people living in the catchment area, but the knowledge of their effects on non-target organisms is still very limited.  相似文献   

4.
The copepods Neocalanus flemingeri and N. plumchrus are major components of the mesozooplankton on the shelf of the Gulf of Alaska, where they feed, grow and develop during April–June, the period encompassing the spring phytoplankton bloom. Satellite imagery indicates high mesoscale variability in phytoplankton concentration during this time. Because copepod ingestion is related to food concentration, we hypothesized that phytoplankton ingestion by N. flemingeri and N. plumchrus would vary in response to mesoscale variability of phytoplankton. We proposed that copepods on the inner shelf, where the phytoplankton bloom is most pronounced, would be larger and have more lipid stores than animals collected from the outer shelf, where phytoplankton concentrations are typically low. Shipboard feeding experiments with both copepods were done in spring of 2001 and 2003 using natural water as food medium. Chlorophyll concentration ranged widely, between 0.32 and 11.44 μg l−1 and ingestion rates varied accordingly, between 6.0 and 627.0 ng chl cop−1 d−1. At chlorophyll concentrations<0.50 μg l−1, ingestion is always low, <40 ng cop−1 d−1. Intermediate ingestion rates were observed at chlorophyll concentrations between 0.5 and 1.5 μg l−1, and maximum rates at chlorophyll concentrations>1.5 μg l−1. Application of these feeding rates to the phytoplankton distribution on the shelf allowed locations and time periods of low, intermediate and high daily feeding to be calculated for 2001 and 2003. A detailed cross-shelf survey of body size and lipid store in these copepods, however, indicated they were indistinguishable regardless of collection site. Although the daily ingestion of phytoplankton by N. flemingeri and N. plumchrus varied widely because of mesoscale variability in phytoplankton, these daily differences did not result in differences in final body size or lipid storage of these copepods. These copepods efficiently dealt with small and mesoscale variations in their food environment such that mesoscale structure in phytoplankton did not affect their final body size.  相似文献   

5.
《Journal of Sea Research》2000,43(3-4):373-384
The ability of phytoplankton species to initiate photo-protective mechanisms and the rates by which they do so have been suggested to be partly responsible for species succession. To examine whether this is also true in the case of diatom spring blooms preceding Phaeocystis globosa, cultures of P. globosa and Thalassiosira sp. were investigated under controlled laboratory conditions for differences in their xanthophyll cycling rates and abilities. It was found that P. globosa exhibited active and rapid xanthophyll cycling when cultures photoacclimated to 10, 50 and 100 μmol quanta m−2 s−1, were shifted to 150 and 250 μmol quanta m−2 s−1. The early spring diatom Thalassiosira only exhibited xanthophyll cycling when acclimated to 10 μmol quanta m−2 s−1. P. globosa always exhibited faster xanthophyll cycling rates than Thalassiosira, giving P. globosa a possible competitive edge over Thalassiosira sp. It was also found that the magnitude of xanthophyll cycling correlates with the intensity of light changes during the one-hour xanthophyll cycling experiments, and thus may be regarded as related to photoacclimation.  相似文献   

6.
Copper toxicity is influenced by a variety of environmental factors including dissolved organic matter (DOM). We examined the complexation of copper by fulvic acid (FA), one of the major components of DOM, by measuring the decline in labile copper by anodic stripping voltammetrically (ASV). The data were described using a one-site ligand binding model, with a ligand concentration of 0.19 μmol site mg−1 C, and a log K′ of 6.2. The model was used to predict labile copper concentration in a bioassay designed to quantify the extent to which Cu–FA complexation affected copper toxicity to the larvae of marine polychaete Hydroides elegans. The toxicity data, when expressed as labile copper concentration causing abnormal development, were independent of FA concentration and could be modeled as a logistic function, with a 48-h EC50 of 58.9 μg l−1. However, when the data were expressed as a function of total copper concentration, the toxicity was dependent on FA concentration, with a 48-h EC50 ranging from 55.6 μg l−1 in the no-FA control to 137.4 μg l−1 in the 20 mg l−1 FA treatment. Thus, FA was protective against copper toxicity to the larvae, and such an effect was caused by the reduction in labile copper due to Cu–FA complexation. Our results demonstrate the potential of ASV as a useful tool for predicting metal toxicity to the larvae in coastal environment where DOM plays an important role in complexing metal ions.  相似文献   

7.
The feeding selectivity of Calanus finmarchicus was studied by carrying out three incubation experiments; two experiments with natural seawater sampled during spring bloom (Exp. 1) and post-bloom conditions (Exp. 2) and a third experiment with cultured dinoflagellates and ciliates (Exp. 3). In the first two experiments a gradient in ciliate concentration was created to investigate the potential for prey density dependent selective feeding of C. finmarchicus. Results of microplankton counts indicated C. finmarchicus to be omnivorous. Diatoms contributed chiefly to the diet during spring bloom conditions. Despite the high microphytoplankton biomass during the spring bloom (Exp. 1), ciliates were selected positively by C. finmarchicus when the ciliate biomass exceeded 6.5 μg C L 1. A selection in favor of large conic ciliates such as Laboea sp. and Strombidium conicum was indicated by positive selectivity indices. Ciliates were throughout positively selected by C. finmarchicus during Exp. 2, and selectivity indices indicated a negative selection of diatoms. The results from Exp. 3 showed that C. finmarchicus has the ability to switch from dinoflagellates to ciliates as sole food source, even if the dinoflagellate was offered in surplus. This suggests that other factors, such as nutrition may be of significance for the feeding selectivity of C. finmarchicus.  相似文献   

8.
Spatial and seasonal variations in litter production and C, N, and P concentrations were compared between the 24 and 48 year old Kandelia obovata mangrove forests in the Jiulongjiang estuary, China. The 24 yr forest had significantly higher production of total, leaf and branch litter, but lower flower and fruit litter than the 48 yr forest. Total, leaf and branch litter production were significantly positively correlated to monthly temperature and rainfall. Spatial patterns of litter production among the inner, mid and outer zones in the same forest were similar to those of tree heights. C, N and P concentrations of leaf litter showed significant seasonality but varied little among these three forest zones. C/N and N/P ratios of leaf litter were significantly lower for the 24 yr forest than those for the 48 yr forest. During the entire sampling year, total litter of the 24 and 48 yr forests contained 590.31 and 437.31 g C m−2 yr−1, 8.46 and 5.47 g N m−2 yr−1, 1.92 and 1.16 g P m−2 yr−1, respectively.  相似文献   

9.
Seasonal cohorts of the large-sized copepod Calanoides patagoniensis allowed testing the relative ability of this species to exploit food resources that prevail during winter time in southern upwelling ecosystems of the Humboldt Current. This was achieved by considering a local winter flagellate assemblage (WFA), Thalassiosira rotula isolated from the local spring phytoplankton and a laboratory culture of Prorocentrum minimum, as food offers in consecutive 96 h experiments. Ingestion rates (IR) varied between 7 and 14 μg C f−1 d−1, egg production reached a peak of 70 eggs while egg production rates (EPR) varied between 27 ± 6 and 31 ± 4 eggs f−1 d−1. Feeding and reproductive traits were dependent on food offer, and after 72 h both IR and EPR decreased by 28% and 40% respectively, when copepods were steadily fed with the diatom. The relatively high reproductive performance supported by WFA was notable; showing the feeding behavior of this species can couple with food availability in the field with successful reproductive outcomes. Migration strategies allowing remain in upper food-rich coastal waters along with this flexible trophic behavior may better explain why this species is among the most recurrent ones in these variable yet productive upwelling areas.  相似文献   

10.
Six research cruises were conducted off the west coast of Vancouver Island between April and October of 1997 and 1998 as part of the Canadian GLOBEC project to compare nutrient and phytoplankton dynamics between ENSO (1997) and non-ENSO (1998) years. Limited sampling also was conducted during three cruises in 1999. During the 1997 ENSO period, there was a shallow thermocline (∼10 m) that resulted in a shallower mixed layer, lower salinity and density, and stronger summer stratification. In general on the shelf, the 1997 growing season was characterized by higher nitrate (7.5 μM) and silicic acid (17 μM) concentrations, lower total chlorophyll (∼76 mg m−2), lower phytoplankton carbon biomass (0.2 mg C L−1), and lower diatom abundance and biomass than in 1998. Phytoplankton assemblages were dominated by nanoplankton in 1997 and by diatoms in 1998. These results suggest that the 1997 ENSO was responsible for a reduction in the growth and biomass of larger phytoplankton cells. In mid-1998, the hydrographic characteristics off the west coast of Vancouver Island changed suddenly. The 1997 poleward transport of warm water reversed to an equatorward transport of coastal water in July 1998, which was accompanied by normal summer upwelling. During 1998, a large diatom bloom (mainly dominated by Chaetoceros debilis, Leptocylindrus danicus and to a lesser extent by Skeletomema and Pseudo-nitzschia sp.) was observed in July over the continental shelf. This large bloom resulted in chlorophyll concentrations of up to 400 mg m−2, primary productivity of up to 11 g C m−2 d−1, and near undetectable dissolved nitrogen concentrations at some of the shelf stations in 1998. In contrast, during 1997, the sub-tropical waters that were advected over the slope, resulted in low chlorophyll a and primary productivity (generally <1 g C m−2 d−1). Therefore, there was a sharp contrast between the very high primary productivity on the shelf in July 1998, due to normal nutrient replenishment from summer upwelling and outflow from the Strait of Juan de Fuca, and the lower primary productivity during the 1997 ENSO year. During 1998, non-ENSO conditions resulted in phytoplankton biomass that was twice as high on the shelf as that measured in regions beyond the continental shelf of the west coast of Vancouver Island.  相似文献   

11.
Exposure to dissolved polynuclear aromatic hydrocarbons (PAHs) from crude oil delays pink salmon (Oncorhynchus gorbuscha) embryo development, thus prolonging their susceptibility to mechanical damage (shock). Exposure also caused mortality, edema, and anemia consistent with previous studies. Hatching and yolk consumption were delayed, indicating the rate of embryonic development was slowed by PAH exposure. The net result was that exposed embryos were more susceptible to shock than normal, unexposed embryos. Susceptibility to shock was protracted by 4–6 d for more than a month in embryos exposed to exponentially declining, dissolved PAH concentrations in water passed through oiled rock; the initial total PAH concentration was 22.4 μg L−1 and the geometric mean concentration was 4.5 μg L−1 over the first 20 d. Protracted susceptibility to shock caused by exposure to PAHs dissolved from oil could potentially increase the reported incidence of mortality in oiled stream systems, such as those in Prince William Sound after the Exxon Valdez oil spill, if observers fail to discriminate between direct mortality and shock-induced mortality.  相似文献   

12.
《Marine Chemistry》2001,74(1):65-85
Here it is demonstrated that both Porphyra spp. and Enteromorpha spp. of macro-algae display similar and very marked seasonal variations in their concentration factor (CF) of Cu, Pb, Cd and Hg in field conditions. The CF variations are specific for each metal and reproducible over several years. The way variations in the biological activity affect the equilibrium and kinetics of the interaction between trace metals and live algae was studied in vitro. Natural seawater was used as the culture medium. Voltammetry was used for the determination of natural organic ligands and trace metals except Hg, which was determined by mercury cold vapour after on-line pre-concentration. Titrations with the relevant metal demonstrated that the maximum binding capacity of the algae was not significantly dependent on the season for Pb (ca. 100 μmol gdry algae−1), Cd (ca. 50 μmol g−1) and Hg (80–100 μmol g−1). Marked seasonal variations were observed for Cu (ca. 40 μmol g−1 in January; 70 μmol g−1 in May; and 100 μmol g−1 in August). The conditional stability constants of metal–algae complexation sites were seasonally independent and similar for both algae: logKMS′=8.5±0.3 (Cu), 5.6±0.2 (Pb), 5.3±0.2 (Cd) and 18.0±0.3 (Hg). Exudates with a strong Cu complexing capacity (logKCuL=12.47±0.06) were determined in cultures with added Cu, Pb or Cd concentrations, and identified by cathodic stripping voltammetry (CSV) as cysteine or glutathione. All the tested metals promoted the liberation of exudates, both cysteine- and glutathione-like ligands were exuded in the presence of Cu, only cysteine-like ligands in the presence of Pb, and only glutathione-like ligands in the presence of Cd, the rise depending of the season of the year, particularly for Cu. Highest levels were produced in the presence of added Pb. When exposed to either 1- or 100-μM total dissolved metal concentrations, the metal uptake, and its rate, varied with the season and the algae.  相似文献   

13.
Microzooplankton grazing impact on phytoplankton was assessed using the Landry–Hassett dilution technique in the Western Arctic Ocean during spring and summer 2002 and 2004. Forty experiments were completed in a region encompassing productive shelf regions of the Chukchi Sea, mesotrophic slope regions of the Beaufort Sea off the North Slope of Alaska, and oligotrophic deep-water sites in the Canada Basin. A variety of conditions were encountered, from heavy sea-ice cover during both spring cruises, moderate sea-ice cover during summer of 2002, and light to no sea ice during summer of 2004, with a concomitant range of trophic conditions, from low chlorophyll-a (Chl-a; <0.5 μg L−1) during heavy ice cover in spring and in the open basin, to late spring and summer shelf and slope open-water diatom blooms with Chl-a >5 μg L−1. The microzooplankton community was dominated by large naked ciliates and heterotrophic gymnodinoid dinoflagellates. Significant, but low, rates of microzooplankton herbivory were found in half of the experiments. The maximum grazing rate was 0.16 d−1 and average grazing rate, including experiments with no significant grazing, was 0.04±0.06 d−1. Phytoplankton intrinsic growth rates varied from the highest values of about 0.4 d−1 to the lowest values of zero to slightly negative growth, on average 0.16±0.15 d−1. Light limitation in spring and post-bloom senescence during summer were likely explanations of observed low phytoplankton growth rates. Microzooplankton grazing consumed 0–120% (average 22±26%) of phytoplankton daily growth. Grazing and growth rates found in this study were low compared to rates reported in another Arctic system, the Barents Sea, and in major geographic regions of the world ocean.  相似文献   

14.
《Journal of Sea Research》2009,61(4):246-254
The aim of this study was to investigate controls on the phytoplankton community composition and biogeochemistry of the estuarine plume zone of the River Thames, U.K. using an instrumented moored buoy for in situ measurements and preserved sample collection, and laboratory-based measurements from samples collected at the same site. Instrumentation on the moored buoy enabled high frequency measurements of a suite of environmental variables including in situ chlorophyll, water-column integrated irradiance, macronutrients throughout an annual cycle for 2001 e.g. nitrate and silicate, and phytoplankton biomass and species composition. The Thames plume region acts as a conduit for fluvial nutrients into the wider southern North Sea with typical winter concentrations of 45 μM nitrate, 17 μM silicate and 2 μM phosphate measured. The spring bloom resulted from water-column integrated irradiance increasing above 60 W h m 2 d 1 and was initially dominated by a diatom bloom mainly composed of Nitzschia sp. and Odontella sinesis. The spring bloom then switched after ∼ 30 days to become dominated by the flagellate Phaeocystis reaching a maximum chlorophyll concentration of 37.8 μg L 1. During the spring bloom there were high numbers of the heterotrophic dinoflagellates Gyrodinium spirale and Katodinium glaucum that potentially grazed the phytoplankton bloom. This diatom–flagellate switch was predicted to be due to a combination of further increasing water-column integrated irradiance > 100 W h m 2 d 1 and/or silicate reaching potentially limiting concentrations (< 1 μM). Post spring bloom, diatom dominance of the lower continuous summer phytoplankton biomass occurred despite the low silicate concentrations (Av. 0.7 μM from June–August). Summer diatom dominance, generally due to Guinardia delicatula, was expected to be as a result of microzooplankton grazing, dominated by the heterotrophic dinoflagellate Noctiluca scintillans, controlling 0.7–5.0 μm ‘flagellate’ fraction of the phytoplankton community with grazing rates up to 178% of ‘flagellate’ growth rate. The Thames plume region was therefore shown to be an active region of nutrient and phytoplankton processing and transport to the southern North Sea. The use of a combination of moorings and ship-based sampling was essential in understanding the factors influencing nutrient transport, phytoplankton biomass and species composition in this shelf sea plume region.  相似文献   

15.
Denitrification, anammox (Anx) and di-nitrogen fixation were examined in two mangrove ecosystems- the anthropogenically influenced Divar and the relatively pristine Tuvem. Stratified sampling at 2 cm increments from 0 to 10 cm depth revealed denitrification as the main process of N2 production in mangrove sediments. At Divar, denitrification was ∼3 times higher than at Tuvem with maximum activity of 224.51 ± 6.63 nmol N2 g−1 h−1 at 0–2 cm. Denitrifying genes (nosZ) numbered up to 2 × 107 copies g−1 sediment and belonged to uncultured microorganisms clustering within Proteobacteria. Anammox was more prominent at deeper depths (8–10 cm) mainly in Divar with highest activity of 101.15 ± 87.73 nmol N2 g−1 h−1 which was 5 times higher than at Tuvem. Di-nitrogen fixation was detected only at Tuvem with a maximum of 12.47 ± 8.36 nmol N2 g−1 h−1. Thus, in these estuarine habitats prone to high nutrient input, N2-fixation is minimal and denitrification rather than Anx serves as an important mechanism for counteracting N loading.  相似文献   

16.
Phytoplankton growth and microzooplankton grazing were studied during the 2007 spring bloom in Central Yellow Sea. The surveyed stations were divided to pre-bloom phase (Chl a concentration less than 2 μg L−1), and bloom phase (Chl a concentration greater than 2 μg L−1). Shipboard dilution incubation experiments were carried out at 19 stations to determine the phytoplankton specific growth rates and the specific grazing rates of microzooplankton on phytoplankton. Diatoms dominated in the phytoplankton community in surface waters at most stations. For microzooplankton, Myrionecta rubra and tintinnids were dominant, and heterotrophic dinoflagellate was also important in the community. Phytoplankton-specific growth rates, with an average of 0.60±0.19 d−1, were higher at pre-bloom stations (average 0.62±0.17 d−1), and lower at the bloom stations (average 0.59±0.21 d−1), but the difference of growth rates between bloom and pre-bloom stations was not statistically significant (t test, p=0.77). The phytoplankton mortality rate by microzooplankton grazing averaged 0.41±0.23 d−1 at pre-bloom stations, and 0.58±0.31 d−1 during the blooms. In contrast to the growth rates, the statistic difference of grazing rates between bloom and pre-bloom stations was significant (after removal of outliers, t test, p=0.04), indicating the importance of the top-down control in the phytoplankton bloom processes. Average potential grazing efficiency on primary productivity was 66% at pre-bloom stations and 98% at bloom stations, respectively. Based on our results, the biomass maximum phase (bloom phase) was not the maximum growth rate phase. Both phytoplankton specific growth rate and net growth rate were higher in the pre-bloom phase than during the bloom phase. Microzooplankton grazing mortality rate was positively correlated with phytoplankton growth rate during both phases, but growth and grazing were highly coupled during the booming phase. There was no correlation between phytoplankton growth rate and cell size during the blooms, but they were positive correlated during the pre-bloom phase. Our results indicate that microzooplankton grazing is an important process controlling the growth of phytoplankton in spring bloom period in the Central Yellow Sea, particularly in the “blooming” phase.  相似文献   

17.
Phytoplankton and bacterial abundance, size-fractionated phytoplankton chlorophyll-a (Chl-a) and production together with bacterial production, microbial oxygen production and respiration rates were measured along a transect that crossed the Equatorial Atlantic Ocean (10°N–10°S) in September 2000, as part of the Atlantic Meridional Transect 11 (AMT 11) cruise. From 2°N to 5°S, the equatorial divergence resulted in a shallowing of the pycnocline and the presence of relatively high nitrate (>1 μM) concentrations in surface waters. In contrast, a typical tropical structure (TTS) was found near the ends of the transect. Photic zone integrated 14C primary production ranged from ∼200 mg C m−2 d−1 in the TTS region to ∼1300 mg C m−2 d−1 in the equatorial divergence area. In spite of the relatively high primary production rates measured in the equatorial upwelling region, only a moderate rise in phytoplankton biomass was observed as compared to nearby nutrient-depleted areas (22 vs. 18 mg Chl-a m−2, respectively). Picophytoplankton were the main contributors (>60%) to both Chl-a biomass and primary production throughout the region. The equatorial upwelling did not alter the phytoplankton size structure typically found in the tropical open ocean, which suggests a strong top-down control of primary producers by zooplankton. However, the impact of nutrient supply on net microbial community metabolism, integrated over the euphotic layer, was evidenced by an average net microbial community production within the equatorial divergence (1130 mg C m−2 d−1) three-fold larger than net production measured in the TTS region (370 mg C m−2 d−1). The entire region under study showed net autotrophic community metabolism, since respiration accounted on average for 51% of gross primary production integrated over the euphotic layer.  相似文献   

18.
The total organic carbon (TOC) and total inorganic carbon (CT) exchange between the Atlantic Ocean and the Mediterranean Sea was studied in the Strait of Gibraltar in September 1997. Samples were taken at eight stations from western and eastern entrances of the Strait and at the middle of the Strait (Tarifa Narrows). TOC was analyzed by a high-temperature catalytic oxidation method, and CT was calculated from alkalinity–pHT pairs and appropriate thermodynamic relationships. The results are used in a two-layer model of water mass exchange through the Strait, which includes the Atlantic inflow, the Mediterranean outflow and the interface layer in between. Our observations show a decrease of TOC and an increase of CT concentrations from the surface to the bottom: 71–132 μM C and 2068–2150 μmol kg−1 in the Surface Atlantic Water, 74–95 μM C and 2119–2148 μmol kg−1 in the North Atlantic Central Water, 63–116 μM C and 2123–2312 μmol kg−1 in the interface layer, and 61–78 μM C and 2307–2325 μmol kg−1 in the Mediterranean waters. However, within the Mediterranean outflow, we found that the concentrations of carbon were higher at the western side of the Strait (75–78 μM C, 2068–2318 μmol kg−1) than at the eastern side (61–69 μM C, 2082–2324 μmol kg−1). This difference is due to the mixing between the Atlantic inflow and the Mediterranean outflow on the west of the Strait, which results in a flux of organic carbon from the inflow to the outflow and an opposite flux of inorganic carbon. We estimate that the TOC input from the Atlantic Ocean to the Mediterranean Sea through the Strait of Gibraltar varies from (0.97±0.8)104 to (1.81±0.90)104 mol C s−1 (0.3×1012 to 0.56×1012 mol C yr−1), while outflow of inorganic carbon ranges from (12.5±0.4)104 to (15.6±0.4)104 mol C s−1 (3.99–4.90×1012 mol C yr−1). The high variability of carbon exchange within the Strait is due to the variability of vertical mixing between inflow and outflow along the Strait. The prevalence of organic carbon inflow and inorganic carbon outflow shows the Mediterranean Sea to be a basin of active remineralization of organic material.  相似文献   

19.
20.
Grazing of the copepods Acartia clausi and Pseudodiaptomus hessei on natural particles was studied from on board experiments during several 24 h time series performed between 1993 and 1997 in four sites of the Ebrié Lagoon (Côte d'Ivoire). Ingestion rates of both species increased linearly with food concentration until a concentration threshold (5.5×109 μm3 l−1 for A. clausi and 5.2×109 mm3 l−1 for P. hessei) beyond which the relation presented a plateau. Both species poorly selected the peak of available particles (range 3–6 mm equivalent spherical diameter, ESD) but A. clausi seek preferentially smaller particles (6–21 μm ESD) than P. hessei (9–33 μm ESD). When the proportion of the preferred particles in the food offered decreased, A. clausi extended its selectivity towards both smaller and larger particles whereas P. hessei extended its selectivity towards larger particles only. As a consequence of these patterns, the useful particle concentration (UPC) was higher for A. clausi than for P. hessei. In addition, the ratio of the UPC for the two species showed a positive relationship with the ratio of their respective biomass. The significance of these results for the adaptation capacities of the two species and for the ecosystem functioning are discussed. A. clausi which is more suited than P. hessei to exploit smaller particles (3–6 μm) which dominate the seston, has a food competitive advantage. The inadequacy between the seston food-size composition and the selective patterns of the two main zooplankton species of the Ebrié Lagoon explains that they could be food limited despite the high trophic level of the lagoon. It could also partly explain the low transfer efficiency between phytoplankton and zooplankton in this ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号