首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract Rb–Sr and Sm–Nd isochron ages were determined for whole rocks and mineral separates of hornblende‐gabbros and related metadiabases and quartz‐diorite from Shodoshima, Awashima and Kajishima islands in the Ryoke plutono‐metamorphic belt of the Setouchi area, Southwest Japan. The Rb–Sr and Sm–Nd whole‐rock‐mineral isochron ages for six samples range from 75 to 110 Ma and 200–220 Ma, respectively. The former ages are comparable with the Rb–Sr whole‐rock isochron ages reported from neighboring Ryoke granitic rocks and are thus due to thermal metamorphism caused by the granitic intrusions. On the contrary, the older ages suggest the time of formation of the gabbroic and related rocks. The initial 87Sr/86Sr and 143Nd/144Nd ratios of the gabbroic rocks (0.7070–0.7078 and 0.51217–0.51231 at 210 Ma, respectively) are comparable with those of neighboring late Cretaceous granites and lower crustal granulite xenoliths from Cenozoic andesites in this region. Because the gabbroic rocks are considered to be fragments of the lower crustal materials interlayered in the granulitic lower crust, their isotopic signature has been inherited from an enriched mantle source or, less likely, acquired through interaction with the lower crustal materials. The Sr and Nd isotopic and petrologic evidence leads to a plausible conclusion that the gabbroic rocks have formed as cumulates from hydrous mafic magmas of light rare earth element‐rich (Sm/Nd < 0.233) and enriched isotopic (?Sr > 0 and ?Nd < 0) signature, which possibly generated around 220–200 Ma by partial melting of an upper mantle. We further conclude that they are fragments of refractory material from the lower crust caught up as xenoblocks by granitic magmas, the latter having been generated by partial melting of granulitic lower crustal material around 100 Ma.  相似文献   

2.
Harutaka  Sakai  Minoru  Sawada  Yutaka  Takigami  Yuji  Orihashi  Tohru  Danhara  Hideki  Iwano  Yoshihiro  Kuwahara  Qi  Dong  Huawei  Cai  Jianguo  Li 《Island Arc》2005,14(4):297-310
Abstract   Newly discovered peloidal limestone from the summit of Mount Qomolangma (Mount Everest) contains skeletal fragments of trilobites, ostracods and crinoids. They are small pebble-sized debris interbedded in micritic bedded limestone of the Qomolangma Formation, and are interpreted to have been derived from a bank margin and redeposited in peri-platform environments. An exposure of the Qomolangma detachment at the base of the first step (8520 m), on the northern slope of Mount Qomolangma was also found. Non-metamorphosed, strongly fractured Ordovician limestone is separated from underlying metamorphosed Yellow Band by a sharp fault with a breccia zone. The 40Ar–39Ar ages of muscovite from the Yellow Band show two-phase metamorphic events of approximately 33.3 and 24.5 Ma. The older age represents the peak of a Barrovian-type Eo-Himalayan metamorphic event and the younger age records a decompressional high-temperature Neo-Himalayan metamorphic event. A muscovite whole-rock 87Rb–86Sr isochron of the Yellow Band yielded 40.06 ± 0.81 Ma, which suggests a Pre-Himalayan metamorphism, probably caused by tectonic stacking of the Tibetan Tethys sediments in the leading margin of the Indian subcontinent. Zircon and apatite grains, separated from the Yellow Band, gave pooled fission-track ages of 14.4 ± 0.9 and 14.4 ± 1.4 Ma, respectively. These new chronologic data indicate rapid cooling of the hanging wall of the Qomolangma detachment from approximately 350°C to 130°C during a short period (15.5–14.4 Ma).  相似文献   

3.
Abstract Whole‐rock chemical and Sr and Nd isotope data are presented for gabbroic and dioritic rocks from a Cretaceous‐Paleogene granitic terrain in Southwest Japan. Age data indicate that they were emplaced in the late Cretaceous during the early stages of a voluminous intermediate‐felsic magmatic episode in Southwest Japan. Although these gabbroic and dioritic rocks have similar major and trace element chemistry, they show regional variations in terms of initial Sr and Nd isotope ratios. Samples from the South Zone have high initial 87Sr/86Sr (0.7063–0.7076) and low initial Nd isotope ratios (?Nd, ?2.5 to ?5.3); whereas those from the North Zone have lower initial 87Sr/86Sr (usually less than 0.7060) and higher Nd isotope ratios (?Nd, ?0.8 to + 3.3). Regional variations in Sr and Nd isotope ratios are similar to those observed in granitic rocks, although gabbroic and dioritic rocks tend to have slightly lower Sr and higher Nd isotope ratios than granitic rocks in the respective zones. Limited variations in Sr and Nd isotope ratios among samples from individual zones may be attributed partly to a combination of upper crustal contamination and heterogeneity of the magma source. Contamination of magmas by upper crustal material cannot, however, explain the observed Sr and Nd isotope variations between samples from the North and South Zones. Between‐zone variations would reflect geochemical difference in magma sources. The gabbroic and dioritic rocks are enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE), showing similar normal‐type mid‐ocean ridge basalt (N‐MORB) normalized patterns to arc magmas. Geochronological and isotopic data may suggest that some gabbroic and dioritic rocks are genetically related to high magnesian andesite. Alternatively, mantle‐derived mafic or intermediate rocks which were underplated beneath the crust may be also plausible sources for gabbroic and dioritic rocks. The magma sources (the mantle wedge and lower crust) were isotopically more enriched beneath the South Zone than the North Zone during the Cretaceous‐Paleogene. Sr and Nd isotope ratios of the lower crustal source of the granitic rocks was isotopically affected by mantle‐derived magmas, resulting in similar initial Sr and Nd isotope ratios for gabbroic, dioritic and granitic rocks in each zone.  相似文献   

4.
Abstract Middle Miocene basalts and basaltic andesites of the Matsue Formation outcrop within a 5 km radius of Matsue city in eastern Shimane Prefecture. Despite their limited outcrop and age (11.0 ± 1.5 Ma), they show a wide range in 87Sr-86Sr(0.70370–0.70593), 143Nd-144Nd(0.512904–0.512471) and large ion lithophile element (LILE) contents, but a relatively narrow range for some high field strength elements (HFSE) such as Nb and Ti. These basalts and andesites can be divided into three groups based on petrography, major element, trace element and isotope chemistry. Although one group has undergone some fractional crystallization, isotope chemistry precludes linkage of the groups by a closed-system process. Crustal contamination can explain isotope chemistry, but is not consistent with trace element variations. The most satisfactory model is eruption of two compositionally distinct magmas, with limited magma mixing and fractional crystallization. Published experimental work shows that one end-member resulted from shallow melting of upwelling mantle at ∼25 km. The simultaneous eruption of the other end member magma in the same area points towards a heterogeneous mantle. The isotopic composition of Matsue Formation basalts and andesites covers the entire range of Late Miocene mafic volcanic rocks of southwest Japan. Such gross heterogeneity developed on a local scale has implications for models that deal with regional chemical variations of mafic volcanic rocks in southwest Honshu.  相似文献   

5.
The Higo metamorphic terrane situated in west-central Kyushu island, southwest Japan, is composed of greenschist- to granulite-facies metamorphic rocks. The southern part of the metamorphic terrane consists mainly of garnet–biotite gneiss and garnet–cordierite–biotite gneiss, and orthopyroxene or cordierite-bearing S-type tonalite with subordinate amounts of hornblende gabbro. Rb–Sr, Sm–Nd and K–Ar isotopic ages for these rocks have been determined here. The garnet–biotite gneiss gives an Sm–Nd age of 227.1 ± 4.9 Ma and a Rb–Sr age of 101.0 ± 1.0 Ma. The hornblende gabbro has an Sm–Nd age of 257.9 ± 2.5 Ma and a K–Ar age of 103.4 ± 1.1 Ma. These age differences of the same samples are due to the difference in the closure temperature for each system and minerals. The garnet-cordierite–biotite gneiss contains coarse-grained garnet with a zonal structure conspicuously distinguished in color difference (core: dark red; rim: pink). Sm–Nd internal isochrons of the garnet core and the rim give ages of 278.8 ± 4.9 Ma (initial 143Nd/144Nd ratio = 0.512311 ± 0.000005) and 226.1 ± 28.4 Ma (0.512277 ± 0.000038), respectively. These ages are close to formation of the garnet core and the rim. It has been previously suggested that the Higo metamorphic terrane belongs to the Ryoke metamorphic belt. But Sr and Nd isotopic features of the rocks from the former are different from those of the Ryoke metamorphic rocks, and are similar to those of the granulite xenoliths contained in the Ryoke younger granite.  相似文献   

6.
The subduction of “hot” Shikoku Basin and the mantle upwelling related to the Japan Sea opening have induced extensive magmatism during the middle Miocene on both the back-arc and island-arc sides of southwest Japan. The Goto Islands are located on the back-arc side of northwestern Kyushu, and middle Miocene granitic rocks and associated volcanic, hypabyssal, and gabbroic rocks are exposed. The igneous rocks at Tannayama on Nakadori-jima in the Goto Islands consist of gabbronorite, granite, granite porphyry, diorite porphyry, andesite, and rhyolite. We performed detailed geological mapping at a 1:10 000 scale, as well as petrographical and geochemical analyses. We also determined the zircon U–Pb age dating of the igneous rocks from Tannayama together with a granitic rock in Yagatamesaki. The zircon U–Pb ages of the Tannayama igneous rocks show the crystallization ages of 14.7 Ma ± 0.3 Ma (gabbronorite), 15.9 Ma ± 0.5 Ma (granite), 15.4 Ma ± 0.9 Ma (granite porphyry), and 15.1 Ma ± 2.1 Ma (rhyolite). Zircons from the Yagatamesaki granitic rock yield 14.5 Ma ± 0.7 Ma. Considering field relationships, new zircon data indicate that the Tannayama granite formed at ~16–15 Ma, and the gabbronorite, granite porphyry, diorite porphyry, andesite, and subsequently rhyolite formed at 15–14 Ma, which overlaps a plutonic activity of the Yagatamesaki. The geochemical characteristics of the Tannayama igneous rocks are similar to those of the tholeiitic basalts and dacites of Hirado, and the granitic rocks of Tsushima in northwestern Kyushu. This suggests that the Tannayama igneous rocks can be correlated petrogenetically with the igneous rocks in those areas, with all of them generated by the upwelling of hot mantle diapirs during crustal thinning in an extensional environment during the middle Miocene.  相似文献   

7.
Abstract   Small-volume plutons of Early to Late Cretaceous ages are widely distributed in the Yamizo Mountains, central Japan. These plutons consist predominantly of granitoids, classified into hornblende gabbro, quartz diorite, hornblende–biotite granodiorite and coarse-grained biotite granite. The quartz diorite (52–64 wt% of SiO2) is characterized by a high Sr content (606–769 p.p.m.) associated with a low Y (13–27 p.p.m.) and heavy rare earth element content (Yb content of 1.19–2.13 p.p.m.). On the Sr/Y versus Y diagram, this rock type mainly plots in the adakite and Archean high-Al tonalite, trondhjemite and granodiorite (TTG) field. Together with its initial Sr isotopic ratios, which range from 0.7038 to 0.7046, these data suggest that quartz diorite originated as slab melts. However, geochemical calculations assuming either eclogite or garnet amphibolite as the source material do not support this suggestion. Instead, the chemical compositions of quartz diorite are better explained by the fractional crystallization of hornblende, plagioclase and biotite from a primitive, basaltic melt in a magma chamber. In this case, the formation of the associated hornblende gabbro can also be explained by the accumulation of hornblende and plagioclase. Adakitic rocks of Early Cretaceous ages have also been reported in the Tamba Belt of the inner zone of southwest Japan, located ca 500 km west of the Yamizo Mountains. These rocks can be correlated to the adakitic rocks in the Yamizo Mountains based on the geology, petrography, geochemistry and radiometric ages. Therefore, we propose the possibility that the Early Cretaceous adakitic rocks in the inner zone of southwest Japan were produced by fractional crystallization from basaltic arc magmas generated by a partial melting of metasomatized wedge mantle peridotite.  相似文献   

8.
Naotatsu  Shikazono 《Island Arc》1994,3(1):59-65
Abstract Chemical data on hydrothermally altered volcanic rocks from a green tuff belt in Japan indicate that the average rate of Mg removal from seawater due to seawater cycling through back-arc basins in the circum-Pacific region during the early to middle Miocene (25–15 Ma) is estimated to be 2.6±1 × 1013 g/year. This is similar to that through present-day mid-ocean ridges (2.4 × 1013 g/year). Hydrothermal fluxes of K, Ca and Si are calculated to be 4.2±1.6 × 1013 g/year, 4.3±1.7×1013 g/year and 1.0±0.4 × 1014 g/year, respectively. These calculated results indicate that the seawater/volcanic rocks interaction at subduction-related tectonic settings have to be taken into account in considering the geochemical mass balance of seawater over geologic time.  相似文献   

9.
Initial87Sr/86Sr ratios have been determined for 34 plutonic and volcanic rocks covering the entire age span of magmatic events associated with the Andean orogeny between latitudes 26° and 29° south. The igneous rocks, the majority dated by K/Ar mineral techniques, range in age from Lower Jurassic (190 m.y.) to Quaternary (0.89 m.y.). In addition, initial ratios were determined for three granitoid plutons and one metasediment from the pre-Mesozoic basement which underlies the entire Andean orogen in this transect at shallow depth. The compositions vary from basalt to rhyolite, and from quartz diorite to granodiorite or trondjemite, for the extrusives and intrusives, respectively.Mid-Cretaceous to Quaternary rocks exhibit a systematic west to east increase in mean strontium isotope ratio from 0.7022 to 0.7077, whereas the initial ratios of Jurassic plutons vary from 0.7043 to 0.7059, and do not correlate with age.The existence of unusually low initial ratios (e.g. 0.7022, 0.7023) for several Mesozoic plutonic rocks strongly implies a sub-crustal source for at least some of the Andean magmas. The time-dependent post-Jurassic increase in initial ratio is considered to reflect a systematic change in the composition of partial melts generated in response to the progressive subduction of a lithospheric slab. It is suggested that a systematic change in the locus of melting takes place from along or close to the upper surface of the subduction slab into hanging-wall mantle peridotite as subduction continues.  相似文献   

10.
Geochronological and geochemical studies reveal the possible origin of the restricted body of mylonite rocks occurring at the eastern edge of Kyushu Island, Japan, just in contact with the Sashu Fault, a part of the Paleo‐Median Tectonic Line (Paleo‐MTL). The LA‐ICP‐MS zircon U–Pb dating of the quartz diorite mylonite in this mylonitic body indicates a crystallization age of 114.0 ±1.7 Ma. Moreover, the two tonalite samples appear as thin layers within the Permian fine‐grained mafic mylonite; a part of the same body yields the age of 113.7 ±2.3 Ma and 116.9 ±1.3 Ma, with extremely low Th/U ratio. These quartz diorite mylonite and tonalite are consistent with the late Early Cretaceous magmatism and coeval metamorphism similar to those in the Higo Plutono‐metamorphic Complex in western Kyushu, Japan. This newly characterized complex occurs just south of the Cretaceous Sambagawa metamorphic rocks. The newly characterized mylonitic rocks are lying structurally above the Sambagawa Metamorphic Complex and are distributed along the Paleo‐MTL. The extension of the Higo Plutonometamorphic Complex, as well as the structural relationship between this complex and the Sambagawa Metamorphic Complex, is still controversial but holds a key to reconstruct the tectonic evolution of Southwest Japan during the Late Mesozoic to Early Cenozoic period. Hence, this article provides new insight into the reconstruction of the evolution history of East Asia as an active convergent margin.  相似文献   

11.
12.
Pumice samples from Fukutoku-oka-no-ba in the Izu–Bonin – Mariana (IBM) arc were analysed for 40 trace elements and Sr, Nd, and Pb isotopic compositions. These samples are shoshonites (59.4–61.8 wt% SiO2), characterized by high contents of K2O (3.74–4.64 wt%), Ba (1274–1540 p.p.m.), Rb (91–105 p.p.m.), and light rare earth elements. The characteristics of alkali-element enrichment are similar to those of other parts of the Alkalic Volcano Province (AVP) in the northern Mariana and southernmost Volcano arcs. Sr (87Sr/86Sr = 0.7036–0.7038) and Pb isotopic compositions (206Pb/204Pb = 19.08–19.11, 207Pb/204Pb = 15.62–15.63, 208Pb/204Pb = 38.85–38.91) of Fukutoku-oka-no-ba pumice are relatively radiogenic, whereas Nd is unradiogenic (143Nd/144Nd = 0.51283–0.51286). Fukutoku-oka-no-ba is isotopically distinct from Iwo Jima and is similar to the Hiyoshi Volcanic Complex, suggesting that Fukutoku-oka-no-ba might have a magma source similar to that of the Hiyoshi volcanic complex. Plots of Pb and Nd isotopes for AVP lavas trend toward the fields of ocean island basalt (OIB) source and pelagic sediments, which are possible sources of AVP enrichments.  相似文献   

13.
Abstract The Mariana Trough is an active back-arc basin, with the rift propagating northward ahead of spreading. The northern part of the Trough is now rifting, with extension accommodated by combined stretching and igneous intrusion. Deep structural graben are found in a region of low heat flow, and we interpret these to manifest a low-angle normal fault system that defines the extension axis between 19°45' and 21°10'N. A single dredge haul from the deepest (∼5.5 km deep) of these graben recovered a heterogeneous suite of volcanic and plutonic crustal rocks and upper mantle peridotites, providing the first report of the deeper levels of back-arc basin lithosphere. Several lines of evidence indicate that these rocks are similar to typical back-arc basin lithosphere and are not fragments of rifted older arc lithosphere. Hornblende yielded an 40Ar/39Ar age of 1.8 ± 0.6 Ma, which is interpreted to approximate the time of crust formation. Harzburgite spinels have moderate Cr# (<40) and coexisting compositions of clinopyroxene (CPX) and plagioclase (PLAB) fall in the field of mid-ocean ridge basalt (MORB) gabbros. Crustal rocks include felsic rocks (70-80% SiO2) and plutonic rocks that are rich in amphibole. Chemical compositions of crustal rocks show little evidence for a 'subduction component', and radiogenic isotopic compositions correspond to that expected for back-arc basin crust of the Mariana Trough. These data indicate that mechanical extension in this part of the Mariana Trough involves lithosphere that originally formed magmatically. These unique exposures of back-arc basin lithosphere call for careful study using ROVs and manned submersibles, and consideration as an ocean drilling program (ODP) drilling site.  相似文献   

14.
Zircons separated from Cretaceous granitoids are dated from a south‐central transect of the Abukuma metamorphic and granitic terrane. The zircon ages do not follow ‘older’ and ‘younger’ granitoid ages that are used conventionally. In the western part of the study area (Zones I, II and III) where the Takanuki and Gosaisho metamorphic rocks are exposed, the Iritono quartz dioritic stock intruding the greenschist facies rocks in Zone III exhibits the oldest age of 121 Ma in the studied region. Quartz diorite located northward shows 112 Ma, but the other four granitoids intruding into the Takanuki and Gosaisho metamorphic rocks are younger and 103–99 Ma. Two‐mica and biotite granites belong to the youngest age group of 99 Ma. The granitic activities of both the Abukuma and Ryoke belts were initiated by intrusion of quartz dioritic magmas and were ended by two‐mica granite activity. The ages of the eastern two batholiths vary from 110 to 106 Ma (four samples), and show no age common to the Kitakami granitoids farther to the north. Throughout the Japanese Islands arc, Cretaceous granitic activities became younger toward the marginal sea side from the Kitakami Mountains, to the Abukuma Highland, and the Ryoke Belt, then to the Sanin belt of the Inner Zone of Southwest Japan.  相似文献   

15.
To constrain the timing of the tectonothermal events and formation process of a plutonic suite, U–Pb dating was carried out by laser ablation inductively coupled plasma mass spectrometry combined with cathodoluminescence imaging on zircon grains extracted from the Bato pluton, northern Yamizo Mountains, Japan. The Bato pluton consists of gabbro and diorite. Zircon grains separated from a gabbro sample had a unimodal 238U–206Pb age (105.7 ±1.0 Ma). It was interpreted as the solidification age of the gabbro. Cathodoluminescence observation showed that the zircon grains from a diorite sample were characterized by anhedral cores, oscillatory zoned mantles, and dark rims. The 238U–206Pb age of the anhedral cores ranged from 2 165 Ma to 161 Ma, indicating the assimilation of surrounding sedimentary rocks. The 238U–206Pb ages of the oscillatory zoned mantles and dark rims are 109.0 ±1.3 Ma and 107.7 ±1.3 Ma, respectively. Observation under polarizing microscopy suggests that the anhedral cores occurred before plagioclase and hornblende, and the oscillatory zones around the anhedral cores had crystallized at the same time as the crystallization of biotite. Moreover, the dark rims formed at the same time as the crystallization of quartz and K‐feldspar. The formation process of the gabbro‐diorite complex in the Bato pluton was inferred as follows. (i) A mafic initial magma intruded into Mesozoic sedimentary rocks, and the assimilation of these sedimentary rocks led to geochemical variation yielding a dioritic composition. Subsequently, plagioclase and hornblende of the diorite were crystallized before 109.0 ±1.3 Ma. (ii) Biotite crystallized in the middle stage around 109.0 ±1.3 Ma. (iii) Quartz and K‐feldspar of the diorite were crystallized at 107.7 ±1.3 Ma. The gabbroic magma solidified (105.7 ±1.0 Ma) after solidification of the diorite.  相似文献   

16.
Yanbin  Zhang  Fuyuan  Wu  Simon A.  Wilde  Mingguo  Zhai  Xiaoping  Lu  Deyou  Sun 《Island Arc》2004,13(4):484-505
Abstract   The Yanbian area is located in the eastern part of the Central Asian Orogenic Belt (CAOB) of China and is characterized by widespread Phanerozoic granitic intrusions. It was previously thought that the Yanbian granitoids were mainly emplaced in the Early Paleozoic (so-called 'Caledonian' granitoids), extending east–west along the northern margin of the North China craton. However, few of them have been precisely dated; therefore, five typical 'Caledonian' granitic intrusions (the Huangniling, Dakai, Mengshan, Gaoling and Bailiping batholiths) were selected for U–Pb zircon isotopic study. New-age data show that emplacement of these granitoids extended from the Late Paleozoic to Late Mesozoic (285–116 Ma). This indicates that no 'Caledonian' granitic belt exists along the northern margin of the North China craton. The granitoids can be subdivided into four episodes based on our new data: Early Permian (285 ± 9 Ma), Early Triassic (249–245 Ma), Jurassic (192–168 Ma) and Cretaceous (119–116 Ma). The 285 ± 9 Ma tonalite was most likely related to subduction of the Paleo-Asian Oceanic Plate beneath the North China craton, followed by Triassic (249–245 Ma) syn-collisional monzogranites, representing the collision of the CAOB orogenic collage with the North China craton and final closure of the Paleo-Asian Ocean. The Jurassic granitoids resulted from subduction of the Paleo-Pacific plate and subsequent collision of the Jiamusi–Khanka Massif with the existing continent, assembled in the Triassic. The Early Cretaceous granitoids formed in an extensional setting along the eastern Asian continental margin.  相似文献   

17.
Plutonic rocks in the southern Abukuma Mountains include gabbro and diorite, fine‐grained diorite, hornblende–biotite granodiorite (Ishikawa, Samegawa, main part of Miyamoto and Tabito, Kamikimita and Irishiken Plutons), biotite granodiorite (the main part of Hanawa Pluton and the Torisone Pluton), medium‐ to coarse‐grained biotite granodiorite and leucogranite, based on the lithologies and geological relations. Zircon U–Pb ages of gabbroic rocks are 112.4 ±1.0 Ma (hornblende gabbro, Miyamoto Pluton), 109.0 ±1.1 Ma (hornblende gabbro, the Hanawa Pluton), 102.7 ±0.8 Ma (gabbronorite, Tabito Pluton) and 101.0 ±0.6 Ma (fine‐grained diorite). As for the hornblende–biotite granodiorite, zircon U–Pb ages are 104.2 ±0.7 Ma (Ishikawa Pluton), 112.6 ±1.0 Ma (Tabito Pluton), 105.2 ±0.8 Ma (Kamikimita Pluton) and 105.3±0.8 Ma (Irishiken Pluton). Also for the medium‐ to fine‐grained biotite granodiorite, zircon U–Pb ages are 106.5±0.9 Ma (Miyamoto Pluton), 105.1 ±1.0 Ma (Hanawa Pluton) and the medium‐ to coarse‐grained biotite granodiorite has zircon U–Pb age of 104.5 ±0.8 Ma. In the case of the leucogranite, U–Pb age of zircon is 100.6 ±0.9 Ma. These data indicate that the intrusion ages of gabbroic rocks and surrounding granitic rocks ranges from 113 to 101 Ma. Furthermore, K–Ar ages of biotite and or hornblende in the same rock samples were dated. Accordingly, it is clear that these rocks cooled down rapidly to 300 °C (Ar blocking temperature of biotite for K–Ar system) after their intrusion. These chronological data suggest that the Abukuma plutonic rocks in the southern Abukuma Mountains region uplifted rapidly around 107 to 100 Ma after their intrusion.  相似文献   

18.
The igneous rocks of the Pongola Supergroup (PS) and Usushwana Intrusive Suite (UIS) represent a case of late Archaean continental magmatism in the southeastern part of the Kaapvaal craton of South Africa and Swaziland.

U-Pb dating on zircons from felsic volcanic rocks of the PS yields a concordia intercept age of 2940 ± 22Ma that is consistent with a Sm-Nd whole rock age of 2934 ± 114Ma determined on the PS basalt-rhyolite suite. The initial εNd of−2.6 ± 0.9 is the lowest value so far reported for Archaean mantle-derived rocks. Rb-Sr whole rock dating of the PS yields a younger isochron age of 2883 ± 69Ma, which is not significantly different form the accepted U-Pb zircon age.

An internal (cpx-opx-plag-whole rock) isochron for a pyroxenite from the younger UIS yields an age of 2871 ± 30 Ma and initial 143Nd/144Nd that lies off the CHUR growth curve by εNd −2.9 ± 0.2. However, Sm-Nd whole-rock data for the UIS yield an excessively high age of 3.1 Ga that conflicts with firm geological evidence showing the UIS to be intrusive into the PS.

The negative deviations of initialεNd from the chondritic Nd evolution curve suggest significant contamination of the PS and UIS melts by older continental crust. A mixing process with continental crust after magma segregation is supported by a high initial 87Sr/86Sr ratio of0.703024 ± 24 for a clinopyroxene sample from a UIS pyroxenite, compared with an expected value of 0.701 for the 2.9 Ga mantle. We therefore interpret the linear array of data points for the UIS gabbros as a mixing line between 2.87 Ga old magma and older continental crust.

Parallel LREE-enriched REE patterns, negative Nb-Ti anomalies, a distinctive and uniform ratio of Ti/Zr 46 and a narrow span of initial Nd indicate a common source for both the PS and UIS suites which is different from primitive mantle.  相似文献   


19.
Abstract We report new field, petrological and isotopic data and interpretations from one of New Zealand’s major basement geological boundaries, the contact between the east side of the Median Batholith (formerly Median Tectonic Zone) and the allochthonous Mesozoic terranes of the Eastern Province. In the Nelson and Hollyford–Eglinton areas this contact is a Cenozoic fault, the Median Tectonic Line of earlier workers. However, in the Longwood Range, unfaulted pre-Cenozoic geological relations are preserved intact. Our new Ar–Ar, U–Pb and isotopic data show that the Median Batholith in the Longwood Range consists of two suites. (i) Eastern, isotopically primitive (87Sr/86Sri = 0.702 to 0.703; ?NdT = + 7 to + 8) trondhjemite and gabbroic rocks of Permian age that we believe are part of the intraoceanic Brook Street arc of the Eastern Province. (ii) Western, isotopically more evolved (87Sr/86Sri = 0.703 to 0.704; ?NdT = + 3 to + 5) quartz diorites, quartz monzodiorites and rare granites of Middle Triassic to Early Jurassic age that we correlate with a pulse of magmatism elsewhere in the Median Batholith. Field observations in the Longwood Range indicate intrusive, not faulted, contacts between these units and constrain accretion of the Brook Street Terrane to Gondwana to have occurred 230–245 Ma. Intra-batholith shear zones (T ~ 600°C and P ~ 0.2–0.3 GPa) were active at approximately 220 Ma. Modelling of K-feldspar Ar incremental heating ages indicate that most of the Longwood Range had cooled below 175°C by the Middle Jurassic and experienced no subsequent reheating. Significant additional post-accretionary Early Cretaceous and Cenozoic thermotectonic activity in Median Batholith in the Hollyford-Eglinton area is indicated by a new 140 ± 2 Ma U-Pb zircon date on a Largs ignimbrite, as well as by Cenozoic K-feldspar Ar–Ar ages in the Middle Triassic Mistake Diorite.  相似文献   

20.
The Miocene Tanzawa plutonic complex, consisting mainly of tonalite intrusions, is exposed at the northern end of the Izu–Bonin – Mariana (IBM) arc system as a consequence of collision with the Honshu Arc. The Tanzawa plutonic rocks belong to the calc-alkaline series and exhibit a wide range of chemical variation, from 43 to 75 wt% SiO2. They are characterized by relatively high Ba/Rb and Ce/Nb ratios, and low abundances of K2O, LIL elements, and rare earth elements (REE). Their petrographic and geochemical features indicate derivation from an intermediate parental magma through crystal fractionation and accumulation processes, involving hornblende, plagioclase, and magnetite. The Tanzawa plutonic complex is interpreted to be the exposed middle crust of the IBM arc, which was uplifted during the collision. The mass balance calculations, combining data from melting experiments of hydrous basaltic compositions at lower-to-middle crustal levels, suggest that parental magma and ultramafic restite were generated by dehydration partial melting (∼ 45% melting) of amphibolite chemically similar to low-K tholeiitic basalt. Partial melting of hydrated mafic lower crust might play an important role in felsic middle-crust formation in the IBM arc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号