首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
湖北省极端短时强降水MCS类型及特征分析   总被引:1,自引:1,他引:0  
重点利用新一代天气雷达、常规探空和地面中尺度观测等资料,在详细分析湖北省2008—2015年62例极端短时强降水中尺度对流系统演变过程的雷达回波特征基础上,研究归纳了湖北省6类极端短时强降水MCS模态,其中包括4类线状(尾随层状云、平行层状云、后向扩建类、邻近层状云类)和2类非线状(涡旋状类和层状云环绕类)MCS模态。初步研究表明:(1)4类线状MCS的模态和环境风相对对流线分量的垂直分布与早期的研究结果基本一致。(2)非线状的涡旋状类MCS模态典型特征是大范围层状云降水包裹着螺旋式涡旋对流回波带,多形成于西南涡前切变线附近,主要与西南涡前鄂西山地平原过渡带边界层中尺度涡旋系统的触发和组织有关。(3)湖北省后向扩建类MCS常出现在山脉迎风坡一侧,与中尺度地形对冷池的阻挡、冷池对MCS的组织作用等有关。(4)涡旋状MCS持续时间较长、范围较大,而层状云环绕类MCS维持时间较短。  相似文献   

2.
一次强降水过程涡旋状MCS结构特征及成因初步分析   总被引:8,自引:8,他引:0  
吴涛  张家国  牛奔 《气象》2017,43(5):540-551
利用新一代天气雷达资料分析了造成2011年6月18日湖北省江汉平原强降水涡旋状中尺度对流系统(MCS)发生发展过程的结构特征,联合常规观测、地面加密观测及雷达四维变分风场反演资料初步研究了MCS可能成因。结果表明:(1)成熟阶段的强降水涡旋状MCS回波表现为气旋性弯曲的多条螺旋对流回波带、周围被大片层状云回波所包裹的结构特征,后期因冷空气侵入演变出冷暖锋式结构。回波合并和旋转式列车效应是产生强降水的主要运动特征。(2)涡旋状MCS是在有利环境场下,主要由鄂西山地一江汉平原过渡带边界层中尺度涡旋系统强烈发展组织的结果。(3)中尺度涡旋系统形成发展与地面暖倒槽发展、西南低涡前侧降水和特殊地形作用有密切关系,来自不同方向气流形成的强烈辐合是其前期形成发展的主要机制,后期发展可能与潜热释放有关,涡旋环流向上发展到700 hPa。  相似文献   

3.
王正廷  杨希 《广西气象》2007,28(A02):87-88,94
利用2005-2006年5-6月18次强降水天气过程的常规观测资料和雷达回波资料,分析了三明地区雨季的各类强降水天气过程。结果表明,850hPa的天气型是造成三明地区5-6月强降水主要天气系统,它可为三类:切变适中型维持型、冷切适中型南压型和台风倒槽型;不同类型强降水的雷达回波结构和特征有明显的区别。  相似文献   

4.
应用昆仑山北坡小时、分钟降水资料以及和田C波段多普勒天气雷达资料,分析近8年该区域短时强降水天气分型,对比分析对流云与混合云2型5类短时强降水的回波强度、顶高、垂直液态含水量等回波特征量值以及持续时间的差异.得出昆仑山北坡短时强降水中,中亚低涡(槽)型环流形势和块状多单体回波最多,昆仑山北坡无超级单体回波.需高度关注3...  相似文献   

5.
利用常规观测资料以及中尺度自动站资料、NCEP 1°×1°逐6 h再分析资料、雷达卫星产品等,分析了2021年8月3—4日豫东暴雨过程的环流背景与中尺度对流特征。主要结论如下:(1)暴雨发生在200 hPa处于高空辐散区、500 hPa冷涡底部低槽东移的环流条件下;中低层副高外围暖湿气流与地面冷锋于豫东形成辐合,配合高空强辐散为暴雨提供有利的环流背景。(2)降水前大气处于条件不稳定,豫东区域水汽饱和;强降水期间近地层存在温度平流,使边界层产生扰动导致暴雨增幅。(3)强降水发展与两个MCS系统发生、发展及演变关系密切;暴雨落区位于中尺度对流云团云顶亮温梯度大值区且靠近其低值中心。(4)雷达回波表现为多单体合并的混合型回波,V型缺口对应地面大风;强降水时段回波低质心、高效率并存在列车效应,风速辐合位置对应新单体生成。  相似文献   

6.
应用太原1996-2015年7个国家气象站、2008-2015年63个区域站6-9月逐时降水资料及相关探空、地面观测资料,对太原短时强降水日环流配置进行天气学分型,分析各流型下关键环境参数分布特征。结果表明,太原发生短时强降水的500 hPa环流形势有四种:冷涡型、高空槽型、高空槽加副高型、西北气流型。太原短时强降水常发生在比较温和的对流有效位能(CAPE)环境下,大部分过程CAPE值≤1500 J·kg^-1,冷涡型则≤1000 J·kg^-1。西北气流型850 hPa与500 hPa温差(ΔT850-500)大,静力不稳定度比其他型更强,且500 hPa有明显的干层存在。高空槽加副高型K指数大,且暖云厚度均值达3576 m,明显大于其他型2471~2608 m的均值。冷涡型全部、高空槽型85%的过程出现在弱0~6 km垂直风切变环境下,而高空槽加副高型、西北气流型0~6 km垂直风切变相对较大,35%以上达到中等强度。冷涡型、西北气流型短时强降水太原上空700 hPa水汽常比850 hPa更充沛。太原超过70 mm·h^-1的极端降水出现在西北气流型下,有中等强度的CAPE值、强层结不稳定、弱0~6 km垂直风切变、3550 m以上暖云厚度,中低空水汽充足,这些环境参量的配合对强降水效率有很好的指示意义。  相似文献   

7.
利用2008-2018年4-9月新一代天气雷达资料,挑选了引发湖北省极端降水过程的70例中尺度对流系统(me-soscale convective systems,MCS),重点研究了线状MCS成熟阶段的时空分布特征,结果表明:(1)5类线状MCS中邻接层状云降水AS(adjoining stratiform)发生比例...  相似文献   

8.
Mesoscale convective systems (MCSs) are classified and investigated through a statistical analysis of composite radar reflectivity data and station observations during June and July 2010-2012. The number of linear-mode MCSs is slightly larger than the number of nonlinear-mode MCSs. Eight types of linear-mode MCSs are identified: trailing stratiform MCSs (TS), leading stratiform MCSs (LS), training line/adjoining stratiform MCSs (TL/AS), back-building/quasi-stationary MCSs (BB), parallel stratiform MCSs (PS), bro- ken line MCSs (BL), embedded line MCSs (EL), and long line MCSs (LL). Six of these types have been identified in previous studies, but EL and LL MCSs are described for the first time by this study. TS, LS, PS, and BL MCSs are all moving systems, while TL/AS, BB, EL, and LL MCSs are quasi-stationary. The average duration of linear-mode MCSs is more than 7 h. TL/AS and TS MCSs typically have the longest durations. Linear-mode MCSs often develop close to the Yangtze River, especially over low-lying areas and river valleys. The diurnal cycle of MCS initiation over the Yangtze River valley contains multiple peaks. The vertical distribution of environmental wind is decomposed into storm-relative perpendicular and parallel wind components. The environmental wind field is a key factor in determining the organizational mode of a linear-mode MCS.  相似文献   

9.
利用常规观测资料、自动站加密观测资料、NCEP1°×1°逐日再分析资料和济南多普勒雷达资料,对2015年8月3—4日聊城市一次强降雨天气过程进行分析。结果表明:此次强降水天气的主要影响系统有500hPa西风槽、850~700hPa切变线、850hPa西南急流;降水前边界层逆温层有利于不稳定能量积聚,是产生雷电、大风的有利条件;强降水前低层大气高温、高湿,冷空气从700~850hPa入侵,触发不稳定能量释放造成强降水;850hPa以下水汽大量积聚到鲁西北地区,强水汽输送为本次强降水的发生提供了有利的水汽条件;降水时间内整层大气都存在强上升运动,加强了低层水汽辐合和不稳定能量释放;雷达回波显示本次强降水过程分为2个时段,3日14:16—15:37主要为对流性降水,3日16:01—4日00:00为层状云降水。  相似文献   

10.
利用2010—2018年新疆105个国家站、1240个区域自动站逐时降水资料及8部多普勒天气雷达资料,从预报业务应用角度提出新疆短时强降水过程定义并遴选468次短时强降水过程,分析短时强降水影响系统环流配置和雷达回波特征。结果表明新疆短时强降水的影响系统主要有中亚低槽(涡)、西西伯利亚低槽(涡)、西北低空急流。造成新疆短时强降水的对流风暴主要有合并加强型、列车效应型和孤立对流单体型,其中合并加强型最多,占45.1%,孤立对流单体型占34.8%,列车效应型最少,占20.2%,且各区域对流风暴的影响比例也有一定差异。南疆短时强降水过程中多普勒雷达最大反射率因子强度(Z max)、强回波中心顶高(D max)、回波顶高(ET)、最大垂直累积液态水含量(VIL)预警阈值小于北疆,且伊犁州最大,阿克苏最小,伊犁州短时强降水以低质心回波为主,其他区域则为低质心和高质心回波。  相似文献   

11.
利用2005~2006年5~6月18次强降水天气过程的常规观测资料和雷达回波资料,分析了三明地区雨季的各类强降水天气过程。结果表明,850hPa的天气型是造成三明地区5~6月强降水主要天气系统,它可为三类:切变适中型维持型、冷切适中型南压型和台风倒槽型;不同类型强降水的雷达回波结构和特征有明显的区别。  相似文献   

12.
一次广西东部季风爆发前夕短历时强降水分析   总被引:1,自引:0,他引:1  
利利用常规气象资料和卫星云图、雷达、自动站等非常规资料,对2012年5月12日夜间发生在广西东部地区的局地短历时强降水进行诊断分析,结果表明:(1)这次特大暴雨具有夏季风降水的特征和性质,它是在副高较弱,南海季风爆发前夕季风涌活跃北抬且西南暖低压强盛的背景下,由500hPa短波槽、850hPa中-α尺度低涡及切变线和地面冷锋共同影响造成的。冷锋前部侵入边界层的浅薄冷空气是此次特大暴雨的触发抬升机制。(2)从多普勒雷达回波和卫星云图特征分析,此次特大暴雨是季风涌和锋面云系相互作用而形成的一个长时间滞留该地的MCS和超级单体所造成。(3)在西南季风活跃时局地强降雨发生前不一定要有西南低空急流的建立。  相似文献   

13.
利用1985-2018年汛期(5-9月)豫东地区20个国家站小时降水资料和2011-2018年同期豫东地区区域自动站观测数据、NCEP(1°×1°)再分析资料、高空地面观测资料等,统计分析了该区域小时雨强分别≥20mm/h、≥30mm/h和≥50mm/h的短时强降水时空分布特征,结果发现:豫东地区近34年汛期平均年降水量为458.9~577.5 mm/a,短时强降水次数为72.8次/a;2000年是短时强降水多发年份,≥20mm/h的雨强出现158次,是常年平均次数的1.17倍;主汛期的7-8月是不同强度短时强降水多发时期,34年来共计发生≥20mm/h的短时强降水1821次,占同强度短时强降水总次数(2476次)的近74.0%;在短时强降水的日变化中,05时是不同强度短时强降水多发时段,20时为次多发时段。对不同环流背景影响下短时强降水过程的水汽、动力、热力及能量等物理量作统计分析,低槽型短时强降水过程的动力条件优于其他两个类型的,850hPa涡度平均值达3.8×10~(-5)s~(-1),700hPa垂直速度平均值达-0.36 Pa·s~(-1);副高边缘型短时强降水过程不稳定能量条件优势显著,850hPa假相当位温平均值达354.1 K,500-850hPa假相当位温差的平均值达-17.80℃,K指数平均值为38.1℃、CAPE值平均值为2075.0 J·kg~(-1);而台风倒槽型短时强降水过程则在水汽输送方面更具优势,850 hPa比湿平均值为15.5g·kg~(-1),整层可降水量达70.0 mm。  相似文献   

14.
2012年江西宜春四类短时强降水特征分析   总被引:6,自引:3,他引:3  
用宜春气象站常规气象资料,雷达回波和风廓线雷达等资料,采用数理统计、样本对比和特征分析等方法,对2012年3—9月宜春单站短时强降水天气进行分析和研究。结果表明:(1)≥10 mm·10min-1的超短时强降水是构成≥30 mm·h-1和≥50 mm·(2h)-1短时强降水的重要组成部分。(2)宜春短时强降水主要有带状回波、块状回波、絮状回波和短带回波4种类型,是由平均50 d Bz的强回波单体所致。(3)短时强降水回波系统过境时,平均回波宽度43 km,气象要素表现为:出现超短时强降水、温度下降、湿度饱和、气压上升、前导风迅速加大、Cb云急增。(4)短时强降水发生时,宜春风廓线雷达最大探测高度由3 000 m逐步增高到6 000 m,风速加大;850 h Pa西南急流≥12 m·s-1。(5)降水期间由于强降水粒子拖曳作用,风廓线雷达垂直波束上径向速度出现朝向雷达方向的正速度,垂直风速明显加大,噪声系数在40~60 d B之间。  相似文献   

15.
王晓芳  崔春光 《气象学报》2012,70(5):909-923
利用2010年6—7月长江流域雷达拼图和观测资料,统计分析了长江中下游地区梅雨期中尺度对流系统的类型和活动特征。结果表明,长江中下游地区梅雨期线状中尺度对流系统发生个数比非线状中尺度对流系统发生个数略多,存在8类典型的线状中尺度对流系统:尾随层状降水中尺度对流系统(TS)、准静止后向建立中尺度对流系统(BB)、邻接层状单向发展中尺度对流系统(TL/AS)、前导层状降水中尺度对流系统(LS)、平行层状降水中尺度对流系统(PS)、断裂线状中尺度对流系统(BL)、镶嵌线状中尺度对流系统(EL)、长带层状降水中尺度对流系统(LL)。其中,有6类和已有的研究结果类似,EL中尺度对流系统和LL中尺度对流系统是长江流域梅雨期新统计的两类线状中尺度对流系统。TS、LS、PS和BL等4类中尺度对流系统是移动性的,TL/AS、BB、EL和LL类中尺度对流系统为移动缓慢相对静止的。线状中尺度对流系统平均持续时间大多数在7h以上,TL/AS和TS类持续时间较长。线状中尺度对流系统多形成在长江两岸附近,重庆北部至鄂西沿江地带、江汉平原地区、皖南和赣北地区、大别山地区是中尺度对流系统的多发地;中尺度对流系统移动路径分为东、东偏北、东偏南、南等4种,这与环境场的引导气流有关。长江中下游地区中尺度对流系统发展阶段日变化呈现多峰型特征,在成熟阶段的下午至夜间发生强降水的概率明显大于凌晨至上午。  相似文献   

16.
利用常规观测、区域自动站、FY-2G气象卫星、多普勒雷达、风廓线雷达及NCEP 1°×1°再分析等多源资料,分析乌鲁木齐2015年6月9日和27日(分别简称"6·09"和"6·27"过程)两次极端短时强降水成因。结果表明:(1)"6·09"过程是在高压脊前西北气流下,由700、850 hPa双低空急流耦合触发,配合强低层风切变,低层水汽快速聚集造成的局地性强对流天气,TBB最低为-52℃,雷达回波为典型的"列车效应",强回波达55 dBZ。"6·27"过程是在中亚低涡背景下,西南、偏西、偏东三条水汽路径使得整层增湿,配合持续时间较长的弱低层风切变,是系统性降水中的强对流天气,TBB最低为-44℃,雷达回波为混合性降水回波中分散的对流单体,强回波达50d BZ;此外",6·09"过程热力不稳定条件较好。(2)风廓线雷达显示两次过程低层均存在垂直风切变,折射率结构常数均在强降水时迅速增大并维持高值,随着降水减弱迅速减小;两次过程均发生在中β尺度对流云团TBB梯度最大处。(3)雷达回波均属于低质心对流风暴,且地面均配合有中γ尺度气旋性风场辐合或切变。  相似文献   

17.
利用辽宁阜新国家站(121.7458°E,42.0672°N)的毫米波云雷达(8 mm)和微雨雷达(12.5 mm)对2020年8月12-13日东北冷涡影响下的一次降水过程进行了观测,分析了云降水的垂直结构特征并探讨了降水机制。结果表明:本次过程中,云水平方向发展不均匀,以层状云和层积混合云为主,云内有时还嵌有对流泡。云降水阶段性变化明显,先后出现了层状云降水、层积混合云降水和对流云降水。层状云降水和层积混合云降水均表现出明显的亮带特征,但层积混合云降水的雷达回波强度、回波顶高和降水强度明显大于层状云降水。对流云降水的雷达回波会因强降水而产生明显衰减,因此回波顶高不能表示出实际的云顶情况。层状云降水阶段,云雷达反射率随高度降低增长缓慢,雨滴在下落过程中受蒸发和碰并的共同作用,反射率降低。与层状云降水相比,层积混合云降水的碰并效应强,且由于前期降水对近地面的增湿作用,使云下蒸发弱。对流云降水阶段,反射率的增长主要发生在冰水混合层,有利于大滴的产生,拓宽了云滴谱,提高了碰并效率。  相似文献   

18.
李欣  张璐 《气象科技》2020,48(3):387-395
利用青岛地区2011—2015年间32次短时强降水个例的雷达反射率因子、地面雨量站数据和FNL再分析资料对产生短时强降水的中小尺度系统和雷达回波特征进行分析,结果表明:造成短时强降水的中小尺度系统主要为与低空切变(槽)、台风倒槽或在偏南(北)气流中局地发展的对流相联系的辐合区或中小尺度辐合线;雷达回波多表现为中尺度强回波带,其移向与回波带长轴的夹角较小,或为局地发展少动的强对流单体;雷达回波剖面显示回波按质心高度可分为大陆强对流型和热带海洋型,大陆强对流型强降水的平均反射率因子垂直廓线强度总体明显强于热带海洋型,对流发展更加旺盛,热带海洋型强回波集中在低层,在近地面最强,而大陆强对流型回波悬垂明显,最强回波位于2km左右;针对大陆强对流型和热带海洋型两种不同类型的短时强降水,采用分型Z-I关系法进行定量降水估测能够较好地反映强降水的落区和极值,相比于固定Z-I关系法,20mm·h~(-1)以上雨强的相对误差由70%左右下降到30%左右。  相似文献   

19.
利用多普勒雷达、气象卫星、自动气象站等监测数据以及NCEP再分析资料,对桂林2019年6月6-12日接连3次强降水天气过程的环流背景、影响系统与形成原因进行了对比分析。结果表明:(1)3次过程按影响系统分属暖区暴雨、低涡暴雨和锋面暴雨过程,均发生在高空急流右侧辐散、低空急流左侧辐合叠加区。(2)3次过程均受500 hPa短波槽和地面中尺度辐合线影响,但第1次过程中西南急流及地形等、第2次过程中低涡切变线、第3次过程中冷锋也起到重要作用。(3)3次过程的触发系统不同,第1次暖区暴雨过程迎风坡地形对其起触发作用,西南急流使得后向传播的对流云带维持;第2次低涡暴雨过程的触发系统为低层位于贵州一带的西南涡,西部冷空气侵入与西南急流加强是低涡对流云团维持较长时间的原因;第3次锋面暴雨的触发系统为冷锋,锋面配合锋前暖湿气流使对流云带加强。(4)第1次过程暖区暴雨MCS模态主要为线状后向扩建类,极端强降水出现在线对流中后端;第2次过程低涡暴雨MCS模态为涡旋类,极端强降水出现在涡旋中心附近;第3次过程锋面暴雨MCS模态由前期后部层云区线状对流转为层状云包裹对流系统,强降水发生在线对流弯曲或中心强回波处。  相似文献   

20.
利用常规观测资料、多普勒天气雷达资料及NCEP再分析资料,对2018年5月18日湖北省中东部地区一次尾随层状云类中尺度对流系统(MCS)的雷达回波特征和地面中尺度系统演变特征进行了分析。结果表明:1)短波槽东移南压,引导冷空气南下,与副热带高压外侧强劲的西南暖湿急流长时间在湖北省中东部地区交汇,形成有利于诱发MCS的大尺度环流背景;2)强降水的主要发生时段集中于尾随层状云降水回波对流线形成的初始阶段和成熟阶段,强雨团主要位于对流线附近及层状云降水回波头部,同时伴有雷暴大风天气;3)西南涡的发展为尾随层状云类MCS高效降水产生提供有利的环境场,边界层中尺度辐合线在对流的触发、发展、组织的过程中起到重要的作用,地形的抬升作用及阻挡作用,使MCS持续发展,同时,MCS后部"冷池"能量累积溢出形成雷暴冷出流与环境南风辐合,不断激发新的MCS;4)对流线附近存在明显的上升气流,环境风入流提供了充足的水汽供应,其前侧、后方分别有一支不同高度的下沉气流(出流或入流),并与环境风辐合,使MCS向前持续发展,并在后方不断激发新的MCS,造成较长时间的强降水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号