首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
东海陆坡及邻近槽底天然气水合物成藏条件分析及前景   总被引:3,自引:1,他引:2  
在西太平洋边缘海中,东海是唯一没有获得天然气水合物样品的边缘海。利用已有的地震资料、海底温度资料等,从沉积物来源、沉积地层厚度、烃源岩条件、沉积速率、海底温度—压力条件等方面对东海水合物成藏条件进行了分析。认为冲绳海槽沉积物源丰富,沉积厚度大,且发育烃源岩地层。冲绳海槽较高的沉积速率主要分布于冲绳海槽槽底沉积中心,以及西部陆坡连接海底峡谷底部的三角洲区域。根据冲绳海槽实测的海底温度数据,整个冲绳海槽地区600m以深的范围都能够满足水合物发育的温度、压力条件。以温度梯度为30℃/km计算,冲绳海槽中水合物稳定域的最大厚度为650m。冲绳海槽盆地中普遍发育的底辟构造、背斜构造等局部构造,以及网格状断裂系统,为烃类气流体的向上及侧向运移创造了有利条件,成为天然气水合物发育的有利区带。根据已经发现的BSR特征来看,东海地区天然气水合物前景广阔。  相似文献   

2.
The present day Taupo-Hikurangi subduction system is a southward extension of the Tonga-Kermadec Arc system into a sediment-rich continental margin environment. It consists of a shallow structural trench (the Hikurangi Trough), a 150 km wide, imbricate thrust controlled accretionary borderland (the continental slope, shelf, and coastal hills of eastern North Island), a frontal ridge (the main “greywacke” ranges of North Island), and a volcanic arc and marginal basin (the Taupo Volcanic Zone).Structural elements become progressively more elevated and subduction more oblique towards the south. The whole NNE-trending system is truncated at a largely strike-slip, transform boundary that extends along the southwestern part of the Hikurangi Trough and the Hope fault of South Island to the main Alpine Fault.The volcanic arc is 200–270 km from the structural trench and comprises a NNE trending chain of andesite-dacite volcanoes extending along the eastern side of the Taupo Volcanic Zone. Most of the andesites are olivine-bearing and have been erupted within the last 50,000 years.It is suggested the Taupo-Hikurangi margin has evolved by rotation of accretionary elements, from an original NW-trending subduction system north of New Zealand. The older elements of the prism were associated with subduction of a re-entrant of the Pacific Plate (and perhaps the South Fiji Basin) in Mid Tertiary times. They subsequently became separated from their NW-trending volcanic arc by dextral strike-slip movement along curved faults east of the main “greywacke” ranges. During the Plio-Pleistocene, oblique subduction and accretion intensified as the Taupo-Hikurangi margin rotated into line with the NNE-trending Kermadec system and a marginal basin was developed along a similar trend to form the Taupo Volcanic Zone. Within the last 50,000 years olivine-bearing andesite volcanism has commenced along the eastern side of the Taupo Volcanic Zone.  相似文献   

3.
The Bengal Basin, in the north-eastern part of the Indian subcontinent, contains a thick (± 22 km) early Cretaceous-Holocene sedimentary succession. The Neogene succession in the Sylhet Trough of the basin reaches a thickness of more than 6 km of which the Surma Group contains important sandstone reservoirs. Lithologically, the group consists of a succession of alternating shales, siltstones, sandy shales and sandstones, with minor conglomerates. This research work is a sedimentological analysis of the subsurface Neogene succession encountered in the petroleum exploration wells in the Sylhet Trough of the Bengal Basin. Detailed lithologic logs of the cores, based on considering texture and sedimentary structure, permit a subdivision into eight lithofacies, e.g., a shale-dominated facies, interbedded fine sandstones and mudstones, ripple-laminated sandstones, parallel-laminated sandstones, massive sandstones, cross-bedded sandstones, cross-bedded sandstones with pebble/granule lag and conglomerates. Characteristic sedimentary structures of the Surma Group, such as flaser-, wavy- and lenticular-bedding, bipolarity of ripple cross-stratification, evenly laminated sand/silt-streaked shales, reactivation surfaces within cross-bedded sandstone sets, mud-drapes on foreset laminae and herringbone cross-stratification as well as small-scale vertical sequences (several fining-upward cycles) are diagnostic for tidal influence. On the basis of the lithofacies associations and prograding character of the deposits revealed from the electrofacies associations, the Surma Group sediments have been interpreted as representing deposits of tide-dominated deltaic depositional setting.  相似文献   

4.
The Neogene Humboldt (Eel River) Basin is located along the north-eastern margin of the Pacific Ocean within the Cascadia subduction zone. This sedimentary basin originated near the base of the accretionary prism in post-Eocene time. Subduction processes since that time have elevated strata in the south-eastern portion of the basin above sea level. High-resolution chronostratigraphic data from the onshore portion of the Humboldt Basin enable correlation of time-equivalent lithofacies across the palaeomargin, reconstruction of slope-basin evolution, and preliminary delineation of climatic and tectonic influence on lithological variation. Emergent basin fill is divided into five lithofacies which clearly document shoaling of the inner trench slope from deep-water environments in early Miocene time to paralic environments in Pleistocene time. The oldest strata consist of hemipelagic mudstones and minor debris-flow breccias deposited in a deep-water setting during elevated sea level. These strata are overlain by glauconite-rich, fine-grained turbidites which heralded an increasing influx of terrigenous detritus. Water depths shoaled earlier in the eastern basin area as the palaeoshoreline prograded seaward. Turbidite deposition ceased in the eastern basin area at about 2-2 Ma, whereas 22 km to the west, turbidite deposition continued until about 1-8 Ma. Lithofacies at the western study site change abruptly across a middle Pleistocene unconformity from outer shelf to paralic deposits. In the east, a more complete Pleistocene section records transition from outer to inner shelf, beach and fluvial environments. The Humboldt Basin lithofacies sequence is overprinted by eustatic control of sediment source. Comparison of sediment character with palaeoceanographic conditions indicates dominance of hemipelagic facies during periods of elevated sea level in the middle Miocene and early Pliocene when depocentres were isolated from terrigenous sediment. Glauconite-rich facies were mobilized from an upper slope setting following these periods of elevated sea level and redeposited in a deep-marine environment. Pleistocene shoreline lithofacies display glacio-esutatic control of depositional environment by recording several cycles of nearshore to fluvial progressions. General models of accretionary prism behaviour and trench-slope basin evolution are compatible with the overall coarsening-upward lithofacies sequence filling the Humboldt Basin. Early structural barriers precluded deposition of terrigenous material except from locally derived debris flows; subsequent shoaling and burial of deactivated thrust-folds enabled turbidity flows to reach the basin floor. However, late-stage tectonism apparently controlled the onset of coarse-grained deposition in this sequence. Significant sand-rich turbidite deposition began in the middle Pliocene, synchronous with tectonic uplift of the southern basin margin. Conversely, cessation of turbidite deposition in the eastern basin area in latest Pliocene time was synchronous with growth of anticlinal structures which again blocked widespread dispersal of turbidity flows. This middle Pliocene to Holocene period of crustal shortening is synchronous with continued reduction in spreading rate along the southern Juan de Fuca ridge, and probably reflects partial coupling between the subducting lithosphere and the overlying accretionary prism.  相似文献   

5.
Abstract The north-east Australian margin is the largest modern example of a tropical mixed siliciclastic/carbonate depositional system, with an outer shelf hosting the Great Barrier Reef (GBR) and an inner shelf dominated by fluvially sourced siliciclastic sediment wedges. The long-term interplay between these sediment components and sea level is recorded in the Queensland Trough, a 1–2 km deep N–S elongate basin situated between the GBR platform and the Queensland Plateau. In this paper, 154 samples from 45 surface grabs and six well-dated piston cores were analysed for total carbonate content, carbonate mineralogy and Sr concentration to establish spatial and temporal patterns of carbonate accumulation in the Queensland Trough over the last 300 kyr. Surface carbonate contents are lowest on the inner-shelf (<5%) and in the trough axis (<60%) because of siliciclastic dilution. Carbonate on the shelf is mostly Sr-rich aragonite and high-Mg calcite (HMC), whereas that in the basin is mostly low-Mg calcite. Once normalized to remove the effects of siliciclastic dilution, surface Sr-rich aragonite and HMC abundances decrease linearly to background levels ≈ 100 km seaward of the shelf edge. Core samples show that, over time, normalized aragonite and Sr abundances are greatest during periods of shelf flooding and lowest when sea level drops below the shelf edge. This is consistent with changes in the production of coral and calcareous algae, and the shedding of their debris from the shelf. Interestingly, normalized HMC concentrations on the slope peak during periods of major transgression, perhaps because of maximum off-shelf transport from inter-reef areas or intermediate water dissolution. After accounting for siliciclastic dilution, there are strong similarities in both spatial and temporal patterns of carbonate minerals between slopes and basins of the north-east Australian margin and those of pure carbonate margins such as the Bahamas. A limited set of basic processes, including the formation and breakdown of carbonate on the shelf, the transport of carbonate off the shelf and eustatic sea level, probably controls carbonate accumulation in slope and basin settings of tropical environments, irrespective of proximal siliciclastic sediment sources.  相似文献   

6.
札达盆地为一个藏南晚新生代断陷盆地,基于岩性岩相、古流向和物源分析,认为札达盆地主要经历了裂陷充填期(9.2~7.8 Ma),稳定发展期(7.8~2.6 Ma)和裂后消亡期(2.6~1.7 Ma)。沉积相主要有辫状河相、淡水湖泊相和冲积扇相,以湖相为主;古流向由南西向转变为盆地周缘指向湖盆中心,发展到最后为南东向;物源主要来自北侧的阿伊拉日居山地区,古地势由北东高南西低,经差异抬升变为北西高南东低,沉积中心位于湖盆南缘。至约1.7 Ma之后,贡巴砾岩的出现代表了札达盆地的消亡。札达盆地的演化表明藏南裂陷盆地经历了拉张形成、湖盆最大化而后快速消亡的过程,揭示了藏南在获得最大高度后进一步构造伸展垮塌的演变历程。
   相似文献   

7.
The basal Neogene formations in the Ierapetra region, eastern Crete, are strongly influenced by a Late Serravallian tectonic phase which resulted in the breakup of pre-existing palaeogeographic patterns. Important vertical movements caused the southward emplacement of Neogene sediments, together with parts of the underlying pre-Neogene nappe pile. The resulting chaotic association of exotic blocks and sediments, known as the Prina Complex, has the properties of a sedimentary mélange. It can be traced for more than 15 km from north to south.In the north a relatively coherent accumulation of large slide masses overlies deformed Neogene coarse clastics and pre-Neogene rocks. Distally it comprises a poorly stratified sequence of breccias and intermixed finer grained sediments, which locally contains olistostromes and debris-flows and interfingers to the south with submarine fan deposits. The intricate relation of faulting and gravity sliding in a rapidly subsiding basin can be explained by generation in a strike-slip setting. It is suggested that the Ierapetra basin and its offshore extension, the South Cretan trough, were initiated by sinistral movements along a NE-SW oriented fault zone. Implications of this model for the geodynamic evolution of the south Aegean area are discussed.  相似文献   

8.
Seismic multi-channel data collected during Norwegian Antarctic Research Expeditions in 1976–1977 and 1978–1979 outline aspects of the Cenozoic depositional environment in the Weddell Sea Embayment. Acoustic basement, probably representing the East Antarctic craton, is exposed in a 50–100 km wide swath along the ice barrier between 78°S–75.5°S on the eastern side of the Crary Trough. The shelf prograded westward and northward from the craton into a subsiding basin colinear with the Transantarctic Mountain Range. Measured sediment thicknesses exceed 5 km. During middle and late Tertiary times a submarine fan complex—the Crary Fan—developed on the southeastern margin of the Weddell Sea Embayment. The glacially eroded Crary Trough is located at the contact between the craton and a sedimentary basin to the west. The entire sedimentary section is undisturbed by faulting or folding, which indicates that any movements related to Cenozoic uplift of the Trans-Antarctic Mountains and/or relative motion of East Antarctica had little effect in the area north of the Filchner Ice Shelf east of 41°W.  相似文献   

9.
蒋富清  李安春 《沉积学报》2002,20(4):680-686
对冲绳海槽南部陆架、陆坡和海槽 33个表层沉积物进行了元素地球化学分析,结果表明研究区沉积物的主要化学组成为SiO2 、Al2 O3 和CaO,这三种组分占沉积物总量的 6 8%左右。多数元素在陆架和陆坡的变化范围较大,在海槽区相对稳定。向海槽方向随沉积物粒径变细,SiO2 和CaO减少、Al2 O3 和其它多数元素含量增加。常量元素和Al2 O3 的比值分布特征表明,本区沉积物由物源区经由陆架向海槽输送,沉积物主要由陆源碎屑沉积组成,此外还有生物碎屑沉积和自生沉积。陆架区部分微量元素富集因子 (EF)与长江和黄河沉积物的富集因子对比结果表明,本区的沉积物与长江沉积物的关系更为密切。陆坡区Cu、Pb、Zn、Co、Ni和Cr的富集因子较高是由于生物的富集作用造成的,Mn的富集主要是自生沉积的结果。用R型因子分析方法对沉积物的化学组成进行了分析,结合元素的分布特征,给出了四个主因子所对应的沉积环境和特征元素组合,分别为 1)陆架型的元素组合 :SiO2 、TiO2 、Zr、CaO和Sr,2 )陆坡型的元素组合Fe2 O3 、MgO和P2 O5,3)海槽型的元素组合 :Al2 O3 、K2 O、Cu、Zn、Co、Ni、Cr和Ba,4 )反映沉积环境氧化-还原属性的元素组合 :MnO和FeO。  相似文献   

10.
源—汇系统分析已成为沉积学领域的研究热点,其中关键参数定量恢复是源—汇系统分析的重要内容。以柴北缘鱼卡地区中侏罗世发育的陆相盆地源—汇系统为例,通过支点法进行源—汇系统收支定量分析。首先识别干流河道沉积,测量或计算河道尺寸,进行粒度分析;然后计算瞬时满岸水流量及沉积物流量,结合古气候与流域分析,对年均沉积物量进行计算,得出在给定地层持续时间内输送的沉积物量;再对沉积区的沉积物量进行测量统计,并与计算出的沉积物量进行对比,分析源—汇系统收支状况。对柴北缘鱼卡地区中侏罗统石门沟组下部沉积的源—汇系统收支定量分析显示,目标研究层段河流沉积的干流满岸深度在3.1~3.3 m,河道宽度为69~77 m,流经了较缓的坡度(0.000 204 6~0.000 217 8),流速一般为1.046~1.048 m/s,搬运了中—细砂为主的沉积物。该时期流域面积约为3 209.8~3 781.6 km2,流域长度介于177.8~196.2 km,满岸水流量为239.9~286.2 m3/s,满岸推移载荷流量为0.043~0.048 m3/s,满岸悬浮载荷流量范围为0.083~0.094 m3/s。基于现代类似河流的对比研究,计算出鱼卡地区干流年均沉积物搬运量介于158 862.4~179 242.3 m3,在层序S2所持续的2.2 Ma共向沉积区输入349.5~394.3 km3的沉积物,与沉积区所统计的沉积体积(322 km3)大致相符。河流沉积物输入体积的高值约为支点下游沉积区统计体积的1.22倍,如果这一分析结果准确,则表明存在一定程度的沉积物遗失现象,研究区局限发育的重力流沉积可能是沉积物遗失的主要方式。建立的收支模型可进一步推广应用于陆相河湖沉积组合的源—汇系统分析。  相似文献   

11.
The Middle and Late Pleistocene succession on the glacier-fed fan at the mouth of Storfjorden trough was studied using high-resolution seismic data. Seven glacial advances to the shelf break during Middle and Late Pleistocene resulted in episodic high sediment input to the fan with real sedimentation rates of up to 172 cm/1000 years, separated by sediment-starved interstadials and interglacials. On the upper fan the high sediment input resulted in frequent slides and slumps, generating debris flows which dominate the mid-fan strata. Compared with the larger neighbouring Bear Island trough mouth fan, the Storfjorden trough mouth fan has a steeper fan gradient, narrower, thinner and shorter debris flow deposits and lower frequency of large scale sliding. Glacier-fed submarine fans receive their main sediment input from a glacier margin at the shelf break, as opposed to river-fed fans where sediment input occurs through a channel-levee complex. As a result, the depocentre of a river-fed fan is found on the mid-fan and the upper slope is mainly an area of sediment bypass, whereas the glacier-fed fan has an elongated depocentre across the uppermost fan. The river-fed fans are dominated by deposition from turbidity currents, whereas glacier-fed fans are dominated by debris flow deposits.  相似文献   

12.
Four late-Quaternary alluvial fills and terraces are recognized in Wolf Creek basin, a small (163 km2) drainage in the Kansas River system of the central Great Plains. Two terraces were created during the late Pleistocene: the T-4 is a fill-top terrace underlain by sand and gravel fill (Fill I), and the T-3 is a strath terrace cut on the Cretaceous Dakota Sandstone. Both Fill II (early Holocene) and Fill III (late Holocene) are exposed beneath the T-2, a Holocene fill-top terrace. The T-1 complex, consisting of one cut and three fill-top terraces, is underlain by Fills III and IV. A poorly developed floodplain (T-0) has formed within the past 1000 yr. As valleys in Wolf Creek basin filled during the early Holocene, an interval of soil formation occurred about 6800 yr B.P. Early Holocene fill has been found only in the basin's upper reaches, indicating that extensive erosion during the middle Holocene removed most early-Holocene fill from the middle and lower reaches of the basin. Valley filling between 5000 and 1000 yr B.P. was interrupted by soil formation about 1800, 1500, and 1200 yr B.P. As much as 6 m of entrenchment has occurred in the past 1000 yr. Holocene events in Wolf Creek basin correlate well with those in other localities in the central Great Plains, indicating that widespread changes in climate, along with adjustments driven by complex response, influenced fluvial activity.  相似文献   

13.
Joseph Bonaparte Gulf is a large embayment on the northwestern continental margin of Australia. It is approximately 300 km east‐west and 120 km north‐south with a broad continental shelf to seaward. Maximum width from the southernmost shore of Joseph Bonaparte Gulf to the edge of the continental shelf is 560 km. Several large rivers enter the gulf along its shores. The climate is monsoonal, sub‐humid, and cyclone‐prone during the December‐March wet season. A bedrock high (Sahul Rise) rims the shelf margin. The sediments within the gulf are carbonates to seaward, grading into clastics inshore. A seaward‐thinning wedge of highstand muds dominates the sediments of the inner shelf of Joseph Bonaparte Gulf. Mud banks up to 15m thick have developed inshore. Coarse‐grained sand ridges up to 15 m high are found off the mouth of the Ord River. These overlie an Upper Pleistocene transgressive lag of mixed carbonate and gravelly siliciclastic sand. Four drowned strandlines are present on the inner shelf at depths of 20, 25, 28 and 30 m below datum. These are interpreted as having formed during stillstands in the Late Pleistocene transgression. Older strandlines at great depths are inferred as having formed during the fall in sea‐level following the last highstand. For the most part the Upper Pleistocene‐Holocene marine sediments overlie an erosion surface cut into older Pleistocene sediments. Incised valleys cut into this erosion surface are up to 5 km wide and have a relief of at least 20 m. The largest valley is that cut by the Ord River. Upper Pleistocene sediments deposited in the incised valleys include interpreted lowstand fluvial gravels, early transgressive channel sands and floodplain silts, and late transgressive estuarine sands and gravels. Older Pleistocene sediments are inferred to have been deposited before and during the 120 ka highstand (isotope stage 5). They consist of sandy calcarenites deposited in high‐energy tide‐dominated shelf environments. Still older shelf and valley‐fill sediments underlie these. The contrast between the Holocene muddy clastic sediments and the sandy carbonates deposited by the 120 ka highstand suggests that either the climate was more arid in the past, with less fluvial transport, or that mud was more effectively trapped in estuaries, allowing development of carbonate depositional environments inshore.  相似文献   

14.
西藏扎布耶盐湖30.0 ka B P以来水位与古降水量变化   总被引:5,自引:1,他引:5       下载免费PDF全文
齐文  郑绵平 《地球学报》2005,26(1):53-60
扎布耶湖9级大型沙砾堤记录了约30.0ka B P以来水位退缩历史,与北部拉果错、南部塔若错的垭口沉积记录了3个湖泊最后分离的时间。本文应用数字地面高程模型(DEM),计算了扎布耶各级沙堤对应湖面期的湖水面积、体积与含盐量;分析了扎布耶与拉果错、塔若错的分-合历程,计算了各时期汇流盆地总面积;参考湖泊、冰川、孢粉、天文学等多学科关于古温度、辐射平衡的结论,得出了较为可信的计算参数。在此基础上,应用根据西藏实际情况得出的辐射平衡和水面蒸发、陆面蒸发计算模型,代入封闭盆地水量平衡方程,得出了较Kutzbach水-能方程更可靠的降雨量-水域面积/流域面积比的非线性方程,计算出泛湖期(9级沙堤,40.0~28.0ka B P)该区降雨量567 mm/a,盛冰阶时降至350mm/a以下,冰期后增至402mm/a,随后逐步下降直至约Ⅰ-1级阶地时(海拔4421m,3.53ka B P)为280mm/a(约为现代的两倍)。通过定量恢复该区30.0ka B P以来降水量变化,为认识西藏高原湖泊演化和古环境、古季风演化提供了定量依据。  相似文献   

15.
Subaqueous dunes are formed on the KwaZulu-Natal outer-shelf due to sediment transport by the Agulhas Current (geostrophic current). These dunes occur within two dune fields at depths of ? 35 to ? 70 m. The net sediment transport direction is south, but short-period reversals form northward-migrating bedforms. The dune fields are physically bounded by late Pleistocene beachrock and aeolianite ledges. A bedform hierarchy has been recognized in the dune fields comprising a system of three generations of climbing bedforms. The outer dunefield has given rise to a sand ridge (H=12 m; L=4 km; W=1.1 km; and an 8° lee slope) whereas the inner dune fields have achieved large-scale dune status. Bedload parting zones within the dune fields occur where the sediment transport direction switches from north to south due to reversals in the geostrophic flow; these zones occur at depths of ? 60, ? 47 and ? 45 m. An interpretative stratigraphic model is presented on what such geostrophite deposits would look like in the ancient sedimentary record.  相似文献   

16.
Determining the relative influence of eustasy versus local sedimentary processes on strata formation is a fundamental challenge in the study of continental margin stratigraphy. In this paper, the relative contribution of these factors on continental margin evolution during the Middle to Late Pleistocene is evaluated using samples from Integrated Ocean Drilling Program Expedition 317. Core‐logging, biostratigraphy and quantitative X‐ray diffraction mineralogy are used to delineate continental shelf sedimentary systems. Major lithological unconformities bound stratigraphic sequences that contain recurring compositional patterns and that resemble other examples of Middle to Upper Pleistocene sequences. However, a preliminary chronology suggests that sequence boundary formation cannot be linked ‘one to one’ with eustatic cycles and therefore these sequences can contain multiple ca 100 ka eustatic cycles. Smaller amplitude, higher frequency transitions in sediment composition are interpreted as stratigraphic sequences driven by more rapid perturbations in the interplay of accommodation and sediment supply; their stratigraphy is variable in time and across the shelf, suggesting a strong influence of local sedimentary forcing in their formation. Changes in sediment composition after the Middle Pleistocene Transition indicate that sediment transfer from onshore sources in the glaciated Southern Alps to the middle‐shelf occurred over a single 100 ka glacio‐eustatic cycle, with an additional 100 ka lag before the mineralogical signal was preserved on the outer‐shelf. This phenomenon is coincident with rapid shelf progradation in this basin, suggesting a causal relation between across‐shelf sediment transport and margin progradation. This is one of very few studies that provide insights at the core scale into the processes driving continental margin evolution during the Middle to Late Pleistocene. This work shows that compositional changes in mud‐dominated successions can lead to a sequence stratigraphic interpretation and the identification of high‐frequency sequences, which may not be possible using a conventional stratigraphic approach.  相似文献   

17.
Pliocene age deposits of the palaeo‐Orinoco Delta are evaluated in the Mayaro Formation, which crops out along the western margin of the Columbus Basin in south‐east Trinidad. This sandstone‐dominated interval records the diachronous, basinwards migration of the shelf edge of the palaeo‐Orinoco Delta, as it prograded eastwards during the Pliocene–Pleistocene (ca 3·5 Ma). The basin setting was characterized by exceptionally high rates of growth‐fault controlled sediment supply and accommodation space creation resulting in a gross basin‐fill of around 12 km, with some of the highest subsidence rates in the world (ca 5 to 10 m ka?1). This analysis demonstrates that the Mayaro Formation was deposited within large and mainly wave‐influenced shelf‐edge deltas. These are manifested as multiple stacks of coarsening upward parasequences at scales ranging from tens to hundreds of metres in thickness, which are dominated by storm‐influenced and wave‐influenced proximal delta‐front sandstones with extensive, amalgamated swaley and hummocky cross‐stratification. These proximal delta‐front successions pass gradationally downwards into 10s to 100 m thick distal delta front to mud‐dominated upper slope deposits characterized by a wide variety of sedimentary processes, including distal river flood and storm‐related currents, slumps and other gravity flows. Isolated and subordinate sandstone bodies occur as gully fills, while extensive soft sediment deformation attests to the high sedimentation rates along a slope within a tectonically active basin. The vertical stratigraphic organization of the facies associations, together with the often cryptic nature of parasequence stacking patterns and sequence stratigraphic surfaces, are the combined product of the rapid rates of accommodation space creation, high rates of sediment supply and glacio‐eustasy in the 40 to 100 Ka Milankovitch frequency range. The stratigraphic framework described herein contrasts strikingly with that described from passive continental margins, but compares favourably to other tectonically active, deltaic settings (for example, the Baram Delta Province of north‐west Borneo).  相似文献   

18.
The Pleistocene/Holocene history of Abu Quir bay and the adjacent shoreline has been studied using textural, petrological and geotechnical information obtained from 33 boreholes. The sedimentary vertical sequence is as follows reading from bottom to top: Late Pleistocene shelf sand and stiff mud, Late Pleistocene/Holocene transgressive sand, Holocene calcareous shelf mud, Holocene nearshore sand, prodelta mud, delta plain lagoonal and marsh mud, delta front mud and sand and coastal sand of beach and dunes. These units are produced as a response to shoreline fluctuation, resulting from a wide variety of deltaic and shelf environments. The study identifies delta lobes of the former Canopic branch which was located in the western part of the bay.  相似文献   

19.
Along the West Greenland continental margin adjoining Baffin Bay, bathymetric data show a series of large submarine fans located at the mouths of cross‐shelf troughs. One of these fans, termed here ‘Uummannaq Fan’, is a trough‐mouth fan built largely by debris delivered from a fast‐flowing outlet of the Greenland Ice Sheet during past glacial maxima. Cores from this fan provide the first information on glacimarine sedimentary facies within a major West Greenland trough‐mouth fan and on the nature of Late Weichselian–Holocene glacigenic sediment delivery to this region of the Baffin Bay margin. Glacigenic debris flows deposited on the upper slope and extending to at least 1800 m water depth in front of the trough‐mouth are related to the remobilization of subglacial debris that was delivered onto the upper slope at times when an ice stream was positioned at the shelf edge. In contrast, sedimentary facies from the northern sector of the fan are characterized by hemipelagic and ice‐rafted sediments and turbidites; glacigenic debris flows are notably absent in cores from this region. Quantitative X‐ray diffraction studies of the <2‐mm sediment fraction indicate that the bulk of the sediment in the fan is derived from Uummannaq Trough but there are distinct intervals when sediment from northern Baffin Bay sources dominates, especially on the northern limit of the fan. These data demonstrate considerable variation in the nature of sediment delivery across the Uummannaq Fan when the Greenland Ice Sheet was at the shelf edge. They highlight the variability of glacimarine depositional processes operating on trough‐mouth fans on high‐latitude continental margins during the last glacial maximum and indicate that glacigenic debris flows are just one of a number of mechanisms by which such large depocentres form. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
根据札达盆地河湖相地层实测剖面中的接触关系、沉积旋回、沉积体系、岩相、岩性、古生物特征和ESR、古地磁测年结果,笔者对札达盆地上新统一早更新统河湖相地层进行了重新划分和时代确定。结合该套河湖相沉积的岩石地层、生物地层、年代地层、磁性地层、层序地层和地质构造事件,对札达盆地上新统一早更新统河湖相地层进行了多重地层的划分与对比。将札达盆地河湖相地层划分为3个组、4个沉积相、7个沉积亚相、11个岩性段。由新到老划分为:早更新统香孜组(Qp^1-1X)、上新统古格组(N22g)和上新统托林组(N2^1t)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号