首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bounty Channel system is located within the Bounty Trough, a Cretaceous rift on the eastern edge of the New Zealand microcontinent. Today, the system is fed with sediment from the eastern South Island shelf, through the Otago Fan complex. The main Bounty Channel is about 800 km long and forms a sediment transport link between the continental margin and the distal Bounty Fan, located at the mouth of the Bounty Trough and onlapping onto abyssal oceanic crust. The Bounty Channel system has existed in its present setting since the inception of the Alpine Fault plate boundary in the mid-Cenozoic, while ancestral marine channel systems occur back to the Paleocene.  相似文献   

2.
Deep currents such as the Pacific Deep Western Boundary Current (DWBC) are strengthened periodically in Milankovitch cycles. We studied periodic fluctuations in seismic reflection pattern and reflection amplitude in order to detect cycles in the sedimentary layers of Bounty Trough and bounty fan, east of New Zealand. There, the occurrence of the obliquity frequency is caused only by the DWBC. Therefore, it provides direct evidence for the spatial extent of the DWBC. We can confirm the extent of the DWBC west of the outer sill, previously only inferred via erosional features at the outer sill. Further, our data allow an estimation of the extent of the DWBC into the Bounty Trough, limiting the DWBC presence to east of 178.15°E. Using the presented method a larger dataset will allow a chronological and areal mapping of sedimentation processes and hence provide information on glacial/interglacial cycles.  相似文献   

3.
Submarine fans and turbidite systems are important and sensitive features located offshore from river deltas that archive tectonic events, regional climate, sea level variations and erosional process. Very little is known about the sedimentary structure of the 1800 km long and 400 km wide Mozambique Fan, which is fed by the Zambezi and spreads out into the Mozambique Channel. New multichannel seismic profiles in the Mozambique Basin reveal multiple feeder systems of the upper fan that have been active concurrently or consecutively since Late Cretaceous. We identify two buried, ancient turbidite systems off Mozambique in addition to the previously known Zambezi-Channel system and another hypothesized active system. The oldest part of the upper fan, located north of the present-day mouth of the Zambezi, was active from Late Cretaceous to Eocene times. Regional uplift caused an increased sediment flux that continued until Eocene times, allowing the fan to migrate southwards under the influence of bottom currents. Following the mid-Oligocene marine regression, the Beira High Channel-levee complex fed the Mozambique Fan from the southwest until Miocene times, reworking sediments from the shelf and continental slope into the distal abyssal fan. Since the Miocene, sediments have bypassed the shelf and upper fan region through the Zambezi Valley system directly into the Zambezi Channel. The morphology of the turbidite system off Mozambique is strongly linked to onshore tectonic events and the variations in sea level and sediment flux.  相似文献   

4.
Approximately 1000 km of high resolution sleeve-gun array transects on the North Sea Fan, located at the mouth of the Norwegian Channel, reveal three dominant styles of sedimentation within a thick (> 900 m) Quaternary sediment wedge comprising numerous sequences. These are interpreted as: terrigenous hemipelagic sedimentation, large scale translational slides, and aprons of glaciogenic debris flow deposits contributing to considerable fan construction. Four large, buried translational slides involved sediment volumes upwards of 3000 km3 each and preceded the similarly dimensioned “first” Storegga Slide on the NE fan flank. Several thick (> 100 m) terrigenous hemipelagic deposits apparently represent long-lived (150–200 kyr) periods of sedimentation whose distribution indicates fan input via the Norwegian Channel. The upper sequences are each made upper sequences are each made up of one or several thick (> 100 m) aprons comprising stacked lensoid and/or lobate forms which range from 2 to 40 km in width and 15 to 60 m in thickness. They characterize debris flows attributed to periodic input from several phases of a Norwegian Channel ice stream reaching the shelf edge. Subsidence in the outer Norwegian Channel allowed preservation of several glaciation cycles represented by sheet erosion-bounded tills and progradational units. Much of the shelf/slope transition has been preserved, allowing a preliminary chronology of the fan sequences through correlation with borehole sediments in the Norwegian Channel. Debris flows, which signal the initial shelf-edge glaciation, are not recognized from the initial glaciation in the Channel (> 1.1 Myr) but are associated with a Middle Pleistocene and all following glacial erosion surfaces (GES) in the outer Norwegian Channel. This was followed by six further sequences, probably totalling over 13,000 km3 of sediment. At least four of these were shelf-edge ice-maximum events the last of which was Late Weichselian age (14C AMS). Considering earlier glaciation-related hemipelagic sedimentation, material since removed by the large slides, and extensive unmapped areas, total Quaternary fan sedimentation was in the vicinity of 20,000 km3.  相似文献   

5.
Using bathymetry and reflection seismic profiles this study reveals the nature of the modern ponded Fangliao Fan within a framework of sediment infilling of an intra-slope basin on a tectonically active margin off southwestern Taiwan. The Fangliao Fan begins at the mouth of Fangliao Canyon at a water depth of 900 m and terminates down-slope at the escarpment of a linear ridge north of the Kaoping Slope Valley at a water depth of about 1,100 m, sediment gravity flows being prevented from farther down-slope transport due to ponding against this bathymetric high. The fan appears as a distinct basinward-opening triangular depocenter confined by ridges on both sides and the NW–SE trending ridge aligned normal to the elongation of the fan. These topographic ridges were formed by mud-diapiric intrusions. The external form of the ponded Fangliao Fan is characterized by a fan-valley fill pattern that has a concave cross-sectional morphology, in contrast to typical mounded fans deposited on slope-basin plains having a smooth topography. Sediment episodically funneled through the Fangliao Canyon from upslope areas and derived from the flanks of the mud-diapiric ridges are mainly transported by mass movement before being re-dispersed by unconfined channels to infill the intra-slope basin, thereby building up channelized fan complexes with poorly developed levees. The sediment flows from the mouth of Fangliao Canyon flow down-slope along the west flank of the Fangliao Ridge. In the process, a feeder channel has been eroded into the seafloor along which sediment is transported to the distal parts of the fan. Sediment west of the feeder channel is mainly redistributed by mass movement and/or fan channels to fill up the irregular topographic low in the slope. Due to a very low sediment supply, Fangliao Fan represents a starved ponded slope fan. As such it provides insights into the processes by which ponded fans develop and can therefore serve as an analog for similar fans developed on topographically complex slopes elsewhere. The morpho-structural features of the Fangliao Fan resulted from the interplay between sediment supply, uplift of the mud-diapiric ridge, mass movements, and alternating incision and deposition.  相似文献   

6.
The 400 km long Valencia Channel occupies the axis of the Valencia Trough in the Northwestern Mediterranean. Four different types of seismic reflection profiles were used to analyze the morphology and structure of the Valencia Channel with regard to the role played by both margins, Balearic and Iberian, of the Valencia Trough. From a detailed morphoseismic analysis of the Valencia Channel, its upper, middle, and lower courses can be characterized as follows: (1) in the upper course, tributaries are short and only slightly incised, with recent mass-transport deposits occurring on the adjacent continental slopes; (2) in the middle course, the channel deepens, and tributary valleys merge into it; and (3) the lower course begins after a sudden change in the direction of the channel, has a meandering path, is flanked by levees, and is fed by some valleys.During the Pliocene and Quaternary, at least four erosional and filling phases are observed in seismic profiles of the lower course of the Valencia Channel. The varying intensity of mass-transport processes and associated retrogressive slumping, which are related with fluctuations in sediment supply and relative sea-level changes, have played a major role in the formation, maintenance and deepening of the Valencia Channel. In addition to these sedimentary processes, a basement tectonic control and some morphostructural features affect the direction of the Valencia Channel locally.  相似文献   

7.
The Bengal Fan: morphology, geometry, stratigraphy, history and processes   总被引:2,自引:0,他引:2  
The Bengal Fan is the largest submarine fan in the world, with a length of about 3000 km, a width of about 1000 km and a maximum thickness of 16.5 km. It has been formed as a direct result of the India–Asia collision and uplift of the Himalayas and the Tibetan Plateau. It is currently supplied mainly by the confluent Ganges and Brahmaputra Rivers, with smaller contributions of sediment from several other large rivers in Bangladesh and India.The sedimentary section of the fan is subdivided by seismic stratigraphy by two unconformities which have been tentatively dated as upper Miocene and lower Eocene by long correlations from DSDP Leg 22 and ODP Legs 116 and 121. The upper Miocene unconformity is the time of onset of the diffuse plate edge or intraplate deformation in the southern or lower fan. The lower Eocene unconformity, a hiatus which increases in duration down the fan, is postulated to be the time of first deposition of the fan, starting at the base of the Bangladesh slope shortly after the initial India–Asia collision.The Quaternary of the upper fan comprises a section of enormous channel-levee complexes which were built on top of the preexisting fan surface during lowered sea level by very large turbidity currents. The Quaternary section of the upper fan can be subdivided by seismic stratigraphy into four subfans, which show lateral shifting as a function of the location of the submarine canyon supplying the turbidity currents and sediments. There was probably more than one active canyon at times during the Quaternary, but each one had only one active fan valley system and subfan at any given time. The fan currently has one submarine canyon source and one active fan valley system which extends the length of the active subfan. Since the Holocene rise in sea level, however, the head of the submarine canyon lies in a mid-shelf location, and the supply of sediment to the canyon and fan valley is greatly reduced from the huge supply which had existed during Pleistocene lowered sea level. Holocene turbidity currents are small and infrequent, and the active channel is partially filled in about the middle of the fan by deposition from these small turbidity currents.Channel migration within the fan valley system occurs by avulsion only in the upper fan and in the upper middle fan in the area of highest rates of deposition. Abandoned fan valleys are filled rapidly in the upper fan, but many open abandoned fan valleys are found on the lower fan. A sequence of time of activity of the important open channels is proposed, culminating with formation of the one currently active channel at about 12,000 years BP.  相似文献   

8.
The Hikurangi Channel, east of New Zealand, is one of the earth's major, active, sediment conduits between rising mountains and ocean basin. About 1500 km long, it uniquely incorporates most variations of canyon—channel systems worldwide. An apical canyon feeds a meandering, aggradational, trench-axis channel. This diverts, 800 km from the source, across an oceanic plateau. There, an oceanic-type channel has become incised over 500 m at the plateau-edge scarp. Beyond the scarp, distributary fan channels supply sediment to the Pacific's Deep Western Boundary Current and one distributary merges into a boundary channel.  相似文献   

9.
Based on seismic profiles, multibeam bathymetry and sediment cores, an improved understanding of the deglaciation/postglacial history of the southern part of the Norwegian Channel has been obtained. The Norwegian Channel Ice Stream started to recede from the shelf edge ca. 15.5 ka BP (14C ages are used throughout). Approximately 500–1000 years later the ice margin was located east of the deep Skagerrak trough. At that time, the Norwegian Channel off southern Norway had become a large fjord-like embayment, surrounded by the grounded ice sheet along the northern slope and possibly stagnant ice remnants at the southern flank. The Norwegian Channel off southern Norway has been the main sediment trap of the North Sea, and south of Egersund more than 200 m of sediments have been deposited since the start of the deglaciation. Five seismic units are mapped. The oldest unit E occurs in some of the deepest troughs, and was deposited immediately after the ice became buoyant. Unit D is acoustically massive and comprises mass-movement deposits in eastern Skagerrak and south of Egersund. Unit C (in the channel southwest of Lista/Egersund) is interpreted to comprise mainly bottom current deposits derived from palaeo-rivers, e.g. Elben. During deposition of unit C (ca. 14.5–13 ka BP), there was limited inflow of Atlantic water. A change in depositional environment at ca. 13 ka BP is related to an increased inflow of saline water and more open hydrographic circulation. Widely distributed, acoustically stratified clays of unit B were deposited ca. 13–10 ka BP. The Holocene Unit A shows a depositional pattern broadly similar to that of unit B.  相似文献   

10.
The origin of acoustically transparent fan deposits overlying glacial till and ice-proximal sediments on the southern margin of the Norwegian Channel has been studied using high-resolution seismic-reflection profiles and multibeam bathymetry. The first deposits overlying glacigenic sediments are a series of stacked, acoustically transparent submarine fans. The lack of glaciomarine sediments below and between individual fans indicates that deposition was rapid and immediately followed the break up of the Late Weichselian ice cover. The fans are overlain by stratified glaciomarine sediments and Holocene mud. Because of the uniformity of this drape, the upper surface of the fan deposits is mimicked at the present seafloor, and the bathymetric images clearly show the spatial relationship of the fans to bedrock ridges and the presence of braided channel-levee systems on the surface of the youngest fans. The acoustically transparent character of the fan deposits indicates that they comprise silt and clay, and their lobate form and lack of internal stratification indicates that they were deposited by debris flows. The channel-levee morphology indicates deposition from more watery hyperconcentrated fluid flows. The fan sediments were either derived from 1) erosion of Mid Weichselian lake deposits in southern Skagerrak or 2) from Late glacial ice-margin lake deposits, ponded against the Norwegian Channel ice stream, which collapsed catastrophically when the lateral support was removed as the ice disintegrated. Fans composed almost exclusively of fine-grained sediment need not, therefore, rule out an origin in a deglacial setting relatively close to the former margins of glaciers and ice sheets.  相似文献   

11.
The Pacific deep western boundary current (DWBC) encounters an unstable continental margin where it flows across the New Zealand convergent plate boundary. Seismic profiles show the DWBC was intercepted by several submarine landslides, the latest (~38-100 ka) being the newly discovered Matakaoa debris flow. Occupying ~650 km3, the flow extends 200 km from Matakaoa re-entrant to Kermadec Ridge to form a 37-68 m high lobe in the current's path. This deposit appears to have (1) reduced the size of gaps in the western boundary, thereby reducing leakage of the DWBC, and (2) temporarily reduced the terrigenous supply into the flow by impeding the passage of turbidity currents from New Zealand.  相似文献   

12.
The seismic stratigraphy and sedimentary architecture of the Amundsen Gulf Trough and adjacent slope, Canadian Beaufort Sea margin, are investigated using a grid of 2-D seismic reflection data. The inner-shelf of the Amundsen Gulf Trough is interpreted to be composed predominantly of exposed or near-surface bedrock, overlain by a spatially-discontinuous veneer of glacimarine to open-marine sediment. There is a seaward transition from exposed bedrock on the inner-shelf to a thick (up to 500 m) outer-shelf prograding wedge of acoustically semi-transparent sediment. Eight seismic sequences, divided into four megasequences, are described from the outer-shelf stratigraphy. Eight till sheets are identified from Megasequences A to C, providing evidence for at least eight Quaternary ice-stream advances through the Amundsen Gulf Trough to the shelf break. A trough-mouth fan with a minimum volume of about 10,000 km3 is present on the adjacent slope. The Amundsen Gulf ice stream probably represented the most northwesterly marine-terminating ice stream of the Laurentide Ice Sheet through much of the Quaternary, providing a major route for ice and sediment transfer to the Arctic Ocean. The youngest till sheet within the Amundsen Gulf Trough, Megasequence D, was probably deposited by a subsidiary ice stream, the Anderson ice stream, subsequent to retreat of the last, Late Wisconsinan Amundsen Gulf ice stream. This provides evidence of dynamic ice-sheet behaviour and the reorganisation of the northwest Laurentide Ice Sheet margin during the last deglaciation. A number of buried glacigenic landforms, including palaeo-shelf break gullies and a grounding-zone wedge with a volume of 90 km3, are described from the Amundsen Gulf Trough stratigraphy. Lateral grounding-zone wedges are identified at the northern and southern lateral margins of the Amundsen Gulf and M'Clure Strait troughs, respectively, and are interpreted to have been formed roughly contemporaneously by ice streams in Amundsen Gulf and M'Clure Strait.  相似文献   

13.
The Ebro Fan System consists of en echelon channel-levee complexes, 50×20 km in area and 200-m thick. A few strong reflectors in a generally transparent seismic facies identify the sand-rich channel floors and levee crests. Numerous continuous acoustic reflectors characterize overbank turbidites and hemipelagites that blanket abandoned channel-levee complexes. The interlobe areas between channel complexes fill with homogeneous mud and sand from mass flow and overbank deposition; these exhibit a transparent seismic character. The steep continental rise and sediment “drainage” of Valencia Trough at the end of the channel-levee complexes prevent the development of distributary channels and midfan lobe deposits. Margin setting represents fan and/or source area  相似文献   

14.
《Marine Geology》2005,216(3):101-106
A multibeam bathymetric crossing of Bounty Channel, east of South Island New Zealand fortuitously imaged a large recent slump that partially dammed the channel. Together with a later, adjacent multibeam crossing, these bathymetric data show the average gradient for this section of the channel to be 15 m per km, steeper than the general average for the whole channel (∼3 m per km). In the immediate vicinity of the slump, there is a negative gradient followed downstream by a maximum gradient of 1450 m/km for a 70 m section of the channel. Typical riverine erosional features are seen in this section of the channel including an over-deepened basin at the bottom of the greatest slope as well as additional major slump features.  相似文献   

15.
冲绳海槽西部陆坡地震相模式与沉积体系   总被引:8,自引:3,他引:5  
对冲绳海槽西部陆坡上两个航次(95航次和99航次)共计2000多公里的单道地震资料进行分析和解译,对斜坡沉积环境下沉积体系发育、分布特征进行了研究。结果表明:a)冲绳海槽西部斜坡环境下,上新世以来的沉积层均不同程度的变形和错动;b)存在两种斜坡相地震反射模式——退覆模式和叠覆模式,这两种模式都反映了冲绳海槽西部陆坡得到充足的沉积物供给;c)斜坡环境下主要发育陆架边缘三角洲、重力流沉积和水道充填等沉积体系;d)沉积层发育特征表明,冲绳海槽西部陆坡具有北段坡度缓、沉积物供应丰富、构造相对不活跃,中段坡度陡、沉积物供应充足、构造活动强烈,南段坡度陡、沉积供应相对较少、构造和火山活动十分强烈3种主要沉积环境。西部陆坡的沉积特征也揭示了东海陆架向陆坡提供了大量碎屑沉积物质。  相似文献   

16.
Quantifying the characteristics of the turbidity currents that are responsible for the erosion, lateral migration and filling of submarine channels maybe useful for predicting the distribution of lithofacies in channel fill and levee reservoirs. This paper uses data from a well-studied submarine channel in Amazon Fan in an attempt to reconstruct the velocity, thickness, concentration, duration, recurrence rates and vertical structure of turbidity currents in this long sinuous channel. Estimates of flow conditions are derived from the morphology of the channels and the characteristics of the deposits within them. In particular, the availability of information on the sediment distribution with respect to the channel topography at the time of deposition allows for insights into the vertical structure of the flow, a key property that has been so far poorly understood. Integration of flow constraints from well and seismic data or from detailed analysis of outcrop with numerical flow models is a critical step toward a complete understanding of the flow and associated deposits. Turbidity currents in sinuous submarine channels, exemplified by Amazon Channel, are found to last for tens of hours and occur on a regular, quasi-annual basis. Model results suggest that these flows had, on average, velocities ranging from 2 to 4 m/s in the canyon/upper fan which decreased to 0.5–1 m/s in the lower fan, travelling in excess of 800 km. The model turbidity currents were subcritical over most of the channel length, indicating a low degree of water entrainment and low rate of deceleration down the channel. The formation of such long, sinuous channels is intrinsically associated with frequent, long-duration, subcritical turbidity currents carrying a silt-dominated sediment load.  相似文献   

17.
Bengal Submarine Fan, with or without its eastern lobe, the Nicobar Fan, is the largest submarine fan known. Most of its sediment has been supplied by the Ganges and Brahmaputra Rivers, probably since the Early Eocene. The “Swatch-of-No-Ground” submarine canyon connects to only one active fan valley system at a time, without apprent bifurcation over its 2500-km length. The upper fan is comprised of a complex of huge channel-levee wedges of abandoned and buried older systems. A reduction of channel size and morphology occurs at the top of the middle, fan, where meandering and sheet flow become more important. Margin setting represents fan and/or source area  相似文献   

18.
Near-seabed (<50 m) sediments were studied throughout the Irish sector of the Rockall Trough (ca. 123,000 km2) based on a combined analysis of shallow seismic (3.5 kHz) and multibeam swath data acquired by the Irish National Seabed Survey and reprocessed here at higher resolution. The detailed identification of seven acoustic facies served to classify the Rockall Trough into six main sedimentary provinces, incorporating the well-known Feni Drift, Donegal-Barra Fan and Rockall Bank mass flow. In the northern part of the study area, extensive mass transport deposits from both flanks of the trough are the dominant depositional features. Debris flow deposits formed by ice streaming of the British-Irish ice sheet characterise most of the Donegal-Barra Fan, whereas turbidite deposition occurs towards the toe of the fan. On the western margin of the trough, the post-glacial Rockall Bank mass flow deposit displays a rough topography with no acoustic penetration. Several failure scarps are visible on the flank of the bank where the mass flow originated, and pass downslope into large sediment lobes and smaller debris flow deposits. Smaller-scale mass transport deposits were also discovered close to some canyons indenting the eastern slope. High seismic penetration characterises the Feni contourite drift deposit, and precise mapping of its geographical extent shows that it is considerably wider than previously reported. The sediment waves that drape this drift are interpreted as predominantly relict features, and their varied geometry suggests a complex oceanographic regime. In the deeper part of the trough, the data reveal novel evidence of the widespread occurrence (about 12,000 km2) of distinct seismic and backscatter signatures indicating the possible presence of fluid escape structures within fine-grained sediments of mixed contouritic, hemipelagic and turbiditic origin. Sediment overloading and increased pore pressure resulting from extensive mass wasting to the north of the area is a likely cause of dewatering-rooted fluid migration towards the seabed, but further investigations are required to confirm the nature and origin of such fluids in the Rockall Trough.  相似文献   

19.
The Yithi submarine canyons,composed of four canyons less than 60 km in length,are located on the narrowest part of the East China Sea(ECS) slope.They extend from the shelf break at 160 m down to water depth of 1 500 m with an average gradient(along the canyon axis) of 3°(<1 000 m) and 0.7°(>1000 m).The sinuosity of the canyons ranges form 1.02 to 1.14 and their pathways extend radially from the shelf break to the axis of the Okinawa Trough.Structural and evolution pattern of the Yithi canyons are mainly controlled by sediment mass-movements and turbidity current and similar with that of the canyons in Ebro continental slope.The whole canyon system consists of three parts:the canyon,the channel and the fan.Slumps and slides often develop in the upper part of canyon where the water depth is less than 1000 m,and the turbidities usually developed on the fan.The scale of turbidites becomes smaller and their inner structures become more regular towards the ends of the canyons.Canyon-fans are often associated with small angle progradational reflection.Most canyon-fans and levees were transversely cut by active normal faults with NEE-SWW trending that are coupled to the modern extension of the Okinawa Trough.According to the age of formation of canyon-fans and sediments incised by canyons,we can infer that the Yithi canyons were formed since the middle the Medio-Pleistocene.  相似文献   

20.
Fourteen neutrally buoyant SOFAR floats at a nominal depth of 1800 m were tracked acoustically for 3.7 yr in the vicinity of the western boundary and the equator of the Atlantic Ocean. The trajectories revealed a swift, narrow, southward-flowing deep western boundary current (DWBC) extending from 7N across the equator. Two floats crossed the equator in the DWBC and went to 10S. Two other floats left the DWBC and drifted eastward in the equatorial band (3S–3N). Three floats entered the DWBC from the equatorial current system and drifted southward. These results suggest that at times the DWBC flows directly southward across the equator with a mean velocity of 8–9 cm/s averaged over long distances (∼2800 km). At other times DWBC water is diverted eastward near the equator for long periods (2–3 yr), which can reduce the mean along-boundary velocity to 1–2 cm/s. This is much less than the instantaneous along-boundary velocities in the DWBC, which are often above 25 cm/s and occasionally exceed 50 cm/s. Mean eastward-flowing jets were observed near 2N and 2S bounding a mean westward jet centered on the equator (1S–1N). The southern jet at 2S coincides with a CFC-rich plume centered south of the equator. The CFC plume is inferred to have been advected by the southern jet across the Atlantic and into the Gulf of Guinea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号