首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present an investigation of the relationships between the radio properties of a giant radio galaxy MRC B0319−454 and the surrounding galaxy distribution with the aim of examining the influence of intergalactic gas and gravity associated with the large-scale structure on the evolution in the radio morphology. Our new radio continuum observations of the radio source, with high surface brightness sensitivity, images the asymmetries in the megaparsec-scale radio structure in total intensity and polarization. We compare these with the three-dimensional galaxy distribution derived from galaxy redshift surveys. Galaxy density gradients are observed along and perpendicular to the radio axis: the large-scale structure is consistent with a model wherein the galaxies trace the ambient intergalactic gas and the evolution of the radio structures are ram-pressure limited by this associated gas. Additionally, we have modelled the off-axis evolution of the south-west radio lobe as deflection of a buoyant jet backflow by a transverse gravitational field: the model is plausible if entrainment is small. The case study presented here is a demonstration that giant radio galaxies may be useful probes of the warm-hot intergalactic medium believed to be associated with moderately over dense galaxy distributions.  相似文献   

2.
The problem of influence of the ambiental intergalactic pressure on extended gas associated with normal field galaxies is briefly discussed. An empirically established characteristic radius of absorption can not be explained in the context of simple two-phase halo model as a consequence of pressure equilibrium of the hot halo with the smooth intergalactic medium. This conclusion is based upon the stringent constraints on the temperature and density of the intergalactic plasma obtained through the CMBR measurements. On the other hand, ram-pressure stripping caused by peculiar motions of galaxies does present a viable alternative for the hot halo truncation. It is shown that for a particular set of chosen parameters, a simple model is capable of producing the absolute upper limit on the extent of gas associated with the galaxy. The values obtained are compatible with the results of the recent QSO absorption-line studies, and are significantly higher than the radius at which the cooling timescale of the halo gas equates the dynamical timescale.  相似文献   

3.
Chandra observations of the galaxy cluster A3667 are analyzed. The X-ray data strongly suggest that there is a giant cloud of cold plasma separated by a sharp boundary (cold front) from the hotter intergalactic medium. Analysis of the cold-front properties allows one to study a number of physical processes in the intergalactic medium: large-scale gas motions, transport processes, and magnetic-field structure and strength.  相似文献   

4.
We present new observations at three frequencies (326, 615 and 1281 MHz) of the radio lobe spiral galaxy, NGC 3079, using the Giant Metrewave Radio Telescope. These observations are consistent with previous data obtained at other telescopes and reveal the structure of the nuclear radio lobes in exquisite detail. In addition, new features are observed, some with H  i counterparts, showing broad-scale radio continuum emission and extensions. The galaxy is surrounded by a radio halo that is at least 4.8 kpc in height. Two giant radio extensions/loops are seen on either side of the galaxy out to ∼11 kpc from the major axis, only slightly offset from the direction of the smaller nuclear radio lobes. If these are associated with the nuclear outflow, then the galaxy has experienced episodic nuclear activity. Emission along the southern major axis suggests motion through a local intergalactic medium (not yet detected), and it may be that NGC 3079 is itself creating this local intergalactic gas via outflows. We also present maps of the minimum energy parameters for this galaxy, including cosmic ray energy density, electron diffusion length, magnetic field strength, particle lifetime and power.  相似文献   

5.
Grebenev  S. A.  Sunyaev  R. A. 《Astronomy Letters》2019,45(12):791-820
Astronomy Letters - We show that Compton scattering by electrons of the hot intergalactic gas in galaxy clusters should lead to peculiar distortions of the cosmic background X-ray and soft...  相似文献   

6.
《New Astronomy Reviews》2000,44(4-6):365-367
Two different paths can be followed by the ejecta of correlated supernovae as a result of the size of the starburst, and the mass and density of the parent galaxy. In the case of the nuclei of massive ellipticals and bulges of spirals, as well as for nuclear starbursts in spiral galaxies, it is quite clear that most of the metals produced by massive bursts of star formation are dumped onto the intergalactic medium. This happens once the resultant superbubble reaches the outskirts of a galaxy, causing a superwind. The product of less massive starbursts is, however, retained by galaxies, even in the case of blue compact dwarfs, leading, after 100 Myr, to an enhanced abundance of the ISM. Here, I review the steps required for a rapid and a slow mixing of heavy elements with the ISM and show under which conditions they apply.  相似文献   

7.
Repeated SN-explosion provide large amounts of thermal energy as well as energetic particles through a 1. order Fermi-process. Both effects together with the generation of Alfvén-waves are considered to drive a large scale outflow from a galaxy. These so-called galactic windstransport stellar material enriched by heavy elements into the intergalactic space explaining also the large amount of metals found inthe intergalactic gas. The present contribution is focused on time-dependenteffects which originate from galactic winds driven by a star burst activity. Shock waves travelling through the galactic wind and radiative cooling within the expanding plasma lead to complex flow structures. Depending e.g. on theSFR of the galaxy galactic winds can remove almost all ISM into the galactic halo and therefore cease a subsequent star formation.  相似文献   

8.
We develop a coupled model for the evolution of the global properties of the intergalactic medium (IGM) and the formation of galaxies, in the presence of a photoionizing background due to stars and quasars. We use this model to predict the thermodynamic history of the IGM when photoionized by galaxies forming in a cold dark matter (CDM) universe. The evolution of the galaxies is calculated using a semi-analytical model, including a detailed treatment of the effects of tidal stripping and dynamical friction on satellite galaxies orbiting inside larger dark matter haloes. We include in the model the negative feedback on galaxy formation from the photoionizing background. Photoionization inhibits galaxy formation in low-mass dark matter haloes in two ways: (i) heating of the IGM and inhibition of the collapse of gas into dark haloes by the IGM pressure, and (ii) reduction in the rate of radiative cooling of gas within haloes. The result of our method is a self-consistent model of galaxy formation and the IGM. The IGM is reheated twice (during reionization of H  i and He  ii ), and we find that the star formation rate per unit volume is slightly suppressed after each episode of reheating. We find that galaxies brighter than L are mostly unaffected by reionization, while the abundance of faint galaxies is significantly reduced, leading to present-day galaxy luminosity functions with shallow faint-end slopes, in good agreement with recent observational data. Reionization also affects other properties of these faint galaxies, in a readily understandable way.  相似文献   

9.
Numerical simulations of two-component (stars + gas) self-gravitating galactic disks show that the interstellar gas can significantly affect the dynamical evolution of the disk even if its mass fraction (relative to the total galaxy mass) is as low as several percent. Aided by efficient energy dissipation, the gas becomes gravitationally unstable onlocal scale and forms massive clumps. Gravitational scattering of stars by these clumps leads to suppression of bar instability usually seen in heavy stellar disks. In this case, gas inflow towards the galactic center is driven by dynamical friction which gas clumps suffer instead of bar forcing.  相似文献   

10.
We have developed a new scheme to treat a multiphase interstellar medium in smoothed particle hydrodynamics simulations of galaxy formation. This scheme can represent a co-spatial mixture of cold and hot ISM components, and is formulated without scale-dependent parameters. It is thus particularly suited to studies of cosmological structure formation where galaxies with a wide range of masses form simultaneously. We also present new algorithms for energy and heavy element injection by supernovae, and show that together these schemes can reproduce several important observed effects in galaxy evolution. Both in collapsing systems and in quiescent galaxies our codes can reproduce the Kennicutt relation between the surface densities of gas and of star formation. Strongly metal-enhanced winds are generated in both cases with ratios of mass-loss to star formation which are similar to those observed. This leads to a self-regulated cycle for star formation activity. The overall impact of feedback depends on galaxy mass. Star formation is suppressed at most by a factor of a few in massive galaxies, but in low-mass systems the effects can be much larger, giving star formation an episodic, bursty character. The larger the energy fraction assumed available in feedback, the more massive the outflows and the lower the final stellar masses. Winds from forming discs are collimated perpendicular to the disc plane, reach velocities up to  ∼1000 km s−1  , and efficiently transport metals out of the galaxies. The asymptotically unbound baryon fraction drops from >95 per cent to ∼30 per cent from the least to the most massive of our idealized galaxies, but the fraction of all metals ejected with this component exceeds 60 per cent regardless of mass. Such winds could plausibly enrich the intergalactic medium to observed levels.  相似文献   

11.
We apply the modified acceleration law obtained from Einstein gravity coupled to a massive skew symmetric field,   F μνλ  , to the problem of explaining X-ray galaxy cluster masses without exotic dark matter. Utilizing X-ray observations to fit the gas mass profile and temperature profile of the hot intracluster medium (ICM) with King 'β-models', we show that the dynamical masses of the galaxy clusters resulting from our modified acceleration law fit the cluster gas masses for our sample of 106 clusters without the need of introducing a non-baryonic dark matter component. We are further able to show for our sample of 106 clusters that the distribution of gas in the ICM as a function of radial distance is well fitted by the dynamical mass distribution arising from our modified acceleration law without any additional dark matter component. In a previous work, we applied this theory to galaxy rotation curves and demonstrated good fits to our sample of 101 low surface brightness, high surface brightness and dwarf galaxies including 58 galaxies that were fitted photometrically with the single-parameter mass-to-light ratio ( M / L )stars. The results obtained there were qualitatively similar to those obtained using Milgrom's phenomenological Modified Newtonian Dynamics (MOND) model, although the determined galaxy masses were quantitatively different, and MOND does not show a return to Keplerian behaviour at extragalactic distances. The results obtained here are compared to those obtained using Milgrom's phenomenological MOND model which does not fit the X-ray galaxy cluster masses unless an auxiliary dark matter component is included.  相似文献   

12.
Some results concerning the intergalactic dust matter are presented. The results of Tarraro, considered as the first undoubted revelation of intergalactic extinction; and of Zabierowski, treated by him as a trial, seem not to be equivalent. Not experimental data, but their theoretical interpretation is responsible for this non-equivalence.Plates have to be prepared by technically uniform procedures to infer the intergalactic obscuration from pseudo-indices. Significant extragalactic obscuration participates in galaxy correlation function, Rubin-Ford effect, underpopulation of quasars, and Sierpiski's sponge structure of galaxy distribution. Contribution from supermassive pre-stars or Population III to the abundance of elements must be considered as highly plausible.  相似文献   

13.
The results of the computations of the chemical evolution for a galaxy cluster are presented. The matter exchange between galaxies and intergalactic medium is taken into account. Two dependences of star formation rate on time are considered: (i) monotonously decreasing dependence characteristic of elliptical galaxies, (ii) dependence having two peaks associated with creation of spiral galaxy subsystems, with suppression of star formation at the period between maxima. It is assumed that galactic ejection is due to explosions of II-type supernova with massesm5M , and that the accretion on to a galaxy depends but weakly on the time. By comparing the obtained results with total combination of available observations, it is established that the rate of gaseous exchange between a galaxy and intergalactic medium should be rather large: 0.03M gal Gyr–1. Besides, the activity of each type of galaxy leads to an approximately equal enrichment of intergalactic gas by new elements synthesized in the stars. The existence of a large accretion on to the Galaxy leads to the decrease of primordial deuterium abundance by a factor of no more than 2 during the galaxy evolution time. It enables us to assume that the standard Big Bang model with baryon density parameter b 0.1 may be considered as true.  相似文献   

14.
Since many or most galaxies have central massive black holes (BHs), mergers of galaxies can form massive binary black holes (BBHs). In this paper we study the evolution of massive BBHs in realistic galaxy models, using a generalization of techniques used to study tidal disruption rates around massive BHs. The evolution of BBHs depends on BH mass ratio and host galaxy type. BBHs with very low mass ratios (say, ≲0.001) are hardly ever formed by mergers of galaxies, because the dynamical friction time-scale is too long for the smaller BH to sink into the galactic centre within a Hubble time. BBHs with moderate mass ratios are most likely to form and survive in spherical or nearly spherical galaxies and in high-luminosity or high-dispersion galaxies; they are most likely to have merged in low-dispersion galaxies (line-of-sight velocity dispersion ≲90 km s−1) or in highly flattened or triaxial galaxies.
The semimajor axes and orbital periods of surviving BBHs are generally in the range  10-3–10 pc  and  10–105 yr;  they are also larger in high-dispersion galaxies than in low-dispersion galaxies, larger in nearly spherical galaxies than in highly flattened or triaxial galaxies, and larger for BBHs with equal masses than for BBHs with unequal masses. The orbital velocities of surviving BBHs are generally in the range  102–104 km s-1  . The methods of detecting surviving BBHs are also discussed.
If no evidence of BBHs is found in AGNs, this may be either because gas plays a major role in BBH orbital decay or because nuclear activity switches on soon after a galaxy merger, and ends before the smaller BH has had time to spiral to the centre of the galaxy.  相似文献   

15.
16.
Here we investigate an exemplary chemodynamical evolutionary simulation of a dwarf irregular galaxy. By means of this model we demonstrate the existence of three gas mixing cycles: 1) An inner local cycle mixing the metals produced in stars locally, and 2) an outer galactic cycle on which hot gas is driven out of the galaxy by multiple supernovae type II and mixes on a short timescale with the available cold gas. 3) Only a small fraction of the metals leaves the galactic gravitational field and follows the global cycle with the intergalactic matter. The large-scale mixing results in a temporary depletion of supernova ejected metals. We will discuss this delayed recycling and its influence on the chemical evolution, especially on the nitrogen over oxygen ratio which is increased temporarily. The results presented here are also relevant for less sophisticated analytical approaches and chemical evolutionary models of galaxies which have to parameterize the metal loss through outflow. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
In a previous paper, we have studied dynamical friction during a parabolic passage of a companion galaxy past a disk galaxy. This paper continues with the study of satellites in circular orbits around the disk galaxy. Simulations of orbit decay in a self gravitating disk are compared with estimates based on two-body scattering theories; the theories are found to give a satisfactory explanation of the orbital changes. The disk friction is strongly dependent on the sense of rotation of the companion relative to the rotation of the disk galaxy as well as on the amount of mass in a spherical halo. The greatest amount of dynamical friction occurs in direct motion if no spherical halo is present. Then the infall time from the edge of the disk is about one half of the orbital period of the disk edge. A halo twice as massive as the disk increases the infall time four fold. The results of Quinn and Goodman, obtained with a non-self-gravitating method, agree well with our experiments with massive halos (Q 0 1.5), but are not usable in a more general case. We give analytic expressions for calculating the disk friction in galaxies of different disk/halo mass ratios.  相似文献   

18.
Ram-pressure stripping can remove significant amounts of gas from galaxies that orbit in clusters and massive groups, and thus has a large impact on the evolution of cluster galaxies. In this paper, we reconstruct the present-day distribution of ram pressure and the ram-pressure histories of cluster galaxies. To this aim, we combine the Millennium Simulation and an associated semi-analytic model of galaxy evolution with analytic models for the gas distribution in clusters. We find that about one quarter of galaxies in massive clusters are subject to strong ram pressures that are likely to cause an expedient loss of all gas. Strong ram pressures occur predominantly in the inner core of the cluster, where both the gas density and the galaxy velocity are higher. Since their accretion on to a massive system, more than 64 per cent of galaxies that reside in a cluster today have experienced strong ram pressures of  >10−11 dyn cm−2  which most likely led to a substantial loss of the gas.  相似文献   

19.
Numerical experiments undertaken to investigate the longevity and behavior of dark-lane elliptical galaxies are described. This is dynamically the same problem as a disk galaxy in a massive halo. Spiral galaxies are disks from a dynamical point of view. A disk of particles embedded in a self-consistent galaxy provides the basic model used for the experiments. This model is applicable to ordinary disk galaxies if the disk is interpreted as the visible galaxy and the galaxy is interpreted as the massive halo thought to be present around disk galaxies. Fully three-dimensional fully self-consistentn-body computer programs that can handle 100,000 particles are used for the experiments. The background galaxy is oblate, and the disk is inclined to the axis of the oblate galaxy, so the disk precesses differentially to produce a warp. A surprising result is that the galaxy center shifted, leaving the disk center orbiting around the galaxy center. This produces interesting phenomena reminiscent of observations in the region of the Galactic center.  相似文献   

20.
We study the effect of a single, instantaneous starburst on the dynamical and chemical evolution of a gas-rich dwarf galaxy, the potential well of which is dominated by a dark matter halo. We follow the dynamical and chemical evolution of the interstellar medium (ISM) by means of an improved two-dimensional hydrodynamical code coupled with detailed chemical yields originating from type II SNe, type Ia SNe and single low- and intermediate-mass stars (IMS). In particular we follow the evolution of the abundances of H, He, C, N, O, Mg, Si and Fe. We find that for a galaxy resembling IZw18, a galactic wind develops as a consequence of the starburst and it carries out of the galaxy mostly the metal-enriched gas. In addition, we find that different metals are lost differentially in the sense that the elements produced by type Ia SNe are lost more efficiently than others. As a consequence of that, we predict larger [ α /Fe] ratios for the gas inside the galaxy than for the gas leaving the galaxy. A comparison of our predicted abundances of C, N, O and Si in the case of a burst occurring in a primordial gas shows a very good agreement with the observed abundances in IZw18 as long as the burst has an age of ∼31 Myr and IMS produce some primary nitrogen. However, we cannot exclude that a previous burst of star formation had occurred in IZw18, especially if the pre-enrichment produced by the older burst was lower than Z =0.01 Z. Finally, at variance with previous studies, we find that most of the metals reside in the cold gas phase already after a few Myr. This result is mainly caused by the assumed low SN II heating efficiency, and justifies the generally adopted homogeneous and instantaneous mixing of gas in chemical evolution models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号