首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
丹崖山边坡稳定性是关系古文物蓬莱阁安全的关键问题。丹崖山边坡高差大、断层裂隙发育、岩体卸荷深度大,地质条件十分复杂,边坡在施工期和运行期的稳定性问题特别突出。该文介绍了丹崖山岩体加固后的监测布置,并对岩体表面变形趋势、空间分布形态、加固后变形趋势进行分析,通过对多点位移计、锚杆测力计、锚索测力计、表面裂缝计及地表变形等监测结果进行综合分析,得到边坡岩体的变形规律。  相似文献   

2.
Engineering experience shows that outward dipping bedded rock slopes, especially including weak interlayers, are prone to slide under rainfall conditions. To investigate the effect of inclined weak interlayers at various levels of depth below the surface on the variation of displacements and stresses in bedded rock slopes, four geo-mechanical model tests with artificial rainfall have been conducted. Displacements, water content as well as earth pressure in the model were monitored by means of various FBG (Fiber Bragg Grating) sensors. The results showed that the amount of displacement of a slope with a weak interlayer is 2.8 to 6.2 times larger than that of a slope without a weak interlayer during one rainfall event. Furthermore, the position of the weak interlayer in terms of depth below the surface has a significant effect on the zone of deformation in the model. In the slope with a high position weak interlayer, the recorded deformation was larger in the superficial layer of the model and smaller in the frontal portion than in the slope with a low position weak interlayer. The slope with two weak interlayers has the largest deformation at all locations of all test slopes. The slope without a weak interlayer was only saturated in its superficial layer, while the displacement decreased with depth. That was different from all slopes with a weak interlayer in which the largest displacement shifted from the superficial layer to the weak interlayer when rainfall persisted. Plastic deformation of the weak interlayer promoted the formation of cracks which caused more water to flow into the slope, thus causing larger deformation in the slope with weak interlayers. In addition, the slide thrust pressure showed a vibration phenomenon 0.5 to 1 hour ahead of an abrupt increase of the deformation, which was interpreted as a predictor for rainfall-induced failure of bedded rock slopes.  相似文献   

3.
采空区地表山体侧向变动,不同于一般天然山坡,也与采空区一般上覆岩层的变形破坏有异;它是二者复合机理的效应。本文在分析考察了毗邻电厂的横山顺倾构造山体、剖析了地下采空情况认为:山体侧向变动中,软弱夹层有决定性作用,变动范围、速率和规模与地下采空有关;并利用地质力学模型试验和数值模拟,探索了采动引起山体应力场及变动规律。结果表明,山体岩层的变形、位移、破坏、由直接顶板向地表发展,采空坍陷诱发了软弱夹层的蠕滑,则产生山体侧向滑移;电厂区地表隆起变形是山体侧向滑移挤压地基土的反映。通过现场实际调研、变形观测资料分析与数值模拟和模型试验的对比研究,提出了“坍落拱梁”的成生效应、挤压蠕滑效应、失稳效应;揭露了顺倾构造山体在采空影响下,具有地表、地下的“复合临空面”的“复合应力场”中“复合变动”的“复合机理”;并提出这种山体侧向变动机理的典型地质模式,借以论证山体稳定性。  相似文献   

4.
Degradation of slopes due to shallow landslide and the subsequent erosional processes are a big challenge on the application of soil bioengineering techniques; that is the use of plants as main structural components of a slope protection and conservation system. An optimal application of soil bioengineering techniques should include not only the technical factor of plants as structural components but also the ecology of species and the plant adaptations to disturbances, which is crucial if a longterm successful slope restoration system is intended. Ferns are a dominant understory vegetation species in the forest of Japan, but its characteristics and influences on the recovery of shallow landslide scars have not been fully studied yet. This study aims to find out the ecological characteristics of fern species through the calculation of ecological indicators and the quantification of the morphological features of specimens growing on disturbed and non-disturbed forest slopes in Japan. Gleichenia japonica was found as the vegetation species with biggest ecological indicators on both slopes. The analysis of morphological characteristics of the specimens growing on both sites showed that the development of the specimens is focused in below-ground characteristics. The pull-out force of Gleichenia japonica root system as an indicator of ecological adaptation to a constraint environment and morphological characteristics quality is influenced by height and root length according to the principal component analysis. The eco-morphological characteristics of species can be used as an indicator of an optimal element in soil bioengineering establishment for slope conservation proposes. The long and fibrous root system could be placed on forest roads, steep or small slopes where space limitation is an issue for the establishment of bigger species and if the slope conditions allow it, it can control soil losses due to rainfall and provide stability.  相似文献   

5.
Deformation and failure of high slope impact the construction and operation safety of highway in the mountainous areas. The deformation and failure are mainly caused by poor design which normally has not well combined with the geological conditions and unplanned construction. Therefore, effective design and construction management should be conducted for ensuring a successful construction without damage and risk. In light of the reality of high slope construction along highway in the Huangshan area, this paper proposes a technical procedure for dynamic design and construction management of high slopes along highway in the mountainous area. The proposed construction management scheme is divided into three phases, i.e., 1) design phase, 2) preparation phase of excavation, and 3) construction phase. During the design phase, experiences and lessons learnt from the design and construction of other high slopes along highway in the same region are summarized. The number of slopes and slope height should be optimized from the aspects of route selection and route form. During the preparation phase of excavation, “Excavation Permit Management System” should be adopted, and construction scheme should be made by the construction unit, then the scientific research and design unit determine whether it guarantees slope stability and makes optimization measures. During the construction phase, the scientific research unit would make proposal of optimization design, and apply the achievements of scientific research into practice through common efforts of various units based on the understanding of excavation and investigation. The management system mentioned above is adopted to conduct dynamic design and construction management for more than 90 slopes along the Huangshan — Taling — Taolin Expressway, and successful results of application have been achieved.  相似文献   

6.
Identification of failure susceptible slopes through different rock engineering approach is highly valuable in landslide risk management along crucial highway corridors in the high mountainous region. In this study, a critical highway(NH-5) segment in higher Himalaya has been investigated using the various rock mass characterization schemes based on detailed field observations. Since the highway corridor is highly susceptible to discontinuities-driven failures, consisting of jointed rock masses;Mean and Combined kinematic feasibility analysis has been performed for 20 highway slopes. Observed slope mass classes have been compared to the feasibility percentage of discontinuities driven failures(wedge, toppling, and planar) and accordingly the kinematic feasibility zonation along highway segment has been done for each as well as overall failure types. Based on the slope mass conditions and discontinuities driven failures probability(%), responsive remedial measures have been proposed for individual highway slopes to ensure safe and uninterrupted transportation.  相似文献   

7.
The buckling failure of stratified rock slopes intersected by a set of steep discontinuities that are approximately parallel to the slope surface is frequently encountered while constructing railways and roadways in mountainous areas. In this study, an analytical approach based on the energy equilibrium principle is presented to solve the flexural buckling stability of stratified rock slopes within the framework of multilayer beam theory. The generalized HoekBrown failure criterion is introduced to reflect the influences of slope size(scale effects) on the buckling stability. Subsequently, numerical and physical modellings from previous literatures are employed to validate the proposed approach. Furthermore, a practical case of Bawang Mountain landslide is also used for the comparative analysis. The study shows that the present analytical approach is capable to provide a more reasonable assessment for the buckling failure of stratified rock slopes, compared with several existing analytical approaches. Finally, a detailed parametric study is implemented, and the results indicate that the effects of rock strength, rock deformation modulus, geological strength index, layer thickness and disturbance degree of rock mass on the buckling failure of stratified rock slopes are more significant than that of rock type and slope angle.  相似文献   

8.
在济南山前及山间倾斜平原区常见土质边坡存在较大安全隐患,本文结合实例,对此类边坡开展稳定性评价及治理方法研究,对不稳定边坡的成因做了详细分析,并采用毕肖普条分法对边坡稳定性进行了定量计算,提出清坡+格构+钢筋混凝土挡板+截水沟的方案解决土质边坡失稳问题。治理后边坡滑动安全系数为1.673,实现了土质边坡的有效防治,为此类土质边坡失稳问题提供了新的治理思路。  相似文献   

9.
软硬互层结构的顺层岩质边坡破坏类型复杂、难于防治, 针对此类边坡地质灾害易发、多发的问题, 从坡面角度、岩层倾向及组合形式、节理分布等方面进行了研究。边坡物理模型试验是揭示边坡变形破坏机理的重要手段, 基于相似理论, 以重庆市万州区孙家滑坡为工程依托, 根据滑坡区地质勘探报告设计了室内边坡物理模型试验; 试验通过顶升模型箱模拟重力加载来探究顺层岩质边坡发生破坏时, 前缘坡角和软弱夹层倾角之间的关系; 结合有限元分析软件Plaxis 2D对物理模型进行了多组数值模拟试验, 以验证软硬互层顺层岩质边坡破坏机制。试验结果表明: 对于顺层岩质边坡, 当软弱夹层的倾角在22°左右, 前缘开挖坡角58°左右时, 顺层岩质边坡容易发生滑动, 滑动面为后缘节理面和软弱夹层的贯通面。因此, 顺层岩质边坡稳定性受层面和节理面密度的控制, 当边坡含多层软弱层面时, 易沿层面和后缘节理贯通面发生破坏, 随着软弱面层数增加, 边坡稳定系数逐渐降低。研究成果可以为公路开挖切坡导致的顺层岩质边坡失稳机理研究及其稳定性评价提供理论依据, 为顺层岩质边坡失稳的预测预报提供支撑。   相似文献   

10.
When transparent soil technology is used to study the displacement of a slope, the internal deformation of the slope can be visualized. We studied the sliding mechanism of the soil-rock slope by using transparent soil technology and considering the influence of the rock mass Barton joint roughness coefficient, angle of the soil mass, angle of the rock mass and soil thickness factors on slope stability. We obtained the deformation characteristics of the soil and rock slope with particle image velocimetry and the laser speckle technique. The test analysis shows that the slope sliding can be divided into three parts: displacements at the top, the middle, and the bottom of the slope; the decrease in the rock mass Barton joint roughness coefficient, and the increase in soil thickness, angles of the rock mass and soil mass lead to larger sliding displacements. Furthermore, we analyzed the different angles between the rock mass and soil thickness. The test result shows that the displacement of slope increases with larger angle of the rock mass. Conclusively, all these results can help to explain the soil-rock interfacial sliding mechanism.  相似文献   

11.
Underground mining activities and rainfall have potential important influence on the initiation and reactivation of the slope deformations, especially on the steep rock slope. In this paper, using the discrete element method (UDEC), numerical simulation was carried out to investigate deformation features and the failure mechanism of the steep rock slope under mining activities and rainfall. A steep rock slope numerical model was created based on a case study at the Wulong area in Chongqing city, China. Mechanical parameters of the rock mass have been determined by situ measurements and laboratory measurements. A preliminary site monitoring system has been realized, aiming at getting structure movements and stresses of unstable rock masses at the most significant discontinuities. According to the numerical model calibrated based on the monitoring data, four types of operation conditions are designed to reveal the effect of mining excavation and extreme rainfall on the deformation of the steep rock slope.  相似文献   

12.
斜坡变形受众多因子综合控制, 不同因子的敏感性与作用规律在变形过程中差异明显。以湖北省阳新县顺层基岩滑坡为研究对象, 通过正交试验结合离散元数值模拟的方法, 研究多个影响因子对应顺层滑坡变形的敏感性并确立主导因素, 随后基于响应面拟合主导因素与滑坡不同部位变形程度间的量化关系, 揭示主导因素交互作用对滑坡变形破坏模式的影响规律。结果表明, 在研究区内坡度与岩层倾角分别为影响顺层滑坡变形的主导与次主导因素, 滑坡的变形破坏模式受控于二者的交互作用。在中-陡倾顺层滑坡中, 当坡度小于岩层倾角时, 滑坡变形主要集中在坡顶, 且变形程度随岩层倾角的增加而增大, 表现出滑移-弯曲的变形破坏模式; 在缓倾顺层滑坡中, 当坡度大于岩层倾角时, 滑坡坡脚位移较坡顶显著, 其坡脚变形程度随坡度的增加而增大, 以滑移-拉裂变形为主。研究成果可为该类滑坡的防治工作提供参考。   相似文献   

13.
Large-scale rock landslides have huge impacts on various large-scale rock engineering and project operations. They are also important aspects evaluating geological disasters. In the initial evaluations on the stability of large-scale rock landslides, in most cases, it is difficult to conduct evaluation or to have accurate evaluations because most of large-scale rock landslides are huge in size, high in slopes, and located in the canyon of mountains, which makes the exploration very difficult and thus hard to get credible data on slip surface form, location, depth and strength. This paper describes the Badi landslide happened along the Lancang River, and systematically introduces methods to analyze and verify large-scale slip surface form using terrain conditions surrounding the large-scale landslide, shape of the slide walls, and development patterns of streams and gully. This paper also introduces ways to obtain strength parameters of slip surface with the soil in the slide zone by using the principles of stress state, principles of gravity compaction, structure regeneration and strength regeneration. It is confirmed that analyzed results to the slip surface are basically consistent with the exploration results. The methods introduced here have been successfully applied to evaluate the stability of Badi large-scale rock landslide and have been applied in engineering practices.  相似文献   

14.
公路膨胀土路堑边坡防护方案探讨   总被引:5,自引:3,他引:2  
针对膨胀土路堑边坡的公路工程特点,总结以往膨胀土路堑边坡的防护措施,根据以往膨胀土路堑边坡的防护成败资料和经验。以保持边坡土体天然含水量状态的相对稳定,保持边坡土体结构的相对完整性。保持边坡土体足够的抗剪强度和防护工程应能适应边坡膨胀土体可能产生的膨胀变形与膨胀力不遭破坏。首先用DAH混合溶液改良膨胀土边坡的表层土,使DAH混合溶液与膨胀土产生离子交换发生化学反应,从而使表层膨胀土体改变性能,成为正常土,然后结合以往路堑边坡处理方法进行综合处理。实践证明,此方法不但充分利用了膨胀土.节约了工程投资,而且又绿化、美观了边坡,使其与周围环境相协调,从而为膨胀土地区公路路堑边坡处理提供了一种切实可行的防护措施。  相似文献   

15.
随着我国公路建设不断向山区深入, 在地质构造复杂区公路边坡遇到断层破碎带的情况日渐增多, 亟需开展阻滑能力强的抗滑桩结构加固边坡研究。传统的人工挖孔桩施工模式存在高风险、低效率等缺点, 而组合式圆截面抗滑桩具有施工效率高、安全便捷等特点, 为此, 探究其对含断层破碎带边坡的加固效果具有现实意义。采用自主设计的边坡物理试验系统, 设计了5种不同破碎带厚度与组合式圆截面抗滑桩组合的物理模型, 采用坡顶逐级加载的方式模拟加载, 监测桩身应变、桩顶位移和桩后土压力, 采用高速相机捕捉滑体变形破坏图像, 并使用粒子图像测速(PIV)技术对图像进行处理。研究结果表明: 组合式圆截面抗滑桩通过限制桩后滑体水平位移, 并将滑体限制在前、后排桩间来达到加固边坡的效果; 滑体演化分为变形压密、加速变形和破坏滑移3个阶段; 前、后排桩桩后土压力比值介于1/3~1/2之间; 随断层破碎带厚度增加, 滑体水平滑移速率增大, 组合式圆截面抗滑桩的桩顶位移增大, 桩身最大正弯矩减小。模型试验与数值模拟计算的弯矩及桩顶位移较为吻合, 研究成果可为边坡工程组合式圆截面抗滑桩设计提供一定借鉴与参考。   相似文献   

16.
Rock slope stability is of great concern along highway routes as stability problems on cut slopes may cause fatal events as well as loss of property. In rock slope engineering, stability evaluations are commonly performed by means of analytical or numerical analyses, principally considering the factor of safety concept. As a matter of fact, the probabilistic assessment of slope stability is progressively getting popularity due to difficulties in assigning the most appropriate values to design parameters in analytical or numerical methods. Additionally, the effect of heterogeneities in rock masses and discontinuities on the analysis results is minimized through the probabilistic concept. In this study, slope stability of high and steep sedimentary rock cut slopes along a state highway in Adilcevaz-Bitlis (Turkey) was evaluated on the basis of probabilistic approach using the Slope Stability Probability Classification (SSPC) system. The probabilistic assessment indicates major slope stability problems because of discontinuity controlled and discontinuity orientation independent mass movements. Almost all studied cut slopes suffer from orientation-independent stability problems with very low stability probabilities. Additionally, the probability of planar and toppling failures is significantly high with respect to the SSPC system. The stability problems along the investigated rock slopes were also verified by field reconnaissance. Remedial measures such as slope re-design and reinforcement at the studied locations should be taken to prevent hazardous events along the highway. On the other hand, the probabilistic approach may be a useful tool during rock slope engineering to overcome numerous uncertainties when probabilistic and analytic results are compared.  相似文献   

17.
Seepage-induced fines migration under rainfall infiltration is a main cause leading to shallow failures in loose colluvial slopes. To describe the full process of fines migration within unsaturated soils during rainfall infiltration and the associated hydro-mechanical behaviors, a seepage-erosion-deformation coupled formulation is proposed in this paper. The governing equations proposed are implemented into a finite element code and used to investigate the influences of skeleton deformation on the rainfall infiltration process through unsaturated soil columns. The numerical results were presented in detail for a better understanding of the rainfall-induced fines migration process within unsaturated soils. Further, the obtained results are integrated into an infinite slope model for slope stability analysis. The results show that, the skeleton deformation will affect the rainfall infiltration rate and hence the timing of slope failures; meanwhile their influences are more evident if the fines deposition process is taken into account. Moreover, the slope stability could be reduced gradually due to the soil strength loss along with loss of fine particles. Therefore, particular attentions should be paid to analyzing the stability of soil slopes susceptible to internal erosion.  相似文献   

18.
大量穿越山地丘陵区的高压输电线路杆塔基础常位于滑坡灾害高易发斜坡地段, 施加适当防护措施提高其稳定性, 是保障输电线路持续安全运行的关键。为研究不同防护措施对杆塔基础滑坡的防护效果, 以湖北省巴东县燕子滑坡为地质原型, 设计制作物理试验模型, 分别开展了极端降雨条件下滑坡在无防护、施加抗滑桩与格构护坡时的物理模型试验, 从试验角度揭示了滑坡变形破坏特征与不同防护措施的防护效果。试验结果表明: 在2种极端降雨工况(50, 100 mm/h)下, 无防护的滑坡体历经了坡表冲刷、裂缝扩展、局部垮塌变形与整体滑动的演化过程; 抗滑桩措施对滑坡整体的防护效果显著, 滑坡整体处于稳定状态, 杆塔基础变形较小, 杆塔倾斜率满足规范, 但坡表会出现冲刷垮塌现象; 格构护坡措施能有效减少坡面冲刷和坡脚垮塌风险, 但在持续强降雨条件下对杆塔基础的整体稳固作用稍弱。物理模型试验结果与滑坡历史变形和实际治理效果吻合, 试验结论可为类似杆塔基础滑坡的破坏机理研究与防护工程设计提供借鉴。   相似文献   

19.
本文在分析横山山体地质条件及因地下采空而诱发出的山体变形破坏特征的基础上,对采空区地表山体的变形破坏进行了工程地质力学模拟研究。结果表明,横山山体之下3号煤层的采动坍陷是引起山体变形破坏的直接原因;毗邻山体的电厂区地表隆起变形破坏,是因采空区上覆岩层在坍陷时所产生的向电厂方向的蠕动,致使厂区地基土遭受挤压和变形的结果;随着3号煤层采动的结束及其上覆岩层坍陷过程的完成,电厂区将会恢复到稳定状态。 通过分析,山体岩层倾角增大时有无地下采空影响的山体变形破坏的不同特征,得出了同时具有地表侵蚀临空面和地下采空临空面的山体与仅有地表侵蚀临空面之斜玻的山体变形破坏是不同的。从不同模型材料所得实验结果的一致性,验证了此模拟实验在理论上和实际中都有很好的相似性。  相似文献   

20.
三峡库区大型-特大型滑坡发育,尤以层状岩质滑坡的危害性大。因库区各段地质条件差异使得滑坡成因模式各不相同,这影响了滑坡的运动形式和岩土体解体程度。在收集三峡库区51处典型的大型-特大型层状岩质滑坡调查资料基础上,根据堆积岩体结构和区段地质条件反推该段滑坡破坏成因模式,而不同成因模式下的滑坡坡体渗透性不同,分析已有滑坡对库水位变动存在的复活响应差异,据此得出以下结论:①在成因模式上,除顺层滑移型滑坡在库区中均有分布外,从库首至库尾随着岩层倾角的逐渐减缓,滑坡成因模式从崩塌型、反倾弯曲型逐渐过渡到平推式;②在坡体渗透性上,成因模式造成的岩体结构变化与坡体中的泥质含量共同作用,导致顺层滑移型滑坡前后缘渗透性存在较大差异;反倾型滑坡渗透性则整体变化较小;③在库水位变动影响下,不同坡体渗透性与滑面形态共同决定了滑坡的复活变形差异。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号