首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The triggering mechanisms of debris flows were explored in the field using artificial rainfall experiments in two gullies, Dawazi Gully and Aizi Gully, in Yunnan and Sichuan Provinces, China, respectively. The soils at both sites are bare, loose and cohesive gravel-dominated. The results of a direct shear test, rheological test and back-analysis using soil mass stability calculations indicate that the mechanisms responsible for triggering debris flows involved the decreases in static and dynamic resistance of the soil. The triggering processes can be divided into 7 stages: rainfall infiltration, generation of excess runoff, high pore water pressure, surface erosion, soil creep, soil slipping, debris flow triggering and debris flow increment. In addition, two critical steps are evident: (i) During the process of the soil mass changing from a static to a mobile state, its cohesion decreased sharply (e.g., the cohesion of the soil mass in Dawazi Gully decreased from 0.520 to 0.090 kPa, a decrease of 83%). This would have reduced the soil strength and the kinetic energy during slipping, eventually triggered the debris flow. (ii) When the soil mass began to slip, the velocity and the volume increment of the debris flow fluctuated as a result of the interaction of soil resistance and the sliding force. The displaced soil mass from the source area of the slope resulted in the deposition of a volume of soil more than 7 - 8 times greater than that in the source area.  相似文献   

2.
Natural dams are formed when landslides are triggered by heavy rainfall during extreme weather events in the mountainous areas of Taiwan.During landslide debris movement, two processes occur simultaneously: the movement of landslide debris from a slope onto the riverbed and the erosion of the debris under the action of high-velocity river flow. When the rate of landslide deposition in a river channel is higher than the rate of landslide debris erosion by the river flow, the landslide forms a natural dam by blocking the river channel. In this study, the effects of the rates of river flow erosion and landslide deposition(termed the erosive capacity and depositional capacity, respectively) on the formation of natural dams are quantified using a physics-based approach and are tested using a scaled physical model.We define a dimensionless velocity index vde as the ratio between the depositional capacity of landslide debris(vd) and the erosive capacity of water flow(ve).The experimental test results show that a landslidedam forms when landslide debris moves at high velocity into a river channel where the river-flow velocity is low, that is, the dimensionless velocity index vde 54. Landslide debris will not have sufficient depositional capacity to block stream flow when the dimensionless velocity index vde 47. The depositional capacity of a landslide can be determined from the slope angle and the friction of the sliding surface, while the erosive capacity of a dam can be determined using river flow velocity and rainfall conditions. The methodology described in this paper was applied to seven landslide dams that formed in Taiwan on 8 August 2009 during Typhoon Morakot,the Tangjiashan landslide dam case, and the YingxiuWolong highway K24 landslide case. The dimensionless velocity index presented in this paper can be used before a rainstorm event occurs to determine if the formation of a landslide dam is possible.  相似文献   

3.
Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under different conditions. Results show that the flow regime depends on coarse grain concentration. Slurry with high fine grain concentration but lacking of coarse grains behaves as a laminar flow. Dilute debris flows containing coarse grains are generally turbulent flows. Streamlines are parallel and velocity values are large in laminar flows. However, in turbulent flows the velocity diminishes in line with the intense mixing of liquid and eddies occurring. The velocity profiles of laminar flow accord with the parabolic distribution law. When the flow is in a transitional regime, velocity profiles deviate slightly from the parabolic law. Turbulent flow has an approximately uniform distribution of velocity and turbulent kinetic energy. The ratio of turbulent kinetic energy to the kinetic energy of time-averaged flow is the internal cause determining the flow regime: laminar flow(k/K0.1); transitional flow(0.1 k/K1); and turbulent flow(k/K1). Turbulent kinetic energy firstly increases with increasing coarse grain concentration and then decreases owing to the suppression of turbulence by the high concentration of coarse grains. This variation is also influenced by coarse grain size and channel slope. The results contribute to the modeling of debris flow and hyperconcentrated flow.  相似文献   

4.
Debris flow can cause serious damages to roads, bridges, buildings and other infrastructures.Arranging several rows of deceleration baffles in the significant influence on the mobility and deposition characteristic of debris flow. The deposit amount first increased then decreased when the flow density rises,flow path can reduce the flow velocity and ensure better protection of life and property. In debris flow prevention projects, deceleration baffles can effectively reduce the erosion of the debris flow and prolong the running time of the drainage channel.This study investigated the degree to which a 6 m long flume and three rows of deceleration baffles reduce the debris flow velocity and affect the energy dissipation characteristics. The influential variables include channel slope, debris flow density, and spacing between baffle rows. The experimental results demonstrated that the typical flow pattern was a sudden increase in flow depth and vertical proliferation when debris flow flows through the baffles. Strong turbulence between debris flow and baffles can contribute to energy dissipation and decrease the kinematic velocity considerably. The results showed that the reduction ratio of velocity increased with the increase in debris flow density,channel slope and spacing between rows. Tests phenomena also indicated that debris flow density hasand the deposit amount of debris flow density of 1500kg/m~3 reached the maximum when the experimental flume slope is 12°.  相似文献   

5.
Conventionally, flexible barriers are rated based on their ability to resist a free-falling boulder with a particular input energy. However, there is still no well-accepted approach for evaluating performance of flexible barrier under debris flow impact. In this study, a large-nonlinear finite-element model was used to back-analyze centrifuge tests to discern the effects of impact material type, barrier stiffness, and flow aspect ratio(flow height to flow length) on the reaction force between the impacting medium and flexible barrier. Results show that, in contrast to flexible barriers for resisting rockfall, the normal impact force induced by the highly frictional and viscous debris is insensitive to barrier stiffness. This is because the elongated distributions of kinetic energy are mainly dissipated by the internal and boundary shearing, and only a small portion is forwarded to the barrier. Furthermore, a new stiffness number is proposed to characterize the equivalent stiffness between a debris flow or a boulder, and a flexible barrier. Under the circumstance of an extremely elongated debris flow event, i.e., low aspect ratio, the load on a barrier is dominated by the static component and thus not sensitive to the barrier stiffness.  相似文献   

6.
Grain composition plays a vital role in impact pressure of debris flow. Current approaches treat debris flow as uniform fluid and almost ignore its granular effects. A series of flume experiments have been carried out to explore the granular influence on the impact process of debris flow by using a contact surface pressure gauge sensor(Tactilus~?, produced by Sensor Products LLC). It is found that the maximum impact pressure for debris flow of low density fluctuates drastically with a long duration time while the fluctuation for flow of high density is short in time, respectively presenting logarithmic and linear form in longitudinal attenuation. This can be ascribed to the turbulence effect in the former and grain collisions and grainfluid interaction in the latter. The horizontal distribution of the impact pressure can be considered as the equivalent distribution. For engineering purposes, the longitudinal distribution of the pressure can be generalized to a triangular distribution, from which a new impact method considering granular effects is proposed.  相似文献   

7.
Although information regarding the initiation processes of debris flows is important for the development of mitigation measures,field data regarding these processes are scarce.We conducted field observations of debris-flow initiation processes in the upper Ichinosawa catchment of the Ohya landslide,central Japan.On 19 June 2012,our videocamera monitoring systems recorded the moment of debris-flow initiation on channel deposits(nine surges) and talus slopes(eight surges).The initiation mechanisms of these surges were classified into three types by analyzing the video images: erosion by the surface flow,movement of deposits as a mass,and upward development of the fluid area.The first type was associated with the progress of surface flow from the upper stream on unsaturated channel deposits.The second type was likely caused by an increase in the pore water pressure associated with the rising in the groundwater level in channel deposits;a continuous water supply from the upper stream by the surface flow might have induced this saturation.The third type was associated with changes in the downstream topography caused by erosion.The flow velocity of most surges was less than 3 m s~(-1) and they usually stopped within 100 m from the initiation point.Surges with abundant pore fluid had a higher flow velocity(about 3- 5 m s~(-1)) and could travel for alonger duration.Our observations indicate that the surface flow plays an important role in the initiation of debris flows on channel deposits and talus slopes.  相似文献   

8.
The phenomenon of debris flow is intermediate between mass movement and solid transport. Flows can be sudden, severe and destructive. Understanding debris flow erosion processes is the key to providing geomorphic explanations, but progress has been limited because the physical-mechanical properties, movement laws and erosion characteristics are different from those of sediment-laden flow. Using infinite slope theory, this research examines the process and mechanism of downcutting erosion over a moveable bed in a viscous debris flow gully. It focuses specifically on the scour depth and the critical slope for viscous debris flow,and formulas for both calculations are presented.Both scour depth and the critical conditions of downcutting erosion are related to debris flow properties(sand volume concentration and flow depth) and gully properties(longitudinal slope,viscous and internal friction angle of gully materials,and coefficient of kinetic friction). In addition, a series of flume experiments was carried out to characterize the scouring process of debris flows with different properties. The calculated values agreed well with the experimental data. These theoretical formulas are reasonable, and using infinite slope theory to analyze down cutting erosion from viscous debris flow is feasible.  相似文献   

9.
Large spoil tips from reconstruction works as a result of the Wenchuan Earthquake in China are new debris flow hazards to the human society. However, there is a lack of detailed comparative study on debris flow initiation in different spoil materials. This paper describes a series of tests and analyses on debris flow characteristics (initiation, scale and mechanism) at six sites with limestone and sandstone materials near the Dujiangyan area. Research shows the limestone spoil contains debris flow prone clay content with high concentration of montmorillonite (highly expandable). In addition, limestone spoil is of such a low permeability that water mainly concentrates in the upper surface layer. Those factors make it easy for the increase of pore water pressure, decline of internal friction and conhesion force, leading to the occurence of large debris flows. In contrast, the sandstone spoil is less problematic and causes no major debris flow threats. Based on our research on the mechanism, the“stereometric drainage”method is sucessfully applied to control limestone spoil debris flows.  相似文献   

10.
Early warning model of debris flow is important for providing local residents with reliable and accurate warning information to escape from debris flow hazards. This research studied the debris flow initiation in the Yindongzi gully in Dujiangyan City, Sichuan province, China with scaled-down model experiments. We set rainfall intensity and slope angle as dominating parameters and carried out 20 scaled-down model tests under artificial rainfall conditions. The experiments set four slope angles(32°, 34°, 37°, 42°) and five rainfall intensities(60 mm/h, 90 mm/h, 120 mm/h, 150 mm/h, and 180 mm/h) treatments. The characteristic variables in the experiments, such as, rainfall duration, pore water pressure, moisture content, surface inclination, and volume were monitored. The experimental results revealed the failure mode of loose slope material and the process of slope debris flow initiation, as well as the relationship between the surface deformation and the physical parameters of experimental model. A traditional rainfall intensity-duration early warning model(I-D model) was firstly established by using a mathematical regression analysis, and it was then improved into ISD model and ISM model(Here, I is rainfall Intensity, S is Slope angle, D is rainfall Duration, and M is Moisture content). The warning model can provide reliable early warning of slope debris flow initiation.  相似文献   

11.
Debris flow is one of the major secondary mountain hazards following the earthquake. This study explores the dynamic initiation mechanism of debris flows based on the strength reduction of soils through static and dynamic triaxial tests. A series of static and dynamic triaxial tests were conducted on samples in the lab. The samples were prepared according to different grain size distribution, degree of saturation and earthquake magnitudes. The relations of dynamic shear strength, degree of saturation, and number of cycles are summarized through analyzing experimental results. The findings show that the gravelly soil with a wide and continuous gradation has a critical degree of saturation of approximately 87%, above which debris flows will be triggered by rainfall, while the debris flow will be triggered at a critical degree of saturation of about 73% under the effect of rainfall and earthquake(M>6.5). Debris flow initiation is developed in the humidification process, and the earthquake provides energy for triggering debris flows. Debris flows are more likely to be triggered at the relatively low saturation under dynamic loading than under static loading. The resistance of debris flow triggering relies more on internal frication angle than soil cohesion under the effect of rainfall and earthquake. The conclusions provide an experimental analysis method for dynamic initiation mechanism of debris flows.  相似文献   

12.
Jiangjia Ravine is a world-famous debris flow valley in Dongchuan,Yunnan Province,China.Every year large numbers of landslides and collapses happened and caused enormous damages to people’s properties and lives.With longtime observation and testing in Jiangjia Ravine we had found out one kind of special landslide which had the characteristics of landslide and collapse.Landslide and collapse supplied sufficient materials for debris flow.When a debris flow broke out,some kind of intergrowth existed among rainfall,landslide and debris flow.In order to study the intergrowth and some key parameters,we carried out artificial rainfall landslide tests and model experiments to observe the phenomena such as collapse,surface slide and surface flow.By observing the experimental phenomena and monitoring water contents,the transformation process among landslide deposits and debris flow under the condition of rainfall had been analyzed.Research results revealed the relationship of this kind of intergrowth among rainfall,landslide and debris flow in Jiangjia Ravine.Meanwhile,it was found that this kind of intergrowth relationship existed only when the moisture content was in a certain range.That is,the critical state seemed to be existed in the transformation process.  相似文献   

13.
针对传统方法难以定量描述大尺度泥石流形成机理的问题,提出一种联合SAR卫星影像相位信息和后向散射信息全面识别泥石流发育机制的方法,并使用该方法探究云南省德钦县一中河泥石流物源汇集及失稳模式.通过后向散射系数反演研究区土壤含水量的时空变化趋势,利用升降轨Sentinel-1 A数据获取坡表二维形变.结果表明,研究区土壤含...  相似文献   

14.
Forestry has played an important role in hazard mitigation associated with debris flows. Most forest mitigation measures refer to the experience of soil and water conservation, which disregard the destructive effect of debris flows, causing potentially serious consequences. Determination of the effect of a forest on reducing debris-flow velocity and even stopping debris flows requires distinguishing between when the debris flow will destroy the forest and when the trees will withstand the debris-flow impact force. In this paper, we summarized two impact failure models of a single tree: stem breakage and overturning. The influences of different tree sizes characteristics(stem base diameter, tree weight, and root failure radius) and debris-flow characteristics(density, velocity, flow depth, and boulder diameter) on tree failure were analyzed. The observations obtained from the model adopted in this study show that trees are more prone to stem breakage than overturning. With an increase in tree size, the ability to resist stem breakage and overturning increases. Debris-flow density influences the critical failure conditions of trees substantially less than the debrisflow velocity, depth, and boulder diameter. The application conditions of forests in debris-flow hazard mitigation were proposed based on the analysis of the model results. The proposed models were applied in the Xiajijiehaizi Gully as a case study, and the results explain the destruction of trees in the forest dispersing zone. This work provides references for implementing forest measures for debris-flow hazard mitigation.  相似文献   

15.
The Digital Elevation Model(DEM) data of debris flow prevention engineering are the boundary of a debris flow prevention simulation, which provides accurate and reliable DEM data and is a key consideration in debris flow prevention simulations. Thus, this paper proposes a multi-source data fusion method. First, we constructed 3D models of debris flow prevention using virtual reality technology according to the relevant specifications. The 3D spatial data generated by 3D modeling were converted into DEM data for debris flow prevention engineering. Then, the accuracy and applicability of the DEM data were verified by the error analysis testing and fusion testing of the debris flow prevention simulation. Finally, we propose the Levels of Detail algorithm based on the quadtree structure to realize the visualization of a large-scale disaster prevention scene. The test results reveal that the data fusion method controlled the error rate of the DEM data of the debris flow prevention engineering within an allowable range and generated 3D volume data(obj format) to compensate for the deficiency of the DEM data whereby the 3D internal entity space is not expressed. Additionally, the levels of detailed method can dispatch the data of a large-scale debris flow hazard scene in real time to ensure a realistic 3D visualization. In summary, the proposed methods can be applied to the planning of debris flow prevention engineering and to the simulation of the debris flow prevention process.  相似文献   

16.
Flexible net barriers are a new type of effective mitigation measure against debris flows in valleys and can affect the kinematic energy and mass of debris flows. Here, ten flume tests were performed to study the dynamic behaviours of debris flows with differences in volumes, concentrations (solid volume fraction), and travel distances after interception by a uniform flexible net barrier. A high-speed camera was used to monitor the whole test process, and their dynamic behaviours were recorded. A preliminary computational framework on energy conversion is proposed according to the deposition mechanisms and outflow of debris flow under the effects of the flexible net barrier. The experimental results show that the dynamic interaction process between a debris flow and the flexible net barrier can be divided into two stages: (a) the two-phase impact of the leading edge of the debris flow with the net and (b) collision and friction between the body of the debris flow and intercepted debris material. The approach velocity of a debris flow decreases sharply (a maximum of 63%) after the interception by the net barrier, and the mass ratio of the debris material being intercepted and the kinetic energy ratio of the debris material being absorbed by the net barrier are close due to the limited interception efficiency of the flexible net barrier, which is believed to be related to the flexibility. The energy ratio of outflow is relative small despite the large permeability of the flexible net barrier.  相似文献   

17.
The magnitude-frequency(MF) relationship of debris flows is the basis for engineering designs and risk quantification. However, because of the lack of debris flow monitoring data, research progress in this area has been relatively slow. The MF relationship of debris flows in Jiangjia Gully, Yunnan Province was evaluated based on a regression analysis of 178 debris flow events that occurred from 1987-2004. The magnitude-cumulative frequency(MCF) relationship of the debris flows in the Jiangjia Gully is consistent with the linear logarithmic transformation function. Moreover, observed data for debris flows in Hunshui Gully of Yunnan Province and Huoshao Gully, Liuwan Gully, and Niwan Gully of Gansu Province were used to verify the function. The results showed that the MCF relationship of highfrequency debris flows is consistent with the power law equation, although the regression coefficients in the equation are considerably different. Further analysis showed a strong correlation between the differences in the constants and the drainage area and daily maximum precipitation.  相似文献   

18.
前人对地热回灌井的井底压强评价主要通过水位和井内水温、密度分布进行相对静态计算。为了更客观地研究井底压强计算,该文进行了更全面的分析。当在对模拟地热回灌井的尾水出水口压力进行计算时,发现了尾水对下部水柱产生13.07 m水柱当量压强,并结合估计的回灌平衡状态下井内温度(密度)分布,计算出井底压强及其他相关数据,并与静井状态进行了对比,认为在回灌井结构不变的前提下,井底的压强主要由尾水出水口压力、动水位和温度(密度)分布共同决定。  相似文献   

19.
以国家石油战略储备地下水封洞库备选基地——烟台福山区九目山岩体完整性勘探评价项目为例,阐述了层析静校正技术的原理,比较了层析静校正和折射静校正的应用效果,认为复杂地表区折射波静校正方法效果一般,而走时层析静校正方法则能准确地反演地表速度模型,较好地解决复杂地表的静校正问题。利用层析反演建立的地表速度模型剖面,计算出岩体完整性分级剖面,结合层析静校正反射波剖面进行综合解释,有效地解决了工程勘探中的地质问题。  相似文献   

20.
The erosion shape and the law of development of debris flow sabo dam downstream is a weak part in the study on debris flow erosion. The shape and development of scour pit have an important effect on the stability and safety of debris flow sabo dam, which determines the foundational depth of the dam and the design of protective measures downstream. Study on the scouring law of sabo dam downstream can evaluate the erosion range and reasonably arrange auxiliary protective engineering. Therefore, a series of flume experiments are carried out including different debris flow characteristics (density is varying from 1.5 t/m3 to 2.1 t/m~) and different gully longitudinal slopes. The result shows that the scour pit appears as an oval shape in a plane and deep in the middle while superficial at the ends in the longitudinal section, the position of the maximum depth point moves towards downstream with an increase of flume slope angle. The maximum depth of scour pit is mainly affected by the longitudinal slope of gully, density of debris flow, and the characteristics of gully composition (particle size and the viscosity of soil). The result also indicates that the viscosity of soil will weaken the erosion extent. The interior slopes of scour pit are different between the upstream and the downstream, and the downstream slope is smaller than the upper one. For the viscous and non-viscous sands with the same distribution of gradation, the interior slope of non- viscous sand is smaller than the viscous sand.According to tbe regression analysis on the experimental data, the quantitative relationship between the interior slope of scour pit, slope of repose under water and the longitudinal slope of gully is established and it can be used to calculate the interior slope of scour pit. The results can provide the basis for the parameter design of the debris flow control engineering foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号