首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
圆钢管混凝土压弯构件荷载一位移滞回性能分析   总被引:6,自引:1,他引:6  
在空钢管中填充混凝土可以避免或延缓钢管过早地发生局部屈曲,并有效地提高构件的延性,从而增强构件的抗震性能,本文在对圆钢管混凝土构件弯矩-曲率关系分析的基础上,分析了圆钢管混凝土压弯构件P-△滞回关系曲线,理论计算结果得到国内外大量结果的验证,基于理论分析模型,分析了各参,如构件轴压比,长细比,截面含钢率和材料强度等因素对圆钢管混凝土压变变构件P-△滞回关系曲线的影响,最后,确定了圆钢管混凝土压弯构件P-△恢复力学模型和延性系数的简化计算方法。  相似文献   

2.
圆钢管混凝土压弯构件荷载-位移滞回模型研究   总被引:2,自引:0,他引:2  
本文采用数值计算方法,对圆钢管混凝土压弯构件荷载-位移滞回关系曲线进行了理论分析。理论计算结果与实验结果吻合良好。基于理论模型,分析了各参数,如构件轴压比、长细比、截面含钢率和材料强度等对圆钢管混凝土压弯构件荷载-位移滞回曲线的影响。最终提出-种圆钢管混凝土压弯构件荷载-位移滞回模型及位移延性系数的简化计算方法。  相似文献   

3.
应用Open SEES有限元软件计算圆钢管混凝土短柱的轴压承载力-应变关系曲线。由于钢管和混凝土之间相互作用的机理,分别采用Mander混凝土本构模型和根据套箍系数修正Mander混凝土本构模型,计算结果与实验结果吻合较好。应用此材料本构模拟圆钢管高强混凝土短柱并讨论不同参数的影响。结果表明:基于试验的Open SEES建模方式与模型参数选取合理;圆钢管高强混凝土与普通混凝土的力学性能差异大;增大核心混凝土的强度、钢材的套箍系数和屈服强度都可以提高构件的极限承载力。  相似文献   

4.
简要介绍了美国ACI(1999)和AISC-LRFD(1999)、日本AIJ(1997)、英国BS5400(1979)、中国DBJl3-51-2003(2003)和DL/T5085-1999(1999)及欧洲EC4(1994)等设计规程中有关圆形截面钢管混凝土(以下简称圆钢管混凝土)压弯构件计算方法的特点,并将上述各方法及数值方法的计算结果和搜集到的圆钢管混凝土梁柱极限承载力实验结果进行了对比和分析。结果表明,在进行圆钢管混凝土梁柱极限承载力计算时,上述各规程提供的计算方法及数值方法均能较好地计算出构件的极限承载力,且计算结果偏于安全,其中,数值方法的计算结果与实验结果最为吻合,规程AISC-LRFD(1999)的计算结果最为安全。本文的研究结果可供进行圆钢管混凝土柱抗震设计时参考。  相似文献   

5.
圆钢管混凝土构件弯矩-曲率滞回特性研究   总被引:8,自引:3,他引:5  
首先确定了往复应力作用下组成圆钢管混凝土的钢材和核心混凝土的应力-应变关系模型、在此基础上,利用数值计算方法,对圆钢管混凝土构件弯矩-曲率滞回关系曲线进行了理论分析,其结果和试验结果吻合良好。最后,提出圆钢管混凝土构件弯矩-风率恢复力模型,给出模型中有关参数的计算公式,可为圆钢管混凝土体系弹塑性分析提供参考。  相似文献   

6.
钢管混凝土组合柱变形能力计算方法   总被引:1,自引:1,他引:0  
为研究钢管混凝土组合柱的变形能力,建立了屈服曲率和极限曲率的计算式。屈服曲率与受拉纵筋的屈服应变、柱截面高度、轴压比、配箍特征值和钢管含管特征值有关,极限曲率与柱截面高度、轴压比、配箍特征值和含管特征值有关。通过对58个组合柱试件试验数据分析,得到了计算式的相关参数,由此可计算组合柱的屈服位移角和极限位移角,计算结果与试验结果符合良好。  相似文献   

7.
通过2根圆钢管普通混凝土柱与5根圆钢管钢渣混凝土柱在高轴压比下的水平低周反复加载试验,研究圆钢管钢渣混凝土柱的轴压比、钢管壁厚、钢渣砂替代率和长细比对其破坏形态、滞回耗能能力、骨架曲线、延性及耗能、刚度退化的影响规律。研究结果表明:钢渣混凝土试件破坏过程和破坏形态与普通混凝土试件基本相同,主要表现为钢管底部鼓曲的压弯破坏;所有试件滞回曲线饱满,无明显“捏缩”现象;高轴压比试件存在明显承载力突降现象,合理的径厚比(钢管直径/钢管壁厚)对高轴压比试件承载力突降有明显改善作用;低轴压比试件延性系数大于4.0,高轴压比试件延性系数介于1.57~3.76之间,轴压比增大,试件延性下降;试件破坏时等效粘滞阻尼系数ξeq介于0.259~0.437之间;建议采用《钢管混凝土混合结构技术标准》(GB/T51446-2021)或《钢管混凝土结构技术规程》(DBJ/T13-51-2010)计算地震作用下钢管钢渣混凝土柱压弯承载力,但高轴压比钢管钢渣混凝土柱计算结果需乘以折减系数0.8。  相似文献   

8.
圆钢管混凝土压弯构件弯矩-曲率滞回模型研究   总被引:3,自引:2,他引:1  
采用数值计算方法,对圆钢管混凝土压弯构件弯矩—曲率滞回关系进行了计算,分析了各参数,如构件轴压比、截面含钢率和材料强度等对圆钢管混凝土压弯构件弯矩—曲率滞回曲线的影响。最后,基于系统参数分析结果提出一种圆钢管混凝土压弯构件弯矩—曲率滞回模型。  相似文献   

9.
钢管高强混凝土叠合柱的抗震性能研究   总被引:11,自引:1,他引:10  
通过周期性往复试验,研究了钢管高混凝土叠合柱柱的破坏形态,耗能能力、延性、承载力以及各种组成部分共同工作等内容,并与钢管高强混凝土核心柱进行了对比;随后通过计算,讨论了叠合柱中有关参数对其极限承载力和影响;最后给出了叠合柱正截面极限承载力的简化计算方法。  相似文献   

10.
震害表明,高层建筑中轴压比较大的钢筋混凝土柱的变形能力较弱。为了提高大轴压比柱的变形能力,进而改善结构的抗震性能,采用钢管混凝土叠合柱是最有效的方法之一。本文首先通过截面分析,阐释了钢管混凝土叠合柱在高轴压比下提高柱子延性的机理。然后基于已有的钢管混凝土叠合柱试验,采用通用非线性有限元软件ABAQUS建立了钢管混凝土叠合柱的有限元模型。有限元分析结果与试验结果吻合良好,说明了有限元模型的合理性。在此基础上,分析了名义轴压比、套箍系数等参数对钢管混凝土叠合柱位移延性系数的影响,得到了影响外围钢筋混凝土与核心钢管混凝土之间轴力重分配和叠合柱延性的关键参数。通过回归分析,得到反映各关键参数影响的叠合柱位移延性系数的简化计算公式,在此基础上,计算得到了各抗震等级叠合柱位移延性系数的下限值,为叠合柱的延性估算和复核提供参考。  相似文献   

11.
郑新志 《华南地震》2014,(1):94-102
对于薄壁方形钢管混凝土柱,有效且经济地提高柱的承载力、刚度和延性,增强其抵抗局部屈曲的能力是目前的一项重要研究课题。据此,进行8个薄壁方形钢管混凝土轴压试件的研究,比较普通薄壁钢管混凝土柱与劲化薄壁钢管混凝土柱的轴压极限承载力、延性性能、局部屈曲模态及相应耗钢量,研究表明:劲化设置在增加较少用钢量的情况下,使钢管壁对核心混凝土的约束作用相对于普通钢管混凝土柱和单纯加设约束拉杆的钢管混凝土柱更趋均匀,提高了整体约束效应,混凝土强度得以提高,本构关系明显改善。从而增加了钢管混凝土柱的轴压承载力和延性,改变了钢管的局部屈曲变形状态,其实用效益与经济效益极其可观,具有良好推广价值。  相似文献   

12.
对基于位移的方钢管混凝土柱抗震设计方法进行了研究:介绍了基于位移抗震设计方法的概念、原理和设计的一般过程;探讨了方钢管混凝土柱的等效刚度、等效阻尼等设计中的关键问题,并确定了参数的具体取值;最后对方钢管混凝土柱进行了具体的基于位移的抗震设计,并研究了主要参数的影响。结果表明:在通常范围内,第二阶段刚度系数对滞回阻尼比影响不大;随着轴压比的增加,钢管壁厚度增加,柱延性系数增加;随着截面尺寸增加,钢管壁厚度减小,屈服弯矩也减小。  相似文献   

13.
桥梁高墩位移延性能力的探讨   总被引:13,自引:3,他引:13  
本文运用增量动力分析方法来计算高墩的屈服位移、极限位移和位移延性,给出了应用IDA方法计算屈服位移、极限位移的主要过程,探讨了高阶振型对高墩位移延性能力的影响。通过算例分析表明:现行计算桥墩位移延性系数的方法,如直接应用到高墩,将会导致较大误差;高阶振型对高墩的屈服位移、极限位移和位移延性系数都有较大的影响。  相似文献   

14.
A method is presented to quantify the inelastic seismic resistance of reinforced concrete stack-like structures by non-linear earthquake analysis. The deformed configuration of stack is idealized as an assemblage of beam elements and actual stress–strain relationships of concrete and reinforcing steel are used to evaluate element matrices. Repeated non-linear analyses are performed by gradually increasing the intensity of acceleration time histories to a level where collapse of the stack is observed in primary stresses. The set of time histories thus obtained are then used to define the ultimate intensity of ground motion that the stack can sustain if inelastic deformations are permitted. A procedure is presented to quantify the difference between inelastic seismic resistance and elastic seismic resistance in terms of displacement ductility capacity factors. For seismic design using available inelastic resistance, values of curvature ductility factor demand for the cross-sections of stacks are also presented. © 1997 by John Wiley & Sons, Ltd.  相似文献   

15.
系统地总结了国内外钢结构端板连接研究成果以及相关设计规范的规定,提出了钢结构端板连接抗震设计具体方法,主要包括:节点标准构造、抗震承载力验算、极限承载力验算、延性设计,为我国钢结构抗震设计规范的相关内容提供了有益补充建议。  相似文献   

16.
为了解决传统内置灌浆套筒竖向连接施工过程不可视和灌浆质量可控性差,提出“灌浆后再二次封边”的倒置外露钢筋灌浆套筒连接方法。通过设计制作3个截面尺寸为400 mm×400 mm的足尺试件,采用竖向荷载作用下的低周往复荷载试验,研究了该新型装配柱脚节点在不同轴压比作用下的抗震性能。结果表明:不同轴压比作用下各装配柱脚节点试件灌浆套筒均完好;伴随轴压比增大,柱脚节点区塑性铰上移,柱身开裂高度上升;柱脚节点开裂与极限荷载均随轴压比增大而增大,但延性系数随轴压比的增大而降低(试件S1、S2和S3对应的延性系数分别是3.08、2.77和2.56)并且刚度退化进程缩短;伴随轴压比增大开裂位移角变大和极限位移角变小,最小值分别为1/479、1/35,均大于规范限值,满足抗震设计要求。建议装配柱脚节点应适度延长柱端箍筋加密区范围,深化柱脚节点区受力机制的研究。  相似文献   

17.
采用非线性全过程数值仿真算法确定不等肢T型、L型、十字型柱截面曲率延性比。再根据异形柱框架结构受地震作用时应具有的柱截面曲率延性水准确定不等肢T形、L形、十字形柱轴压比限值,为不等肢异形柱设计提供了必须的依据。  相似文献   

18.
The purpose of this study is to evaluate the ultimate strength and ductility capacity of stiffened steel box columns failed by local and overall interaction instability under a constant compressive axial force and cyclic lateral loading. In a companion paper, a finite element formulation accounting for both geometrical and material non‐linearity was developed to obtain cyclic hysteretic behaviour of such columns. In this paper, the effect of loading patterns on the cyclic inelastic behaviour is first studied; then, a parametric study is carried out to investigate the effects of flange plate width–thickness ratio parameter, column slenderness ratio parameter, stiffener's equivalent slenderness ratio parameter, magnitude of axial load, and material type of stiffeners on the strength and ductility of the columns. Last but not least, empirical formulae of both the ultimate strength and ductility capacities are proposed for stiffened steel box columns, and the limit values of various parameters for the required ductility demand are also discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
高延性纤维增强水泥基复合材料(ECC)具有高强度、高延性和水硬过程中粘结性能良好,在砌体加固工程中具有广泛的应用前景。通过对2片未加固、2片单面和2片双面ECC面层加固后空斗墙进行水平拟静力试验,对比加固不同砌法下单面和双面空斗墙破坏模式、滞回曲线、刚度退化、承载能力和延性性能,进而研究ECC面层加固对墙体抗震性能的影响。利用ABAQUS有限元软件,采用预留孔洞的整体建模方式进行有限元分析,对比了试验值与计算值。结果表明:ECC面层与砖墙之间粘结较可靠,ECC面层优越的材料抗力可以抵抗墙体承担的水平剪力;单、双面ECC面层加固后空斗墙体极限变形能力及极限承载力均得到大幅提升,试件延性和抗震性能同步改善;有限元计算的水平承载力值与试验值相差不大。  相似文献   

20.
The seismic design of multi‐story buildings asymmetric in plan yet regular in elevation and stiffened with ductile RC structural walls is addressed. A realistic modeling of the non‐linear ductile behavior of the RC walls is considered in combination with the characteristics of the dynamic torsional response of asymmetric buildings. Design criteria such as the determination of the system ductility, taking into account the location and ductility demand of the RC walls, the story‐drift demand at the softer (most displaced) edge of the building under the design earthquake, the allowable ductility (ultimate limit state) and the allowable story‐drift (performance goals) are discussed. The definition of an eccentricity of the earthquake‐equivalent lateral force is proposed and used to determine the effective displacement profile of the building yet not the strength distribution under the design earthquake. Furthermore, an appropriate procedure is proposed to calculate the fundamental frequency and the earthquake‐equivalent lateral force. A new deformation‐based seismic design method taking into account the characteristics of the dynamic torsional response, the ductility of the RC walls, the system ductility and the story‐drift at the softer (most displaced) edge of the building is presented and illustrated with an example of seismic design of a multi‐story asymmetric RC wall building. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号