首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical, experimental and theoretical models of fluvial architecture and palaeosol development are tested with outcrops of Upper Pliocene-Lower Pleistocene sediment in the southern Rio Grande rift, New Mexico. The sediment was deposited and subsequently exhumed in the Jornada del Muerto basin, a westward-tilted half graben whose footwall corresponds to the Rincon Hills and San Diego Mountain fault blocks. The axial river, the ancestral Rio Grande, shared time between the Jornada del Muerto basin and the adjacent Corralitos basin. The ancestral Rio Grande entered the Jornada del Muerto basin via a gap between the footwall blocks, periodically flowing southward towards San Diego Mountain, or making a broad northward sweep into the northern fluvial salient towards the Rincon Hills fault block and unfaulted northern edge of the basin. Ten logged sections up to 35 m thick are correlated using the top of the formation (La Mesa surface), a 1·59 Ma pumice conglomerate, and a ground-water carbonate/opal bed. Additionally, one of the sections is dated by reversal magnetostratigraphy. Consistent with the model of Bridge & Leeder (1979 ) and Bridge & Mackey (1993a ), differential tilting of the Jornada del Muerto half graben resulted in sections directly adjacent to the faults that consist almost exclusively of multistorey channel sands/sandstones, whereas more distal sections contain a greater proportion of crevasse-splay fine sand and overbank mudstone and calcic palaeosols. Along the axis of the northern fluvial salient, a northward decrease in channel/floodplain ratio, a decrease in channel recurrence interval from 171 kyr to 685 kyr, and an increase in the maturity of calcic palaeosols are consistent with southward tilt of the unfaulted northern edge of the basin. An upsection decrease in sediment accumulation rate in the northern fluvial salient from 0·036 mm/ yr to 0·017 mm/ yr corresponds to an increase in the ratio of channel/floodplain facies and in the number of multistorey channel sands/sandstones, and is consistent with the model of Bridge & Leeder (1979 ) in which avulsion frequency is independent of sediment accumulation rate. Stage II and III calcic palaeosols indicate 103−105 year of landscape stability and soil formation between periods of floodplain deposition in response not only to basin tilting but also because the ancestral Rio Grande had multiple paths within the Jornada del Muerto basin and shared time between the Corralitos and Jornada del Muerto basins.  相似文献   

2.
The Pliocene-early Pleistocene history of the ancestral Rio Grande and Quaternary history of the Rio Mimbres in the southern Rio Grande rift, New Mexico, illustrate how axial rivers may alternately spill into and subsequently abandon extensional basins. Three types of spillover basins are recognized, based on the angle at which the axial river enters the basin and whether it descends the hanging wall dip slope or footwall scarp to reach the basin floor. In the Mimbres basin type, the axial river enters and flows through the spillover basin nearly parallel to the footwall scarp, resulting in a narrow belt of basin-axis-parallel channel sand bodies located near the footwall scarp. In contrast, an axial river may enter a spillover basin at a high angle to its axis, either descending the hanging wall dip slope (Columbus basin type) or footwall scarp (Tularosa basin type), and construct a fluvial fan, consisting of radiating distributary channels orientated nearly perpendicular to the basin axis. Faulting exerts significant control on river spillover by creating the topographic gaps through which the axial river moves and by terminating spillover by subsequently uplifting or tilting the gap. Spillover may also be autocyclic in origin as a result of aggradation to the level of a pre-existing gap, headward erosion creating and/or intersecting a gap, or simple river avulsion upstream of a gap. Predicting facies architecture in the three types of spillover basins is critical to successful subsurface exploration for hydrocarbon reservoirs, groundwater aquifers or placer mineral deposits.  相似文献   

3.
Deposits of the ancestral Rio Grande (aRG) belonging to the Camp Rice Formation are preserved and exposed in the uplifted southern portion of the Robledo Mountains horst of the southern Rio Grande rift. The sediments are dated palaeomagnetically to the Gauss chron (upper Pliocene). The lower part of the succession lies in a newly discovered palaeocanyon cut into underlying Eocene rocks whose margins are progressively onlapped by the upper part. Detailed sedimentological studies reveal the presence of numerous river channel and floodplain lithofacies, indicative of varied deposition in channel bar complexes of low‐sinuosity, pebbly sandbed channels that traversed generally dryland floodplains and shifted in and out of the study area five times over the 1 Myr or so recorded by the succession. Notable discoveries in the deposits are: (1) complexes of initial avulsion breakout channels at the base of major sandstone storeys; (2) common low‐angle bedsets ascribed to deposition over low‐angle dunes in active channels; (3) palaeocanyon floodplain environments with evidence of fluctuating near‐surface water tables. Sand‐body architecture is generally multistorey, with palaeocurrents indicative of funnelling of initial avulsive and main fluvial discharge from the neighbouring Mesilla basin through a narrow topographic gap into the palaeocanyon and out over the study area. An avulsion node was evidently located at the stationary southern tip to the East Robledo fault during Gauss times, with aRG channels to the north flowing close to the fault and preventing fan progradation. Subsequent Matuyama growth of the fault caused (1) deposition to cease as the whole succession was uplifted in its footwall, (2) development of a thick petrocalcic horizon, and (3) fan progradation into the Mesilla basin. Parameters for the whole aRG fluvial system are estimated as: active single channels 2 m deep and 25 m wide; valley slope 0·24–0·065°; maximum mean aggradation rate 0·05 mm year–1; major channel belt avulsion interval 200 ky; individual channel recurrence interval 100 ky; minimum bankfull mean flow velocity 1·54 m s–1, minimum single‐channel discharge 77 m3 s–1, bed shear stress 22·3 N m–2; and stream power 34·3 W m–2.  相似文献   

4.
5.
Stable isotope data for the Hueco Bolson aquifer (Texas, USA and Chihuahua, Mexico) distinguish four water types. Two types relate to recharge from the Rio Grande: pre-dam (pre-1916) river water with oxygen-18 and deuterium (δ18O, δD, ‰) from (?11.9, ?90) to (?10.1, ?82), contrasts with present-day river water (?8.5, ?74) to (?5.3, ?56). Pre-dam water is found beneath the Rio Grande floodplain and Ciudad Juárez, and is mixed with post-dam river water beneath the floodplain. Two other types relate to recharge of local precipitation; evidence of temporal change of precipitation isotopes is present in both types. Recharge from the Franklin and Organ Mountains plots between (?10.9, ?76) and (?8.5, ?60) on the global meteoric water line (GMWL), and is found along the western side of the Hueco Bolson, north of the Rio Grande. Recharge from the Diablo Plateau plots on an evaporation trend originating on the GMWL near (?8.5, ?58). This water is found in the southeastern Hueco Bolson, north of the river; evaporation may be related to slow recharge through fine-grained sediment. Pre-dam water, recognizable by isotope composition, provides information on groundwater residence times in this and other dammed river basins.  相似文献   

6.
The well-known Pliocene to Quaternary Rio Grande rift of northern New Mexico and southern Colorado is distinctly different from the Miocene rift, especially in structural style. Prior to approximately 21 Ma, there was little extension or rift-basin development. Uppermost Oligocene and Lower Miocene strata were deposited as broad volcaniclastic aprons, with no significant evidence of syn-depositional faulting, in contrast to younger deposits. The only documented areas of extensional faulting and stratal rotation older than 21 Ma occur within or close to magmatic centers. Early rift basins (21-10 Ma) developed as half grabens progressively tilted in hanging walls of normal faults that primarily reactivated Laramide (Eocene) reverse faults: (1) the San Luis basin tilted eastward as the Sangre de Cristo normal fault reactivated westward-dipping Laramide reverse faults; (2) the Tesuque basin tilted westward as normal faults reactivated eastward-dipping Laramide reverse faults of Sierra Nacimiento and related features; and (3) the Belen basin experienced complex tilting as diverse normal faults reactivated variably dipping Laramide reverse faults. Some of these early-rift faults remain active, whereas others became inactive starting near 10 Ma, as new faults broke across Laramide and early-rift features. The Embudo transfer zone linked normal faults along the east side of the San Luis basin to the Pajarito, La Bajada, San Francisco, and Rincon fault zones at this time. Normal faults along the northwest side of the Miocene Tesuque basin became inactive at the same time that rapid uplift of the Sandia Mountains as a footwall block began at about 10 Ma. This shifting of normal-fault activity resulted in reversal of tilt direction from westward for the Miocene Tesuque basin to eastward for the modern Albuquerque basin. Uplift and erosion of early-rift deposits along the northwest side of the Albuquerque basin have resulted.

This two-stage model for evolution of the Rio Grande rift in north-central New Mexico and southern Colorado is fundamentally different from previous two-stage models, which described Oligo-Miocene volcaniclastic aprons as “early rift deposits,” and related them to extensional structures. Rather, development of half grabens began around 21 Ma, with dominance of negative inversion of Laramide reverse and thrust faults. Regional change in extension direction led to the abandonment of some faults and the initiation of new faults at 10-8 Ma in the Rio Grande rift. The biggest change occurred in the Tesuque basin, as the western boundary fault became inactive during growth of the Jemez volcanic field, and the Sandia Mountains began their rapid rise as the northern Albuquerque basin tilted to the east. Continued regional uplift, and integration and incision of the Rio Grande and tributaries, have occurred during the last 5 million years, with the course of the river tending to follow the downdropped side of each modern half graben.  相似文献   

7.
The present study aims to explain the spatial and temporal variability in phases of aggradation/incision in response to changes in climate and seismicity during the late Quaternary in the Alaknanda River valley (a major tributary of the river Ganges or Ganga). Geomorphology, stratigraphy and optical dating of the fluvial sediment reveal that the oldest fluvial landforms preserved in the south of the Main Central Thrust are debris flow terraces developed during the early part of pluvial Marine Isotopic Stage 3. Following this, a period of accelerated incision/erosion owing to an increase in uplift rate and more intense rainfall occurred. In the Lesser Himalaya, three phases of valley fill aggradation around 26 ± 3 ka, 18 ± 2 ka and 15 ± 1 ka and 8 ± 1 ka occurred in response to changes in monsoon intensity and sediment flux. The last phase was regionally extensive and corresponds to a strengthening of the early Holocene Indian Summer Monsoon. A gradual decline in the monsoon strength after 8 ± 1 ka resulted in reduced fluvial discharge and lower sediment transport capacity of the Alaknanda River, leading to valley fill incision and the development of terraces. The study suggests that fluvial dynamics in the Alaknanda valley were modulated by monsoon variability and the role of tectonics was subordinate, limited to providing accommodation space and post‐deposition modification of the fluvial landforms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Palaeocompetence analysis and palaeodischarge estimation techniques are applied to a late Pleistocene–early Holocene gravel terrace in the Mahi River Basin, western India. Terrace sedimentology, comprising gravels overlain by sand lithofacies suggests a gradual change in palaeohydrological conditions marking a switch from braided to meandering fluvial styles. The discharge values for the gravel bedforms based on the clast size and the cross bed set thickness are estimated between ∼150–180 m3 s−1 comparable with the present day observed values albeit with a much higher competence. Results indicate that fluvial aggradation occurred under low discharge conditions with intermittent high discharge events depositing longitudinal gravel bars. The incision of these gravel bars and the formation of terraces can be attributed to the higher discharge regime post 9.2 ka. The study further indicates that whereas the aggradation of the gravel terrace during the early Holocene was controlled by the large sediment influx, the incision that followed was in response to the increase in the discharge and competence of the river flow.  相似文献   

9.
We synthesize a new fluvial terrace chronostratigraphy of the Bidente and Musone Rivers cast within a broader European framework, which forms the basis of a terrace genesis and river incision model for the northern Apennines, Italy. Our model, supported by terrace long profiles, correlation to Po foreland sediments, 15 new radiocarbon dates, and published numeric and relative stratigraphic ages, highlights how drainage basin substrate drives concurrent formation of strath terraces in the Bidente basin and fill terraces in the Musone basin. Quaternary climate change paces the formative geomorphic processes through unsteady discharges of water and sediment. In the weathering-limited setting represented by the Bidente basin, siliciclastic detritus carves broad strath surfaces during glacial climates that are preserved as terraces as the river incises during the transition to an interglacial climate. In contrast, the transport-limited and carbonate detritus dominated Musone basin sees valleys deeply buried by aggradation during glacial climates followed by river incision during the transition to an interglacial climate. Incision of these rivers over the past ~1 million years has been both unsteady and non-uniform. These and all Po-Adriatic draining rivers are proximal to a base level defined by mean sea level and have little room for increasing their longitudinal profile concavities through incision, particularly in their lower reaches despite periodic glacio-eustatic drawdowns. As a result, the observed incision is best explained by rock uplift associated with active local fault or fold growth embedded in the actively thickening and uplifting Apennine foreland.  相似文献   

10.
Morphology of the Rio Grande Rise and the acoustic structure of different types of deposits in its uppermost sedimentary cover were discussed based on high-resolution seismoacoustic profiling of cruises #32 (2010) and #52 (2016) of R/V Akademik Ioffe. Slopes of the Rio Grande Rise are composed mainly of landslide deposits and gravitites, but contourite sedimentation is possible on its southern slope. Contourite sedimentary waves and, probably, small drifts are identified in the Cruzeiro do Sul Trough at the top of the Rio Grande Rise. Mixed gravitite–contourite sedimentary systems seem to be located at the foot of northern and southern slopes. The downslope density flows and the Antarctic Bottom Water (AABW) contourite current are responsible for the formation of these features.  相似文献   

11.
Tim Church 《Geoarchaeology》2000,15(7):649-678
The obsidian in the gravels deposited by the Rio Grande in New Mexico has interested archaeologists of the region, particularly the use of these gravels by prehistoric populations and the implications for obsidian sourcing studies. Previous investigations of Rio Grande gravel obsidian have focused on obsidian in the archaeological record. This study focuses on the natural occurrence and distribution of obsidian in the gravels and the implications for archaeological investigations. Spatial sampling of the gravels clearly indicate that obsidian, as well as other chipped stone material, is not uniformly distributed across the landscape. Geochemical analysis of the obsidian in the gravels establishes the true source constituents for the obsidian present in the gravels. The main source area for obsidian in the Rio Grande gravels is the Jemez Mountains, although some obsidian comes from Grant's Ridge, Polvadera, and No Aqua sources. Sources south of Mount Taylor, such as Red Hill and Mule Creek, do not occur in the Rio Grande gravels of southern New Mexico. © 2000 John Wiley & Sons, Inc.  相似文献   

12.
Törnqvist 《地学学报》1998,10(1):11-15
Fluvial longitudinal profiles reconstructed from abandoned floodplains contain significant evidence about the role of relative sea level vs. climatic and tectonic controls on depositional systems. Two Weichselian floodplain surfaces that occur as terraces updip of the hinge zone of the Rhine–Meuse system have recently been mapped beneath the Holocene Rhine–Meuse Delta (The Netherlands). Their vertical offset is several metres in the upstream area and decreases to only 0.4 m in the central part of the delta. The older and higher of the two floodplain surfaces is generally assumed to have been formed around the Last Glacial Maximum, whereas the younger dates to the Younger Dryas, following a phase of climatically induced fluvial incision during the Bølling-Allerød. The downstream convergence of these two floodplain surfaces may be related to the relative rise of sea level, forcing the Rhine–Meuse system to become graded to a higher base level during the Younger Dryas. The upper Weichselian Rhine–Meuse system then provides an example of a basin-marginal fluvial system that responds, in terms of its longitudinal profile, to the combined effects of upstream control (primarily climate change affecting water and sediment flux from the hinterland) and downstream control (glacio-eustatically driven relative sea-level change). This new evidence may therefore revitalize the presently unfashionable concept of relative sea-level control penetrating many hundreds of kilometres inland.  相似文献   

13.
The Weichselian Late Pleniglacial, Lateglacial and Holocene fluvial history of the middle Tisza valley in Hungary has been compared with other river systems in West and Central Europe, enabling us to define local and regional forcing factors in fluvial system change. Four Weichselian to Holocene floodplain generations, differing in palaeochannel characteristics and elevation, were defined by geomorphological analysis. Coring transects enabled the construction of the channel geometry and fluvial architecture. Pollen analysis of the fine-grained deposits has determined the vegetation development over time and, for the first time, a bio(chrono)stratigraphic framework for the changes in the fluvial system. Radiocarbon dating has provided an absolute chronology; however, the results are problematic due to the partly reworked character of the organic material in the loamy sediments. During the Late Pleniglacial, aggradation by a braided precursor system of the Tisza and local deflation and dune formation took place in a steppe or open coniferous forest landscape. A channel pattern change from braided to large-scale meandering and gradual incision occurred during the Late Pleniglacial or start of the Lateglacial, due to climate warming and climate-related boreal forest development, leading to lower stream power and lower sediment supply, although bank-full discharges were still high. Alternatively, this fluvial change might reflect the tectonically induced avulsion of the River Tisza into the area. The climatic deterioration of the Younger Dryas Stadial, frequently registered by fluvial system changes along the North Atlantic margin, is not reflected in the middle Tisza valley and meandering persisted. The Lateglacial to Holocene climatic warming resulted in the growth of deciduous forest and channel incision and a prominent terrace scarp developed. The Holocene floodplain was formed by laterally migrating smaller meandering channels reflecting lower bank-full discharges. Intra-Holocene river changes have not been observed.  相似文献   

14.
Well-preserved Holocene terraces along the South Fork Payette River in central Idaho provide a record of fluvial system behavior in a steep mountain watershed characterized by weathered and erodible Idaho Batholith granitic rocks. Terrace deposit ages were provided by 14C dating of charcoal fragments and optically stimulated luminescence (OSL) dating of sandy sediments. Along with pairing of many terrace tread heights, these data indicate episodic downcutting during the Holocene, with a mean incision rate of ~0.9 m/ka from ~7 ka to present. Prior to 7 ka, the river incised to within~3 m of current bankfull, but then aggraded by ~5 m over at least a ~10 km-long reach in an episode centered ~7–6 ka. Aggradation may relate to (1) increased hillslope sediment input from landslides and debris flows in steep tributary basins with abundant grussified granitic bedrock, (2) possible local landslide-damming of the channel, (3) decreased peak discharge, or (4) a combination of these factors. Middle Holocene channel aggradation ca. 7–6 ka corresponds with a period of prolonged and widespread aridity in the northern Rocky Mountains. Between ~5 and 1.3 ka, the river aggraded slightly and then remained stable, forming a prominent terrace tread at ~3 m above current bankfull. Modest aggradation to vertical stability of the South Fork Payette River at the 1.5 m terrace level ~1.0–0.7 ka corresponds with large fire-related debris flows in tributaries during Medieval droughts. Three intervals of incision (~5.5–5 ka, 1.3–1.0 ka and 0.5 ka) correspond with frequent but small fire-related sedimentation events and generally cooler, wetter conditions suggesting increased snowmelt runoff discharges. Other possible drivers of channel incision include an increase in stochastic or climate-modulated large storms and floods and a reduction in delivery of hillslope sediment to the channel. Aggradation is more confidently tied to climate through increases in hillslope sediment delivery and (or) decreased stream power, both likely related to warmer, drier conditions (including high-severity fires) that reduce snowmelt and decrease vegetation cover on steep slopes. Thus, the Holocene terraces of the South Fork Payette River do not reflect simple stepwise incision with periods of vertical stability and lateral migration, but record substantial episodes of aggradation as well. We infer that increases in hillslope erosion and mass movements combined with reduced discharges during prolonged droughts episodically reverse the post-glacial trend of downcutting, in particular during the middle Holocene. The present bedrock-dominated channel implies a strong tendency toward incision in the late Holocene.  相似文献   

15.
Doklady Earth Sciences - Several features probably formed by contour bottom currents were recognized on the Rio Grande Rise by high-resolution seismic survey in the transatlantic profiles of the...  相似文献   

16.
The late Pleniglacial and Late-glacial Maas valley, south of Nijmegen, contains four terraces. Three river systems are described based on the morphology of channel scars on these terrace surfaces and by sediment characteristics. The River Maas reacted to climatic warming at the start of the Weichselian Late-glacial by changing its river system slowly, from a braided system to a transitional phase between braiding and meandering and finally to a highly sinuous meandering system. The Maas reacted rapidly to the Younger Dryas climate deterioration by again establishing a braiding system. At the onset of the Holocene, the river changed abruptly to a meandering river without a transitional phase. The triggering factor for change in the Maas river pattern is almost certainly the changing climate in the Late Glacial. Gradient lines on the terrace surfaces show that tectonic activity did not modify the morphology of the channels. A division of the terraces is shown, the morphological, sedimentological and petrographical characteristics are presented and the linking of changing fluvial patterns with climatic changes or tectonic movements is discussed. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
陈孝红  程龙 《地质学报》2008,82(2):269-280
构造运动和气候变化是制约内陆地区河流阶地发育的两个关键因素,而不同地区的河流对它们的响应方式多种多样.研究区海子山位于青藏高原东部的沙鲁里山中段,在第四纪期间经历了大幅度构造抬升及第四纪冰川作用.海子山北缘牙着库河谷保留着6级河流阶地,南缘稻城河谷完好地保留着第四纪冰川作用遗迹.本研究运用电子自旋共振技术对牙着库4级高阶地(第3~第6级)的砾石层及稻城河谷的第四纪冰川沉积物进行了测年,并对这4级阶地的形成过程进行了分析.结果表明,牙着库3~6级阶地基座及相应的砾石层均形成于冰消期,分别与深海氧同位素2、6、12、16阶段晚期相对应.待气候进一步变暖而逐渐进入间冰期,海子山冰川消融殆尽,下伏地壳负荷锐减,构造抬升效应的释放结合冰川均衡抬升使得牙着库河谷梯度增大,而同期的河流沉积物通量较小,结果导致流水切割前期加积的沉积物及其下伏基座形成一级新的河流阶地.牙着库河谷自深海氧同位素16阶段后期以来的平均下切速率为0.43 mm/a左右,小于海子山的平均抬升速率2 mm/a,与"河谷下切速率不大于山地抬升速率"一致.  相似文献   

18.
末次冰期是距离人类最近的一次冰期,气候异常寒冷且存在高频高幅波动,河流系统如何响应冰期气候的变化值得关注与研究。基于河流系统对气候变化的敏感响应,传统的经典地貌理论认为河流下切在河流阶地形成过程中起着至关重要的作用,河流的下切行为发生在间冰期或者冰期向间冰期的过渡阶段,堆积行为发生于冰期,然而近年来最新的河流地貌研究成果表明,末次冰期河流下切较为普遍。首先对河流阶地形成的传统模式进行总结分析,认为单纯的构造驱动模式存在不合理性,气候也发挥着重要的调节作用;单一的气候变化无法驱动多级且高差较大阶地的形成,地壳抬升往往是必要因素;气候变化是引发河流堆积-下切行为转换形成河流阶地的关键因素。其次通过前人的研究案例总结出末次冰期河流下切行为响应气候变化的三种模式:(1)气候的高度不稳定性引发大规模的洪水事件驱动河流快速下切;(2)快速隆升区气候高频波动叠加构造抬升驱动河流下切;(3)沿海平原地区海平面大幅度下降驱动河流下切。这三种模式对于理解末次冰期河流系统对短尺度高频气候变化的响应以及对河流阶地成因的判断具有十分重要的指导意义。  相似文献   

19.
The response of fluvial systems to tectonic activity and climate change during the Late Pleistocene influenced sedimentary processes and hence the conditions of river terraces formation. The northern Alpine foreland is well adapted for such studies due to the high sediment input and the variety of depositional environments. This study focuses on sediments of a part of the Rhine River in the area of Basel, at the Border between Switzerland, Germany and France. A detailed evolution of the Lower Terrace is inferred from sedimentological, geomorphologic and pedological observations as well as historical documents, and calibrated using different dating methods (optically stimulated luminescence, uranium series disequilibrium, radiocarbon). The Lower Terrace was deposited during two periods (30–15 ka and 13–11 ka), which correlate with two cold climatic phases, representing the Last Glaciation of the Alps and the Younger Dryas. These ages underline that main incision of the Lower Terrace braidplain in the area of Basel is restricted to post Younger Dryas times, as sediments of that age (13–11 ka) are found atop the highest levels. From then on, a flight of cut-terraces were formed with minor re-accumulation due to Holocene flood events. These findings demonstrate that the surface of a terrace does not always represent the age of sediment aggradation, and this should be remembered when using terraces to reconstruct the tectonic history of an area.  相似文献   

20.
Quaternary alluvial fans in the tectonically active Pinjaur Dun, an intramontane valley in the Sub‐Himalaya, were deposited in front of the Nalagarh Thrust and were influenced both by tectonics and glacial climate fluctuations. The surface morphology indicates that an earlier set of first‐order fans (Qf1) became entrenched and onlapped by a series of second‐order fans (Qf2). The younger fan segments were then cut by a pair of terraces (T1 and T2). Quartz optically stimulated luminescence dating establishes that the Qf1 aggradational phase was initiated before 96·5 ± 25·3 ka and terminated after 83·7 ± 16·3 ka. This was followed by a period of incision, before Qf2 fan deposition started at 72·4 ± 13·4 ka and continued until 24·5 ± 4·9 ka. Sediment was deposited on the T1 (upper) and T2 (lower) terraces at 16·3 ± 2·1 and 4·5 ka, respectively, recording a return to overall degradation punctuated by minor deposition on terraces. The period of incision separating the younger and older fan deposits coincided with enhanced SW monsoon precipitation. The subsequent development of the Qf2 fans and their progradation until 20 ka suggest erosional unloading of the thrust hangingwall during a tectonically quiescent phase. Toe cutting, deposition of axial river and lacustrine facies, and retreat of Qf2 around 45 ka, indicate fanward shift of the axial river due to tilting of the valley towards the NE in response to reactivation of the Nalagarh Thrust. The cessation of Qf2 deposition around 20 ka and the onset of through‐fan entrenchment suggest reduced sediment supply but relatively high stream power during the last glacial maxima (LGM). The prolonged stream incision since the cessation of Qf2 deposition, with only minor depositional phases at 16·3 ± 2·1 and 4·5 ka, resulted from high water discharge and low sediment input during intensification of the SW monsoon and vegetation changes in the hinterland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号