首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Upper Jurassic to Lower Cretaceous platform‐slope to basinal carbonate strata cropping out in Gargano Promontory (southern Italy) are partly dolomitized. Fieldwork and laboratory analyses (petrographic, petrophysical and geochemical) allowed the characterization of the dolomite bodies with respect to their distribution within the carbonate succession, their dimensions, geometries, textural variability, chemical stability, age, porosity, genetic mechanisms and relation with tectonics. The dolomite bodies range from metres to kilometres in size, are fault‐related and fracture‐related, and probably formed during the Early Cretaceous at <500 m burial depths and temperatures <50°C. The proposed dolomitization model relies on mobilization of Early Cretaceous seawater that flowed, downward and then upward, along faults and fractures and was modified in its isotopic composition moving through Triassic and Jurassic strata that underlie the studied dolomitized succession. Despite the numerous cases reported in literature, this study demonstrates that hydrothermal and/or high‐temperature fluids are not necessarily required for fault‐controlled dolomitization. Distribution and geometries of dolomite bodies can be used for palaeotectonic reconstructions, as they partly record the characteristics (size, attitude and kinematics) of the palaeo‐faults, even if not preserved, that controlled dolomitization. In Gargano Promontory, dolomites record Early Cretaceous palaeo‐faults from metres to kilometres long, striking north‐west/south‐east to east/west and characterized by normal to strike‐slip kinematics. Dolomitization increases the matrix porosity by up to 7% and, therefore, can improve the geofluid storage capacity of tight, platform‐slope to basinal limestones. The results have a great significance for characterization of geofluid (for example, hydrocarbons) reservoirs hosted in similar dolomitized carbonate successions. Distribution, size and shapes of reservoir rocks (i.e. dolomite bodies) could be broadly predictable if the characteristics of the palaeo‐fault system present at the time of dolomitization are known.  相似文献   

2.
Upper Callovian to Tithonian (late Jurassic) sediments represent an important hydrocarbon reservoir in the Kopet‐Dagh Basin, NE Iran. These deposits consist mainly of limestone, dolostone, and calcareous mudstone with subordinate siliciclastic interbeds. Detailed field surveys, lithofacies and facies analyses at three outcrop sections were used to investigate the depositional environments and sequence stratigraphy of the Middle to Upper Jurassic interval in the central and western areas of the basin. Vertical and lateral facies changes, sedimentary fabrics and structures, and geometry of carbonate bodies resulted in recognition of various carbonate facies related to tidal flats, back‐barrier lagoon, shelf‐margin/shelf‐margin reef, slope and deep‐marine facies belts. These facies were accompanied by interbedded beach and deep marine siliciclastic petrofacies. Field surveys, facies analysis, parasequences stacking patterns, discontinuity surfaces, and geometries coupled with relative depth variation, led to the recognition of six third‐order depositional sequences. The depositional history of the study areas can be divided into two main phases. These indicate platform evolution from a rimmed‐shelf to a carbonate ramp during the late Callovian–Oxfordian and Kimmeridgian–Tithonian intervals, respectively. Significant lateral and vertical facies and thickness changes, and results obtained from regional correlation of the depositional sequences, can be attributed to the combined effect of antecedent topography and differential subsidence related to local tectonics. Moreover, sea‐level changes must be regarded as a major factor during the late Callovian–Tithonian interval. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Bryozoan mounds from the middle Danian (Lower Palaeocene) of the Danish Basin represent a possibly new class of non‐cemented skeletal mounds. The sedimentology and palaeoecology of the mounds have recently been studied in detail. Three‐dimensional images of middle Danian bryozoan mound structures in the Limhamn limestone quarry, south‐west Sweden, obtained from combined reflected ground‐penetrating radar signals and outcrop analysis provide new information about the architecture and growth development of such mounds. The mounds are composed of bryozoan limestone and dark‐grey to black flint bands which outline mound geometries. Ground‐penetrating radar data sections are collected over a 120 m by 60 m grid of data lines with trace spacing of 0·25 m, providing a depth penetration of 7 to 12 m and a vertical resolution of ca 0·30 m. The ground‐penetrating radar images outline the geometry of the internal layering of the mounds which, typically, have widths and lengths of 30 to 60 m and heights of 5 to 10 m. Mound architecture and growth show great variability in the ground‐penetrating radar images. Small‐scale mound structures with a palaeorelief of only a few metres may constitute the basis for growth of larger mounds. The outermost beds of the individual mounds are commonly characterized by sub‐parallel to parallel reflections which have a circular to slightly oval appearance in map view. The mounds are mainly aggrading and do not show clear signs of pronounced lateral migration during growth, although some mound structures indicate a preferential growth direction towards the south. Growth patterns interpreted from the ground‐penetrating radar images suggest that the palaeocurrents in the study area may have shown great variability, even on a small scale. This observation is in contrast to results from studies of extensive, slightly older early Danian mound complexes exposed in coastal cliffs at Stevns Klint and Karlby Klint located 50 and 200 km away from the study area, respectively. At these locations the mounds show a remarkably uniform development and typically are asymmetrical, clearly showing migration directions towards the south. These differences in mound geometry may be the result of differences in the current systems and water depths that existed during formation of the early and middle Danian mounds, respectively. The mounds at Limhamn were located closer to the basin margin in shallower water than those at Stevns Klint and Karlby Klint. In addition, the difference in mound architecture may be due to the occurrence of non‐layered, irregular coral mounds intercalated with the bryozoan mounds at Limhamn.  相似文献   

4.
During the Late Tortonian, platform‐margin‐prograding clinoforms developed at the south‐western margin of the Guadix Basin. Large‐scale wedge‐shaped deposits here comprise 26 rhythms of mixed carbonate–siliciclastic bedset packages and marl beds. These sediments were deposited on a shallow‐water, temperate‐carbonate distally steepened ramp. A downslope‐migrating sandwave field developed in this ramp, with sandwaves moving progressively down the ramp to the ramp‐slope, where they destabilized, folded and occasionally collapsed. Downslope sandwave migration was induced by currents flowing basinwards. During the Late Tortonian, the Guadix Basin was open north to the Atlantic Ocean via the Dehesas de Guadix Strait and connected east to the Mediterranean Sea through the Almanzora Corridor. According to the proposed current circulation model for the Guadix Basin for this time, surface marine currents from the Atlantic entered the basin from the northern seaway. These currents moved counter‐clockwise and shifted the sediment on the ramp, forming sandwaves that migrated downslope. The development of platform‐margin prograding clinoforms by the basinward sediment‐transport mechanisms inferred here is known relatively poorly in the ancient sedimentary record. Moreover, these wedge‐shaped geometries are similar to those found in some shelves in the Western Mediterranean Sea and could represent an outcrop analogue to (sub)‐recent, platform‐margin clinoforms revealed by high‐resolution seismic studies.  相似文献   

5.
塔里木盆地奥陶系生物礁露头的地球物理特征   总被引:8,自引:0,他引:8  
奥陶系生物礁为塔里木盆地重要的储集层,明确露头上生物礁的内部结构及发育规模,探索露头和井下生物礁对比研究的新手段有重要意义。应用探地雷达及自然伽马能谱仪对塔里木盆地巴楚达吾孜塔格奥陶系露头进行了探测。研究表明,探地雷达剖面上多数生物礁为扁平透镜状或层状,这与露头上观察的结果有所差别;高分辨率雷达剖面揭示出较出露生物礁发育程度更大、个体更小的疙瘩状礁体或礁团块;礁体内部的分层性及礁体内部水道充填体的斜层理在雷达剖面上反映明显,雷达分辨率可达到分米级别。礁灰岩的自然伽马值高于亮晶砂、砾屑灰岩,而低于泥晶灰岩、棘屑灰岩、泥晶生屑灰岩、泥灰岩的放射性。生物礁在自然伽马曲线上表现为漏斗形、钟形或箱形;自然伽马曲线也反映出礁体内部的分层性。露头和轮南井下奥陶系生物礁的自然伽马放射性特征有一定的相似性,这为露头和井下生物礁的对比研究提供了有力的辅助手段.  相似文献   

6.
Ground penetrating radar and single‐aliquot regenerative‐dose optically stimulated luminescence were used to determine the depositional environments and age of unconsolidated siliciclastic sediments near Apalachicola, Florida. Five direct‐push cores, five vibracores and 28 optically stimulated luminescence samples were collected, as well as 7 km of ground penetrating radar data. A new model of cosmic dose rate calculation, which removes the effect of a much younger aeolian cap, was utilized to calculate more representative optically stimulated luminescence ages. Five radar facies were identified based on reflector amplitude and orientation. The resulting data indicate that the Tertiary/Quaternary Shelly Sediments were deposited before marine isotope stage 6, the Quaternary Alluvium was deposited during marine isotope stage 6 and the Quaternary Beach Ridge and Dune was deposited during the marine isotope stage 5e sea‐level highstand, which peaked at approximately 2·5 m above present sea‐level in this area.  相似文献   

7.
The primary goals of seismic interpretation and quantification are to understand and define reservoir architecture and the distribution of petrophysical properties. Since seismic interpretation is associated with major uncertainties, outcrop analogues are used to support and improve the resulting conceptual models. In this study, the Miocene carbonates of Cerro de la Molata (Las Negras, south‐east Spain) have been selected as an outcrop analogue. The heterogeneous carbonate rocks of the Cerro de la Molata Platform were formed by a variety of carbonate‐producing factories, resulting in various platform morphologies and a wide range of physical properties. Based on textural (thin sections) and petrophysical (porosity, density, carbonate content and acoustic properties) analyses of the sediments, eleven individual facies types were determined. The data were used to produce synthetic seismic profiles of the outcrop. The profiles demonstrate that the spatial distribution of the facies and the linked petrophysical properties are of key importance in the appearance of the synthetic seismic sections. They reveal that carbonate factory and facies‐specific reflection patterns are determined by porosity contrasts, diagenetic modifications and the input of non‐carbonate sediment. The reflectors of the seismograms created with high‐frequency wavelets are coherent with the spatial distribution of the predefined facies within the depositional sequences. The synthetic seismograms resulting from convolution with lower frequency wavelets do not show these details – the major reflectors coincide with: (i) the boundary between the volcanic basement and the overlying carbonates; (ii) the platform geometries related to changes in carbonate factories, thus sequence boundaries; and (iii) diagenetic zones. Changes in seismic response related to diagenesis, switching carbonate producers and linked platform geometries are important findings that need to be considered when interpreting seismic data sets.  相似文献   

8.
Cape Henlopen, Delaware is a coastal spit complex located at the confluence of Delaware Bay and the Atlantic Ocean. This region was occupied by prehistoric peoples throughout the evolution of ancestral Cape Henlopen. A ground‐penetrating radar (GPR) survey was conducted at one of the prehistoric archaeological sites (7S‐D‐30B) located within the Cape Henlopen Archaeological District. The site was in a remote location in the center of a tide dominated back‐barrier marsh. Ground‐penetrating radar waves penetrated to depths of 7 m, and four major sets of reflections were observed. Three sets were interpreted to be GPR images of geomorphic units associated with the spit complex, and the fourth was identified as the GPR image of a shell midden deposit. The GPR survey was used to determine the approximate dimensions of the shell midden, including its depth below ground surface (up to 2.1 m) and horzontal extent (∼250 m2), and to establish the paleoenvironmental setting and antecedent topography of the site prior to occupation. The GPR data suggests that the shell midden was initially deposited upon an aeolian dune surface and the antecedent topography at the site included an up to 1 m deep trough located 5 m to the north of, and trending parallel to, the axis of a present‐day topographic high. This survey illustrates that GPR is a useful, noninvasive, tool that may be implemented at archaeological sites in coastal areas. It provides constraints on the environmental setting and topography of the terrain which prehistoric peoples inhabited, and it can be used in planning excavations at sites in coastal geomorphic settings. © 2000 John Wiley & Sons, Inc.  相似文献   

9.
《Sedimentology》2018,65(4):1246-1276
Submarine mass‐transport deposits represent important stratigraphic heterogeneities within slope and basinal sedimentary successions. A poor understanding of how their distribution and internal architecture affect the fluid flow migration pathway may lead to unexpected compartmentalization issues in reservoir analysis. Studies of modern carbonate mass‐transport deposits mainly focus on large seismic‐scale slope failures; however, the near‐platform basinal depositional environment often hosts mass‐transport deposits of various dimensions. The small‐scale and meso‐scale (metres to several tens of metres) carbonate mass‐transport deposits play a considerable role in distribution of sediment and therefore have an impact on the heterogeneity of the succession. In order to further constrain the geometry and internal architecture of mass‐transport deposits developed in near‐slope basinal carbonates, a structural and sedimentological analysis of sub‐seismic‐scale mass‐transport deposits has been undertaken on the eastern margin of the Apulian carbonate platform in the Gargano Promontory, south‐east Italy. These mass‐transport deposits, that locally comprise a large proportion (50 to 60%) of the base of slope to basinal sediments of the Cretaceous Maiolica Formation, typically display a vertically bipartite character, including debrites and slump deposits of varying volume ratios. A range of brittle and ductile deformation styles developed within distinct bed packages, together with the presence of both chert clasts, folded chert layers and spherical chert nodules, suggest that sediments were at different stages of lithification prior to downslope movement associated with mass‐transport deposits. This study helps elucidate the emplacement processes, frequency and character of subseismic‐scale mass‐transport deposits within the basinal carbonate environment, and thereby reduces the uncertainties in the characterization of subsurface carbonate geofluid reservoirs.  相似文献   

10.
Alluvial fans serve as useful archives that record the history of depositional and erosional processes in mountainous regions and thus can reveal the environmental controls that influenced their development. Economically, they play an important role as groundwater reservoirs as well as host rocks for hydrocarbons in deeply buried systems. The interpretation of these archives and the evaluation of their reservoir architecture, however, are problematic because marked heterogeneity in the distribution of sedimentary facies makes correlation difficult. This problem is compounded because the accumulated sedimentary deposits of modern unconsolidated fan systems tend to be poorly exposed and few such systems have been the focus of investigation using high‐resolution subsurface analytical techniques. To overcome this limitation of standard outcrop–analogue studies, a geophysical survey of an alpine alluvial fan was performed using ground‐penetrating radar to devise a scaled three‐dimensional subsurface model. Radar facies were classified and calibrated to lithofacies within a fan system that provided outcropping walls and these were used to derive a three‐dimensional model of the sedimentary architecture and identify evolutionary fan stages. The Illgraben fan in the Swiss Alps was selected as a case study and a network of ca 60 km sections of ground‐penetrating radar was surveyed. Seven radar facies types could be distinguished, which were grouped into debris‐flow deposits and stream‐flow deposits. Assemblages of these radar facies types show three depositional units, which are separated by continuous, fan‐wide reflectors; they were interpreted as palaeo‐surfaces corresponding to episodes of sediment starvation that affected the entire fan. An overall upward decline in the proportion of debris‐flow deposits from ca 50% to 15% and a corresponding increase in stream‐flow deposits were identified. The uppermost depositional unit is bounded at its base by a significant incision surface up to 700 m wide, which was subsequently filled up mostly by stream‐flow deposits. The pronounced palaeo‐surfaces and depositional trends suggest that allocyclic controls governed the evolution of the Illgraben fan, making this fan a valuable archive from which to reconstruct past sediment fluxes and environmental change in the Alps. The results of the integrated outcrop–geophysical approach encourage similar future studies on fans to retrieve their depositional history as well as their potential reservoir properties.  相似文献   

11.
The Shah Kuh Formation of the Khur area (Central Iran) consists of predominantly micritic, thick-bedded shallow-water carbonates, which are rich in orbitolinid foraminifera and rudists. It represents a late(est) Barremian – Early Aptian carbonate platform and overlies Upper Jurassic – Barremian continental and marginal marine sediments (Chah Palang and Noqreh formations); it is overlain by basinal deposits of the Upper Aptian – Upper Albian Bazyab Formation. The lithofacies changes at both, the base and top of the Shah Kuh Formation are gradational, showing that the formation is part of an overall transgressive sedimentary megacycle, and that the formational boundaries are potentially diachronous on larger distances. Analyses of facies and stratal geometries suggest that the Shah Kuh carbonate system started as a narrow, high-energy shelf that developed into a large-scale, flat-topped rudist platform without marginal rim or steep slope. The Shah Kuh Platform is part of a large depositional system of epeiric shallow-water carbonates that characterized large parts of present-day Iran during Late Barremian – Aptian times (“Orbitolina limestones” of NW and Central Iran, the Alborz and the Koppeh Dagh). Their biofacies is very similar to contemporaneous deposits from the western Tethys and eastern Arabia, and they form an important, hitherto poorly known component of the Tethyan warm-water carbonate platform belt.  相似文献   

12.
A high-energy Aptian–Albian platform margin in northern Oman fronted onto an open oceanic basin, making the area a valuable analogue for coeval guyot margins. Most similar aged carbonate margins described in the literature faced either intracratonic or minor oceanic basins. The studied margin is characterized by a stabilized outer rim, which, although it did not rise discernibly above the adjacent lagoonal deposits, flanked a steep upper slope (32–40°) basinwards with a relief of at least 30 m. Two main facies provided the rigidity of the outer margin: Lithocodium boundstones that constituted up to 50% of the rock volume; and marine fibrous cements that occluded up to 35% of primary pore space. In contrast, coral–rudist patches and other shelly sessile benthos were distributed irregularly, and the rudist bioherms of the outer margin were often disrupted, with shells being transported and redeposited. The inner margin is characterized by wedge-shaped storm layers that radiate from the platform top lagoonwards, where they interdigitate with carbonate sands and small rudist bioherms. Polygenetic discontinuity surfaces that bear evidence of both marine hardground and subaerial exposure stages are prominent features of the margin. Throughout the latest Aptian to Middle Albian, the platform succession recorded some 30 relative sea-level falls, of which seven reached amplitudes of many tens of metres. These seven high-amplitude falls in sea level are recorded across the entire south-eastern portion of the Arabian craton and are probably of eustatic origin.  相似文献   

13.
The paper presents results of the lithological study of Upper Jurassic limestones, flyschoids and limestone breccias on the southern side of the Baidar Valley in the Crimean Mountains. Study of the microfacies revealed that the limestones are represented by deposits on lagoons, platform edge shoals, reefs, and forereef aprons on the carbonate platform slope. Flyschoids include deposits in the distributive turbidite channels and hemipelagic sediments in the deep-water part of the basin. Limestone breccias were formed by gravitation flows on the carbonate platform toe-of-slope and slope. The presence of gravitation deposits in the Upper Jurassic carbonate complexes of the Crimean Mountains can testify to the primary clinoform structure of this sedimentary sequence. Comparison of the obtained sedimentological data made it possible to reconstruct the facies model of the Crimean carbonate platform and main episodes of its formation. Development of the carbonate shelf was related to two transgressive-regressive cycles. A dome-shaped reef was formed away from the coast at the initial (Oxfordian) stage. The carbonate platform was formed at the early Kimmeridgian lowstand stage when sediments were deposited in the internal part of the platform adjacent to land. In the late Kimmeridgian and early Tithonian, configuration of the carbonate platform profile resembled a distally steepened ramp, and its active progradation and shelf expansion took place in the course of transgression. Regression in the late Tithonian–early Berriasian led to regressive transformation of the ramp into platform with a flattened shallow-water shelf. Tectonic deformations at the Jurassic/Cretaceous transition promoted the formation of megabreccias on the carbonate platform foreslope. The tectonically reworked rock sequence of the “extinct” carbonate platform was overlapped transgressively by the upper Berriasian or lower Valanginian, relatively deep-water deposits of the Cretaceous platform cover.  相似文献   

14.
The Middle Triassic carbonate buildups of the Dolomites show facies similarities with mud mounds but display apparent architectural elements of flat‐topped carbonate platforms. In order to test whether the facies similarities to mounds are also reflected in the internal buildup architecture, a three‐dimensional modelling study of the Middle Triassic Monte Cernera buildup has been carried out. The Cernera buildup exhibits apparent geometries suggesting a mounded platform in the lower and uppermost part of the buildup, separated by an interval with apparent platform geometry and a retrogradational platform interior, which is difficult to explain with a flat top platform model. For this purpose, a number of three‐dimensional models were constructed using the three‐dimensional modelling programme petrel TM. Key geological horizons were constructed based on outcrop measurements, intermediate horizons were calculated in the modelling program, and the intersections of the modelled layers with a digital topography surface were displayed and compared with outcrop photographs. The models were refined stepwise until a best fit with the actual bedding architecture was achieved. The best fit model shows that the mounded geometries in the lower and uppermost part of the buildup are real architectural elements. The intermediate platform stage, about 1·5 km across, had probably retained a mounded top with a relief of up to 50 m, which is difficult to distinguish from an absolutely flat top, but necessary to explain the retrogradational platform interior. The present study shows that Monte Cernera was dominated by mounded geometries at all stages of platform development. The mounded geometry plus facies data suggest that the platform is a deep‐water accumulation, below the zone of intense wave energy, but within the photic zone. The Cernera represents a tropical buildup type, which did not have the capacity to grow into continuously wave‐swept environments because of the small size and the absence of a wave‐resistant energy barrier. Such buildup types are probably common after major crises in earth history, when reef organisms were virtually absent.  相似文献   

15.
The Lebanese crustal segment is part of a much larger carbonate platform deposited along the northwestern margin of the Arabian Plate, in the eastern Mediterranean region. It is made up mainly of Jurassic–Cretaceous carbonate rocks. Most of this stratigraphic sequence is exposed in the Nahr Ibrahim canyon and surrounding areas in central Lebanon. The various formations, from the oldest unit (the Lower Jurassic Kesrouane Formation) to the Upper Cretaceous Chekka Formation, are made up of different types of carbonate rocks including micritic limestone, medium‐ to coarse‐grained dolostone, biomicritic (chalk), biosparrudite limestone, micritic dolostone, pelmicrite, marl and marly limestone. Results of this first chemical investigation on the Lebanese carbonate platform show that the micritic limestone of the Kesrouane Formation is relatively enriched in Ca, Na and Sc, and has low rare‐earth element (REE) contents. The marl units of the Hammana Formation are enriched in Al, Fe, K, Ti, Rb, Ga, Nb, U, Th and REE. The chalk of the Chekka Formation shows the highest phosphorus content. A significant increase in P and Sr contents with time (from the Lower Jurassic to the Upper Cretaceous carbonate units) characterizes the Lebanese sequence; this is interpreted to be related to a possible increase in continental weathering rates during the Mesozoic. Enrichment in Ni, Ti and Nb in some formations is interpreted to be linked to Mesozoic volcanism in central Lebanon. The Cretaceous formations are subdivided according to their REE patterns into two distinct groups: limestones (Mdairej, Sannine and Maameltain formations) which are depleted in REE; and marl/chalk (Hammana and Chekka formations) which are significantly enriched in REE. On several geochemical variation diagrams, such as the K–Ti–P triangular plot, the Lebanese Mesozoic carbonate formations are found to occupy distinct compositional fields. Thus, carbonate geochemistry could prove to be a powerful tool (especially when combined with petrographic data) in characterizing and correlating carbonate formations (chemical stratigraphy), particularly in regions where field evidence may be limited. Results of this study have significant implications for the entire carbonate platform that covers a large part of the eastern Mediterranean region. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Chemostratigraphic analyses (87Sr/86Sr, δ13Ccarb) of limestones from two Jurassic platform‐carbonate sequences in Italy (Trento and Campania–Lucania Platforms) illustrate previously established trends found in pelagic sediments and skeletal carbonates from biostratigraphically well‐calibrated sections elsewhere in Europe. Chemostratigraphic correlations between the platform‐carbonate successions and appropriate intervals from well‐dated reference sections allow the application of high‐resolution stratigraphy to these shallow‐water peritidal carbonates and, furthermore, elucidate the facies response to the Early Toarcian Oceanic Anoxic Event (OAE). Lower Jurassic (Toarcian) levels of the western Trento Platform (Southern Alps, Northern Italy) contain spiculitic cherts that appear where rising carbon‐isotope values characterize the onset of the OAE: a palaeoceanographic phenomenon interpreted as driven by increased nutrient levels in near‐surface waters. There is a facies change to more clay‐rich facies at the level of the abrupt negative carbon‐isotope excursion, also characteristic of the OAE, higher in the section. The Campania–Lucania Platform (Southern Apennines, Southern Italy) records a change to more clay‐rich facies where carbon‐isotope values begin to rise at the beginning of the OAE but the negative excursion, higher in the section, occurs within oolitic facies. Although, in both examples, the Early Toarcian OAE can be recognized by a change to more clay‐rich lithologies, this facies development is diachronous and in neither case did the platform drown. Although the Trento Platform, in the south‐west sector studied here, was adversely affected by the OAE, it did not drown definitively until Late Aalenian time; the Campania–Lucania Platform persisted throughout the Jurassic and Cretaceous. Differential subsidence rates, which can be calculated using comparative chemostratigraphy, are identified as a crucial factor in the divergent behaviour of these two carbonate platforms: relatively fast in the case of the Trento Platform; relatively slow in the case of the Campania–Lucania Platform. It is proposed that where water depths remained as shallow as a few metres during the OAE (Campania–Lucania Platform), dissolved oxygen levels remained high, nutrient levels relatively low and conditions for carbonate secretion and precipitation remained relatively favourable, whereas more poorly ventilated and/or more nutrient‐rich waters (Trento Platform) adversely influenced platform growth where depths were in the tens of metres range. The stage was thus set for drowning on the more rapidly subsiding western margin of the Trento Plateau and a pulse of oolite deposition post‐dating the OAE was insufficient to revitalize the carbonate factory.  相似文献   

17.
The Fanta Stream site is an archaeological and paleontological locality in Addis Ababa, Ethiopia. The site contains a rich assemblage of fossil mammals and Acheulean artifacts of approximately 600 ka located in a rare high‐altitude context. A ground‐penetrating radar (GPR) survey was conducted in order to provide three‐dimensional imaging of the subsurface, which the authors use to interpret the geometry and distribution of fossil‐containing stratigraphic units. Utilizing the stream's natural cut bank exposure, we calibrate GPR data to known geologic units through radar facies analysis. Shallow, high‐amplitude coherent reflection geometries are attributed to volcanic tuff deposits, as these units exhibit subparallel continuous reflections consistent with planar stratified sedimentary deposition. Deeper, discontinuous reflection packages are interpreted as conglomeritic, fossil‐containing deposits. The results of the GPR survey outline the location of the Fanta Stream's paleodepositional features as well as suggest the extent of fossiliferous stratigraphic units for use in future excavations.  相似文献   

18.
在露头剖面地层学及沉积学研究的基础上,采用单因素分析多因素综合作图法,编制了西藏羌塘盆地中侏罗世布曲期和夏里期的单因素图和岩相古地理图。布曲期以碳酸盐岩沉积为主,自北而南依次发育局限台地(潮坪、泻湖)、开阔台地(台盆、浅滩/点礁)、台缘礁/浅滩、台缘斜坡、盆地等沉积(亚)相;夏里期以陆源碎屑沉积为主,发育泻湖、潮坪、滨岸、陆棚等沉积(亚)相。布曲组台盆和泻湖相泥灰岩和泥晶灰岩是良好的烃源岩,台缘礁和浅滩相碳酸盐岩是良好的储集岩,而上覆的夏里组泻湖和潮坪相泥岩和膏盐层是良好的区域性盖层,共同构成良好的生、储、盖组合。该生储盖组合大都被上覆的上侏罗统、白垩系、第三系覆盖。因此,布曲组是盆地内最好的油气勘探目的层,沿中央隆起带两侧以及北羌塘地区的琵琶湖-半岛湖凸起一带应是油气勘探的有利区带。  相似文献   

19.
The Al‐Jawf area of northern Saudi Arabia provides spectacular outcrops of Early Devonian carbonate bioherms in the Wadi Murayr and Dumat Al‐Jandal areas. These carbonate bioherms belong to the Qasr Member of the Late Pragian–Early Emsian Jauf Formation (~405 Ma) and are surrounded by a bioclastic carbonate succession. The Qasr Member is the first major carbonate unit of the Palaeozoic succession in Saudi Arabia that mainly consists of microbialite carbonates and metazoan reefs exhibiting distinct mound features. These bioherm complexes and their associated carbonate facies are pervasively dolomitized. Stratigraphic, petrographic and geochemical analyses were conducted to determine the facies distribution and interpret their depositional and diagenetic processes. A total of 11 facies are identified from a range of depositional environments within a carbonate platform system, ranging from tidal flats, lagoon, shoal, patch reefs to reef front. The main diagenetic processes are carbonate cementation and dolomitization. Dolomitization occurred as both fabric preserved (mostly in grain‐dominated facies) and fabric destructive (mud‐dominated facies). The microbialites and coralline sponges facies show poor reservoir with visual porosity less than 5%, but this succession may have a potential to serve as a good source for the underlying and overlying facies. Ooid and peloidal grainstone facies show fair to good visual porosity that locally exceeds 10% with intergranular porosity as the dominant type. However, in the most studied samples, vuggy and intraparticle porosities are observed as the dominant type. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A mathematical model of carbonate platform evolution is presented in which depth‐dependent carbonate growth rates determine platform‐top accumulation patterns in response to rising relative sea‐level. This model predicts that carbonate platform evolution is controlled primarily by the water depth and sediment accumulation rate conditions at the onset of relative sea‐level rise. The long‐standing ‘paradox of a drowned platform’ arose from the observation that maximum growth rate potentials of healthy platforms are faster than those of relative sea‐level rise. The model presented here demonstrates that a carbonate platform could be drowned during a constant relative sea‐level rise whose rate remains less than the maximum carbonate production potential. This scenario does not require environmental changes, such as increases in nutrient supply or siliciclastic sedimentation, to have taken place. A rate of relative sea‐level rise that is higher than the carbonate accumulation rate at the initial water depth is the only necessary condition to cause continuous negative feedbacks to the sediment accumulation rates. Under these conditions, the top of the carbonate platform gradually deepens until it is below the active photic zone and drowns despite the strong maximum growth potential of the carbonate production factory. This result effectively resolves the paradox of a drowned carbonate platform. Test modelling runs conducted with 2·5 m and 15 m initial sea water depths at bracketed rates of relative sea‐level rise have determined how fast the system catches up and maintains the ‘keep‐up’ phase. This is the measure of time necessary for the basin to respond fully to external forcing mechanisms. The duration of the ‘catch‐up’ phase of platform response (termed ‘carbonate response time’) scales with the initial sea water depth and the platform‐top aggradation rate. The catch‐up duration can be significantly elongated with an increase in the rate of relative sea‐level rise. The transition from the catch‐up to the keep‐up phases can also be delayed by a time interval associated with ecological re‐establishment after platform flooding. The carbonate model here employs a logistical equation to model the colonization of carbonate‐producing marine organisms and captures the initial time interval for full ecological re‐establishment. This mechanism prevents the full extent of carbonate production to be achieved at the incipient stage of relative sea‐level rise. The increase in delay time due to the carbonate response time and self‐organized processes associated with biological colonization increase the chances for platform drowning due to deepening of water depth (> ca 10 m). Furthermore this implies a greater likelihood for an autogenic origin for high‐frequency cyclic strata than has been estimated previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号