首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The larger wetlands of Sub-Saharan Africa, cover 2,072,775 km2 (9.01 %) of the landmass. This paper reviews the major threats, including climate change, to these wetlands, a number of which lie in semi-arid regions. Climate change predictions are that the arid or semi-arid regions of Africa in the latitudes around the Tropics of Capricorn and Cancer will become drier. The future of wetlands is allied to human well-being, and the effects of climate change cannot be de-linked from human activities occurring in and around wetlands. The high productivity of wetlands supports substantial populations of poor people dependent on ecosystem services for at least part of their livelihood. This is particularly so in the semi-arid Sahel in the North and equivalent latitudes in the south, which are seen as vulnerable to climate change largely due to high levels of poverty and low adaptive capacity. While sustainable ecosystem management is a long-term goal, survival is more immediate to poor people depending on ecosystem services for their livelihoods. Population increase and a decrease in the resource base due to predicted decreased rainfall will lead to over exploitation of the resource base. Certain engineering interventions redistribute ecosystem services to the benefit of those upstream or away from the river system. Governance systems play a key role in the sustainable management of resources. Breakdown of governance systems through civil war is seen as a driver of poverty and a major cause of breakdown in resource conservation, increasing the dependence of poor people on ecosystems.  相似文献   

2.
《国际泥沙研究》2019,34(6):600-607
Louisiana's chronic wetland deterioration has resulted in massive soil organic matter loss and subsequent carbon release through oxidation. To combat these losses, and reestablish ecosystem function, goods, and services, many restoration projects have been constructed or planned throughout coastal Louisiana. There are significant data gaps and conflicting results regarding wetland contributions to global warming, especially related to carbon sequestration in restored wetlands. An exceptionally large data set was used to derive carbon accumulation rates from key soil characteristics and processes. Assessments and comparisons of bulk density, organic matter, total carbon, vertical accretion (short- and longer-term), and carbon accumulation rates were made across time (chronosequence) and space (i.e., coastwide, watershed basins, and vegetation zones). Carbon accumulation rates in the Louisiana coastal zone were generally correlated to hydrogeomorphology, with higher rates occurring in zones of high river connectivity or in swamp or higher salinity tolerant marsh. On average, naturally occurring wetlands had higher carbon accumulation rates than restoration sites. Although some restoration measures were higher, and most showed increasing carbon accumulation rates over time. Results demonstrate that although wetland restoration provides many ecosystem benefits, the associated carbon sequestration may also provide useful measures for climate change management.  相似文献   

3.
Wetlands are valuable ecosystems that provide many valuable services, yet many of these important ecosystems are at risk because of current trends in climate change. The Prairie Pothole Region (PPR) in the upper‐midwest of the United States and south‐central Canada, characterized by glacially sculpted landscapes and abundant wetlands, is one such vulnerable region. According to regional/global climate model predictions, drought occurrence will increase in the PPR region through the 21st century and thus will probably cause the amount of water in wetlands to decline. Water surface area (WSA) of Kidder County, ND, from 1984–2011 was measured by classifying TM/ETM+(Landsat Thematic Mapper / Enhanced Thematic Mapper Plus) images through the modified normalized difference water index. We then developed a linear model based on the WSA of these wetlands and historical climate data and used this to determine the wetland sensitivity to climate change and predict future wetlands WSA in the PPR. Our model based on Palmer drought severity index (PDSI) of the current year (PDSIt ? 0) and of the previous two years (PDSIt ? 2) can explain 79% of the annual wetland WSA variance, suggesting a high sensitivity of wetlands to drought/climate change. We also predicted the PPR wetlands WSA in the 21st century under A1B scenario (a mid‐carbon emission scenario) using simulated PDSI based on Intergovernmental Panel on Climate Change AR4 22‐model ensemble climate. According to our prediction, the WSA of the PPR wetlands will decrease to less than half of the baseline WSA (defined as the mean wetlands WSA of the 2000s) by the mid of the 21st century, and to less than one‐third by the 2080s, and will then slightly increase in the 2090s. This considerable future wetland loss caused only by climate change provides important implication to future wetland management and climate adaptation policy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Wetlands cover at least 6 % of the Earth’s surface. They play a key role in hydrological and biogeochemical cycles, harbour a large part of the world’s biodiversity, and provide multiple services to humankind. However, pressure in the form of land reclamation, intense resource exploitation, changes in hydrology, and pollution threaten wetlands on all continents. Depending on the region, 30–90 % of the world’s wetlands have already been destroyed or strongly modified in many countries with no sign of abatement. Climate change scenarios predict additional stresses on wetlands, mainly because of changes in hydrology, temperature increases, and a rise in sea level. Yet, intact wetlands play a key role as buffers in the hydrological cycle and as sinks for organic carbon, counteracting the effects of the increase in atmospheric CO2. Eight chapters comprising this volume of Aquatic Sciences analyze the current ecological situation and the use of the wetlands in major regions of the world in the context of global climate change. This final chapter provides a synthesis of the findings and recommendations for the sustainable use and protection of these important ecosystems.  相似文献   

5.
Dissolved inorganic carbon (DIC) transport by rivers is an important control on the pH and carbonate chemistry of the coastal ocean. Here, we combine DIC and total alkalinity (TAlk) concentrations from four tropical rivers of the Great Barrier Reef region in Australia with daily river discharge to quantify annual river loads and export rates. DIC in the four rivers ranged from 284 to 2,639 μmol kg−1 and TAlk ranged from 220 to 2,612 μmol kg−1. DIC:TAlk ratios were mostly greater than one suggesting elevated exports of free [CO2*]. This was pronounced in the Johnstone and Herbert rivers of the tropical wet north. The largest annual loads were transported in the two large river catchments of the southern Great Barrier Reef region, the Fitzroy and Burdekin rivers. The carbon stable isotopic composition of DIC suggests that carbonate weathering was the dominant source of DIC in the southern rivers, and silicate weathering was likely a source of DIC in the northern Wet Tropics rivers. Annual loads and export rates were strongly driven by precipitation and discharge patterns, the occurrence of tropical cyclones, and associated flooding events, as well as distinct seasonal dry and wet periods. As such, short-lived hydrological events and long-term (seasonal and inter-annual) variation of DIC and TAlk that are pronounced in rivers of the tropical and subtropical wet and dry climate zone should be accounted for when assessing inorganic carbon loads to the coastal ocean and the potential to buffer against or accelerate ocean acidification.  相似文献   

6.
Coastal wetlands represent an ecotone between ocean and terrestrial ecosystems, providing important services, including flood mitigation, fresh water supply, erosion control, carbon sequestration, and wildlife habitat. The environmental setting of a wetland and the hydrological connectivity between a wetland and adjacent terrestrial and aquatic systems together determine wetland hydrology. Yet little is known about regional‐scale hydrological interactions among uplands, coastal wetlands, and coastal processes, such as tides, sea level rise, and saltwater intrusion, which together control the dynamics of wetland hydrology. This study presents a new regional‐scale, physically based, distributed wetland hydrological model, PIHM‐Wetland, which integrates the surface and subsurface hydrology with coastal processes and accounts for the influence of wetland inundation on energy budgets and evapotranspiration (ET). The model was validated using in situ hydro‐meteorological measurements and Moderate Resolution Imaging Spectroradiometer (MODIS) ET data for a forested and herbaceous wetland in North Carolina, USA, which confirmed that the model accurately represents the major wetland hydrological behaviours. Modelling results indicate that topographic gradient is a primary control of groundwater flow direction in adjacent uplands. However, seasonal climate patterns become the dominant control of groundwater flow at lower coastal plain and land–ocean interface. We found that coastal processes largely influence groundwater table (GWT) dynamics in the coastal zone, 300 to 800 m from the coastline in our study area. Among all the coastal processes, tides are the dominant control on GWT variation. Because of inundation, forested and herbaceous wetlands absorb an additional 6% and 10%, respectively, of shortwave radiation annually, resulting in a significant increase in ET. Inundation alters ET partitioning through canopy evaporation, transpiration, and soil evaporation, the effect of which is stronger in cool seasons than in warm seasons. The PIHM‐Wetland model provides a new tool that improves the understanding of wetland hydrological processes on a regional scale. Insights from this modelling study provide benchmarks for future research on the effects of sea level rise and climate change on coastal wetland functions and services.  相似文献   

7.
A suite of instruments was deployed in a coastal wetland ecosystem in the Albemarle estuarine system, North Carolina (USA), to characterize wind‐driven transport of saltwater through a constructed (man‐made) channel. Flow velocity, electrical conductivity, and stage were measured in a representative channel over a 2‐month period from May to July 2014, during which 4 wind tides were observed. Collected data show that thousands of metric tons of salt were advected through the channel into coastal wetlands during each event, which lasted up to 4 days. The results reveal that as much as 36% of advected salts accumulated in the wetlands, suggesting that the cumulative effects of these events on the health of coastal wetlands in the Albemarle system may be substantial due to the abundance of constructed channels and the frequency of wind‐driven tidal events. This study is the first to quantify wind‐driven salt fluxes through constructed channels in coastal wetland settings.  相似文献   

8.
Tropical and subtropical Asia differs from other tropical regions in its monsoonal climate and the dominant influence of the Hindukush and Himalayan mountain ranges which result in extremes of spatial and temporal variability in precipitation. However, several major rivers and their tributaries arise in the Himalayan ranges and are fed by thousands of glaciers. Huge sediment loads carried by these rivers result in important deltas at their mouths. The climatic and physiographic diversity have endowed the region with many kinds of wetlands. Of these, the peatswamps of southeast Asia constitute about 56% of the world’s tropical peatlands, and more than 42% of the world’s mangroves occur in South and southeast Asia. Among other wetlands, riverine swamps are rather restricted whereas the seasonal marshes are a dominant feature. Another characteristic feature of tropical Asia are the innumerable human-made and intensively managed wetlands of which the paddy fields and aquaculture ponds are the most extensive. Throughout tropical Asia, wetlands have been a part of the socio-cultural ethos of the people and many communities have lived in wetlands. However, the pressures of high population and the economic development have extensively impacted upon wetlands which have been transformed for paddy cultivation and aquaculture, drained and converted to other land uses for economic gains (e.g., conversion to oil palm), and degraded by discharge of domestic and industrial wastes. Invasive plant and animal species have also played a significant role. The climate change is already being felt in the rapid retreat of Himalayan glaciers, increased temperature and variability in precipitation as well as the frequency of extreme events. Sea level rise is seen as a major threat to the coastal wetlands, particularly the mangroves. Increasing droughts have caused frequent fires in Indonesian peat swamps that have further feedback impacts on regional climate. However, the actual threat to wetlands in this region arises from the extensive hydrological alterations being caused by storage, abstraction and diversion of river flows for agriculture, industry and hydropower. Currently, the state of our understanding wetlands in general, and the efforts and infrastructure for research and training in wetlands are very poor. Although a few wetlands have been designated as Ramsar sites, the policies aimed at wetland conservation are either non-existent or very weak. Human responses to greater uncertainty and variability in the available water resources in different parts of Asia will be crucial to the conservation of wetlands in the future.  相似文献   

9.
The boundary between the Pacific and North America plates along Canada’s west coast is one of the most seismically active regions of Canada, and is where Canada’s two largest instrumentally recorded earthquakes have occurred. Although this is a predominantly strike-slip transform fault boundary, there is a component of oblique convergence between the Pacific and North America plates off Haida Gwaii. The 2012 Mw 7.7 Haida Gwaii earthquake was a thrust event that generated a tsunami with significant run up of over 7 m in several inlets on the west coast of Moresby Island (several over 6 m, with a maximum of 13 m). Damage from this earthquake and tsunami was minor due to the lack of population and vulnerable structures on this coast.  相似文献   

10.
The coast of Honduras, Central America, represents the southern end of the Mesoamerican Barrier Reef System, although its marine resources are less extensive and studied than nearby Belize and Mexico. However, the coastal zone contains mainland reef formations, mangroves, wetlands, seagrass beds and extensive fringing reefs around its offshore islands, and has a key role in the economy of the country. Like most tropical areas, this complex of benthic habitats experiences limited annual variation in climatic and oceanographic conditions but seasonal and occasional conditions, particularly coral bleaching and hurricanes, are important influences. The effects of stochastic factors on the country's coral reefs were clearly demonstrated during 1998 when Honduras experienced a major hurricane and bleaching event. Any natural or anthropogenic impacts on reef health will inevitably affect other countries in Latin America, and vice versa, since the marine resources are linked via currents and the functioning of the system transcends political boundaries. Much further work on, for example, movement of larvae and transfer of pollutants is required to delineate the full extent of these links.

Anthropogenic impacts, largely driven by the increasing population and proportion of people living in coastal areas, are numerous and include key factors such as agricultural run-off, over-fishing, urban and industrial pollution (particularly sewage) and infrastructure development. Many of these threats act synergistically and, for example, poor watershed management via shifting cultivation, increases sedimentation and pesticide run-off onto coral reefs, which increases stress to corals already affected by decreasing water quality and coral bleaching. Threats from agriculture and fishing are particularly significant because of the size of both industries. The desire to generate urgently required revenue within Honduras has also led to increased tourism which provides an over-arching stress to marine resources since most tourists spend time in the coastal zone. Hence the last decade has seen a dramatic increase in coastal development, a greater requirement for sewage treatment and more demand for freshwater, particularly in the Bay Islands.

Although coastal zone management is relatively recent in Honduras, it is gaining momentum from both large-scale initiatives, such as the Ministry of Tourism's ‘Bay Islands Environmental Management Project', and national and international NGO projects. For example, a series of marine protected areas and legislative regulations have been established, but management capacity, enforcement and monitoring are limited by funding, expertise and training. Existing and future initiatives, supported by increased political will and environmental awareness of stakeholders, are vital for the long-term economic development of the country.  相似文献   


11.
The exact size of the wetland area of South America is not known but may comprise as much as 20% of the sub-continent, with river floodplains and intermittent interfluvial wetlands as the most prominent types. A few wetland areas have been well studied, whereas little is known about others, including some that are very large. Despite the fact that most South American countries have signed the Ramsar convention, efforts to elaborate basic data have been insufficient, thereby hindering the formulation of a wetland-friendly policy allowing the sustainable management of these areas. Until now, the low population density in many wetland areas has provided a high level of protection; however, the pressure on wetland integrity is increasing, mainly as a result of land reclamation for agriculture and animal ranching, infrastructure building, pollution, mining activities, and the construction of hydroelectric power plants. The Intergovernmental Panel on Climate Change has predicted increasing temperatures, accelerated melting of the glaciers in Patagonia and the Andes, a rise in sea level of 20–60 cm, and an increase in extreme multiannual and short-term climate events (El Niño and La Niña, heavy rains and droughts, heat waves). Precipitation may decrease slightly near the Caribbean coast as well as over large parts of Brazil, Chile, and Patagonia, but increase in Colombia, Ecuador, and Peru, around the equator, and in southeastern South America. Of even greater impact may be a change in rainfall distribution, with precipitation increasing during the rainy season and decreasing during the dry season. There is no doubt that the predicted changes in global climate will strongly affect South American wetlands, mainly those with a low hydrologic buffer capacity. However, for the coming decades, wetland destruction by wetland-unfriendly development planning will by far outweigh the negative impacts of global climate change. South American governments must bear in mind that there are many benefits that wetlands bring about for the landscape and biodiversity as well as for humans. While water availability will be the key problem for the continent’s cities and agroindustries, intact wetlands can play a major role in storing water, buffering river and stream discharges, and recharging subterranean aquifers.  相似文献   

12.
The condition of many wetlands across Australia has deteriorated due to increased water regulation and the expansion and intensification of agriculture and increased urban and industrial expansion. Despite this situation, a comprehensive overview of the distribution and condition of wetlands across Australia is not available. Regional analyses exist and several exemplary mapping and monitoring exercises have been maintained to complement the more general information sets. It is expected that global climate change will exacerbate the pressures on inland wetlands, while sea level rises will adversely affect coastal wetlands. It is also expected that the exacerbation of these pressures will increase the potential for near-irreversible changes in the ecological state of some wetlands. Concerted institutional responses to such pressures have in the past proven difficult to sustain, although there is some evidence that a more balanced approach to water use and agriculture is being developed with the provision of increasing funds to purchase water for environmental flows being one example. We identify examples from around Australia that illustrate the impacts on wetlands of long-term climate change from palaeoecological records (south-eastern Australia); water allocation (Murray-Darling Basin); dryland salinisation (south-western Australia); and coastal salinisation (northern Australia). These are provided to illustrate both the extent of change in wetlands and the complexity of differentiating the specific effects of climate change. An appraisal of the main policy responses by government to climate change is provided as a basis for further considering the opportunities for mitigation and adaptation to climate change.  相似文献   

13.
The south-eastern United States and Gulf Coast of Mexico is physiographically diverse, although dominated by a broad coastal plain. Much of the region has a humid, warm temperate climate with little seasonality in precipitation but strong seasonality in runoff owing to high rates of summer evapotranspiration. The climate of southern Florida and eastern Mexico is subtropical with a distinct summer wet season and winter dry season. Regional climate models suggest that climate change resulting from a doubling of the pre-industrial levels of atmospheric CO2 may increase annual air temperatures by 3–4°C. Changes in precipitation are highly uncertain, but the most probable scenario shows higher levels over all but the northern, interior portions of the region, with increases primarily occurring in summer and occurring as more intense or clustered storms. Despite the increases in precipitation, runoff is likely to decline over much of the region owing to increases in evapotranspiration exceeding increases in precipitation. Only in Florida and the Gulf Coast areas of the US and Mexico are precipitation increases likely to exceed evapotranspiration increases, producing an increase in runoff. However, increases in storm intensity and clustering are likely to result in more extreme hydrographs, with larger peaks in flow but lower baseflows and longer periods of drought. The ecological effects of climate change on freshwaters of the region include: (1) a general increase in rates of primary production, organic matter decomposition and nutrient cycling as a result of higher temperatures and longer growing seasons: (2) reduction in habitat for cool water species, particularly fish and macroinvertebrates in Appalachian streams; (3) reduction in water quality and in suitable habitat in summer owing to lower baseflows and intensification of the temperature–dissolved oxygen squeeze in many rivers and reservoirs; (4) reduction in organic matter storage and loss of organisms during more intense flushing events in some streams and wetlands; (5) shorter periods of inundation of riparian wetlands and greater drying of wetland soils, particularly in northern and inland areas; (6) expansion of subtropical species northwards, including several non-native nuisance species currently confined to southern Florida; (7) expansion of wetlands in Florida and coastal Mexico, but increase in eutrophication of Florida lakes as a result of greater runoff from urban and agricultural areas; and (8) changes in the flushing rate of estuaries that would alter their salinity regimes, stratification and water quality as well as influence productivity in the Gulf of Mexico. Many of the expected climate change effects will exacerbate current anthropogenic stresses on the region's freshwater systems, including increasing demands for water, increasing waste heat loadings and land use changes that alter the quantity and quality of runoff to streams and reservoirs. Research is needed especially in several critical areas: long-term monitoring of key hydrological, chemical and biological properties (particularly water balances in small, forested catchments and temperature-sensitive species); experimental studies of the effects of warming on organisms and ecosystem processes under realistic conditions (e.g. in situ heating experiments); studies of the effects of natural hydrological variation on biological communities; and assessment of the effects of water management activities on organisms and ecosystem processes, including development and testing of management and restoration strategies designed to counteract changes in climate. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
WETLANDLOSSINCOASTALLOUISIANAMenglouWANG1andDonaldDeanADRIAN2ABSTRACTWetlandsintheMisissippiRiverdeltaicplainarevaluableresou...  相似文献   

15.
The Tampa Bay Ecosystem is located in the state of Florida, USA. The 6739 km2 ecosystem has undergone major changes due to coastal development, including dredging for maintenance and expansion of the 10th largest port in the USA. Approximately 44% of the historic emergent coastal wetlands and 81% of the historic submergent seagrass meadows had been lost through 1981. Declines in commercial and recreational fisheries harvests and coastal wildlife populations followed similar trends in declines. Beginning three decades ago, an informal Integrated Coastal Management (ICM) program initiated by citizen groups has progressed to a formal ICM program that has initiated restoration of the ecosystem and management through a unique multi-county umbrella organization, the Tampa Bay Estuary Program.  相似文献   

16.
Historically, management of coastal dune systems has often involved artificial stabilization of active sand surfaces in order for coastal areas to be more easily controlled and modified for human benefit. In North America, the introduction of invasive grasses, namely European and American beach (marram) grasses (Ammophila spp.) has been one of the most successful strategies used for stabilizing active coastal dune sands. Recent research has demonstrated, however, that stabilization of coastal dunes often leads to reduced landform complexity and resilience, as well as declines in species diversity. More ‘dynamic’ restoration efforts have emerged over the past 20 years that encourage dune mobility and aeolian activity in order to provide a more resilient biogeomorphic system. In North America, there is generally little research relating restoration methods and outcomes to geomorphic responses despite the fundamental importance of sedimentary processes and dune morphodynamics in broader ecosystem function. This paper aims to better situate dynamic dune restoration within current geomorphic understanding. A brief review of key terms and concepts used in the emerging field of dynamic dune restoration is provided and expanded upon with respect to geomorphologic considerations. A case study of a recent dynamic restoration effort in Pacific Rim National Park Reserve, British Columbia, Canada is provide to demonstrate how these concepts are applied. Introduction of European marram at this site, coupled with a warming climate and increased precipitation in recent decades at this site, is thought to be associated with a rapid decline in aeolian activity, system stabilization and accelerated ecological succession. Preliminary results on the response of the dune system to mechanical removal of Ammophila are presented to provide the foundation for a research framework to guide the broader restoration project. Recommendations for improving treatment methodologies and monitoring protocols are provided to aid future restoration projects of this nature. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The northern portion of the Pacific coastal temperate rainforest (PCTR) is one of the least anthropogenically modified regions on earth and remains in many respects a frontier area to science. Rivers crossing the northern PCTR, which is also an international boundary region between British Columbia, Canada and Alaska, USA, deliver large freshwater and biogeochemical fluxes to the Gulf of Alaska and establish linkages between coastal and continental ecosystems. We evaluate interannual flow variability in three transboundary PCTR watersheds in response to El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Arctic Oscillation (AO), and North Pacific Gyre Oscillation (NPGO). Historical hydroclimatic datasets from both Canada and the USA are analyzed using an up-to-date methodological suite accommodating both seasonally transient and highly nonlinear teleconnections. We find that streamflow teleconnections occur over particular seasonal windows reflecting the intersection of specific atmospheric and terrestrial hydrologic processes. The strongest signal is a snowmelt-driven flow timing shift resulting from ENSO- and PDO-associated temperature anomalies. Autumn rainfall runoff is also modulated by these climate modes, and a glacier-mediated teleconnection contributes to a late-summer ENSO-flow association. Teleconnections between AO and freshet flows reflect corresponding temperature and precipitation anomalies. A coherent NPGO signal is not clearly evident in streamflow. Linear and monotonically nonlinear teleconnections were widely identified, with less evidence for the parabolic effects that can play an important role elsewhere. The streamflow teleconnections did not vary greatly between hydrometric stations, presumably reflecting broad similarities in watershed characteristics. These results establish a regional foundation for both transboundary water management and studies of long-term hydroclimatic and environmental change.  相似文献   

18.
Northern peatlands are a vital component of the global carbon cycle, containing large stores of soil organic carbon and acting as a long‐term carbon sink. Moss productivity is an important factor in determining whether these wetlands will retain this function under future climatic conditions. Research on unsaturated water flow in peatlands, which controls moss productivity during periods of evaporative stress, has focused on relatively deep bog systems. However, shallower peatlands and marginal connective wetlands can be essential components of many landscape mosaics. In order to better understand factors influencing moss productivity, water balance simulations using HYDRUS‐1D were run for different soil profile depths, compositions, and antecedent moisture conditions. Our results demonstrate a bimodal distribution of peatland realizations, either primarily conserving water by limiting evapotranspiration or maximizing moss productivity. For sustained periods of evaporative stress, both deep water storage and a shallow initial water table delay the onset of high vegetative stress, thus maximizing moss productivity. A total depth of sand and peat of 0.8 m is identified as the threshold above which increasing peat depth has no effect on changing vegetative stress response. In contrast, wetlands with shallow peat deposits (less than 0.5 m thick) are least able to buffer prolonged periods of evaporation due to limited labile water storage and will thus quickly experience vegetative stress and so limit evaporation and conserve water. With a predicted increase in the frequency and size of rain events in continental North America, the moss productivity of shallow wetland systems may increase, but also greater moisture availability will increase the likelihood they remain as wetlands in a changing climate.  相似文献   

19.
Watershed management efforts in agriculturally dominated landscapes of North America face nearly two centuries of laws and policies that encouraged habitat destruction. Although streams and wetlands in these landscapes are actively being restored using designs that incorporate science and engineering, watershed drainage laws can constrain action or impact passively restored or naturalized habitat. In general, drainage laws require removal of any riparian vegetation or wood deemed to obstruct flow in streams regulated as drains. We use a case study from Indiana (USA) to introduce the shortcomings of drainage laws for allowing large wood, which is an important habitat feature, to remain in stream ecosystems. Removals of large wood from monitored stream reaches in a regulated drain were associated with subsequent declines in fish biomass. Such legal activities represent an important environmental management problem that exists under drainage laws which apply to streams over a widespread geographic region of North America. Recent litigation in Wisconsin (USA) suggests that if state legislatures fail to update these antiquated laws, the courts may act in favour of science-based management of drains. The statutes and regulations that govern agricultural drainage warrant careful consideration if streams within drainage districts are to be managed to improve ecological function. © 2020 John Wiley & Sons, Ltd.  相似文献   

20.
The National Status & Trends (NS&T, 1986–1993) and the International Mussel Watch (IMW, 1991–1992) programmes provide a good coverage of a broad range of environmental conditions along the North, Central and South American coasts. Total concentrations of DDTs, chlordane-related compounds, PCBs and PAHs present fairly homogeneous distributions along the northern Gulf of Mexico coast, with very few sites showing extremely high or low concentrations. In contrast, a larger variability in the geographical distribution of some of these organic contaminants was observed for IMW sites. For example, high concentrations of DDT and its metabolites, DDD and DDE, were generally found in tropical and subtropical areas as compared to more temperate zones of South America. ‘Industrial’ contaminants, such as PCBs and PAHs, have similar distributions with the highest concentrations encountered generally along the southern South Atlantic coast. An overall comparison of the concentrations of these organic contaminants measured at NS&T and IMW sites indicates that contamination is significantly higher along the northern coast of the Gulf of Mexico.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号