首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The propagation of cosmic rays in the Earth??s atmosphere is simulated. Calculations of the omnidirectional differential flux of neutrons for different solar activity levels are illustrated. The solar activity effect on the production rate of cosmogenic radiocarbon by the nuclear-interacting and muon components of secondary cosmic radiation in polar ice is studied. It has been obtained that the 14C production rates in ice by the cosmic ray nuclear-interacting component are lower or higher than the average value by 30% during periods of solar activity maxima or minima, respectively. Calculations of the altitudinal dependence of the radiocarbon production rate in ice by the cosmic radiation components are illustrated.  相似文献   

2.
The data from terrestrial observations of cosmic rays at the global network of stations by the method of spectrographic global survey were used to analyze two Forbush decreases during the geomagnetic storms in March and June 2015. The spectra of cosmic ray variations, pitch angle anisotropy of cosmic rays at different phases of Forbush decrease development, and the changes in the planetary system of geomagnetic cutoff rigidities are presented. It is shown that, during the approximation of the spectra of variations by the power function of particle rigidity in the interval of 10–50 GV, the spectrum index is softer at the maximum modulation phase than during the phases of cosmic ray intensity decline and recovery. In the axisymmetric model of the bounded magnetosphere of the Earth, which takes into account the currents at the magnetopause and the ring current, the distance to the subsolar point and the radius of the ring current, as well as the contribution of the ring current to the changes in geomagnetic cutoff rigidity and to the Dst index during the studied events, are determined.  相似文献   

3.
Direct and indirect data on variations in cosmic rays, solar activity, geomagnetic dipole moment, and climate from the present to 10–12ka ago (the Holocene Epoch), registered in different natural archives (tree rings, ice layers, etc.), have been analyzed. The concentration of cosmogenic isotopes, generated in the Earth’s atmosphere under the action of cosmic ray fluxes and coming into the Earth archives, makes it possible to obtain valuable information about variations in a number of natural processes. The cosmogenic isotopes 14C in tree rings and 10Be in ice layers, as well as cosmic rays, are modulated by solar activity and geomagnetic field variations, and time variations in these concentrations gives information about past solar and geomagnetic activities. Since the characteristics of natural reservoirs with cosmogenic 14C and 10Be vary with climate changes, the concentrations of these isotopes also inform about climate changes in the past. A performed analysis indicates that cosmic ray flux variations are apparently the most effective natural factor of climate changes on a large time scale.  相似文献   

4.
During the prolonged and deep minimum of solar activity between cycles 23 and 24, an unusual behavior of the heliospheric characteristics and increased intensity of galactic cosmic rays (GCRs) near the Earth’s orbit were observed. The maximum of the current solar cycle 24 is lower than the previous one, and the decline in solar and, therefore, heliospheric activity is expected to continue in the next cycle. In these conditions, it is important for an understanding of the process of GCR modulation in the heliosphere, as well as for applied purposes (evaluation of the radiation safety of planned space flights, etc.), to estimate quantitatively the possible GCR characteristics near the Earth in the upcoming solar minimum (~2019–2020). Our estimation is based on the prediction of the heliospheric characteristics that are important for cosmic ray modulation, as well as on numeric calculations of GCR intensity. Additionally, we consider the distribution of the intensity and other GCR characteristics in the heliosphere and discuss the intercycle variations in the GCR characteristics that are integral for the whole heliosphere (total energy, mean energy, and charge).  相似文献   

5.
Variations in the cosmic-ray vector anisotropy observed on Earth are closely connected with the state of the near-Earth interplanetary medium. Hourly characteristics of vector anisotropy for the period 1957–2013, which were obtained by the global survey method from the data of the worldwide network of neutron monitors, make it possible to study the relationship between the cosmic-ray anisotropy and solar wind parameters. In the present work, we have studied the connection between the equatorial component of anisotropy of cosmic rays with a rigidity of 10 GV and the following parameters: velocity and density of the solar wind; density of the interplanetary magnetic field; and cosmic-ray density variations, in which the spatial gradient of cosmic rays in the interplanetary medium is manifested. The characteristics of cosmic-ray anisotropy at various combinations of the interplanetary medium parameters are compared. The possibility of diagnosing the solar wind state from data on the cosmic-ray anisotropy is discussed.  相似文献   

6.
The variations in the rigidity spectrum and anisotropy of cosmic rays in December 2006 have been studied based on the surface measurements of the cosmic ray intensity at the global network of stations, using the method of global spectrographic survey. It has been indicated that the highest degree of anisotropy (to ~50%) with the maximal intensity of particles with a rigidity of 4 GV in the direction from the Sun (an asymptotic direction of about ?25° and 160°) was observed at 0400 UT on December 13. The parameters of the cosmic ray rigidity spectrum, which reflect the electromagnetic characteristics of the heliospheric fields during the studied period, have been determined when the surface and satellite measurements of protons in the energy range from several megaelectronvolts to several tens of gigaelectronvolts were jointly analyzed. The observed anisotropy and variations in cosmic rays in a wide energy range have been explained based on an analysis of the results.  相似文献   

7.
We report on the recent studies on the long-term influence of cosmic rays on the Earth's environment. While on short time-scales solar activity is the driver for atmospheric changes suspected to be due to cosmic rays, for long time-scales the heliosphere, i.e. the circumsolar region occupied by the expanding part of the Sun's atmosphere, has to be considered. The heliosphere is identified as an important shield against interstellar influences and hazards. It has been demonstrated by quantitative modelling that a change of the interstellar medium surrounding the heliosphere as a result of the Sun's quasi-Keplerian motion around the galactic center triggers significant changes of planetary environments caused by enhanced fluxes of neutral atoms as well as by the increased cosmic ray fluxes. We give a compilation of recent space science results of interest to the atmospheric science community.  相似文献   

8.
Geomagnetism and Aeronomy - The causes of a sharp increase in the radiocarbon content in the Earth’s atmosphere for periods with abnormally low solar modulation of galactic cosmic rays (GCRs)...  相似文献   

9.
The most reliable data on a change in the intensity of cosmic rays and geomagnetic field on large time scales have been analyzed, and the relations between changes in these processes and climate during the last 1.5 Myr have been studied. An analysis indicated that the climate of the Earth is affected by changes in the Earth’s orbit parameters and geomagnetic dipole values; however, the climate responds to these changes with a delay of 10 kyr and immediately, respectively. In this case about two thirds of the effect of eccentricity on 18O is implemented via an intermediate chain: virtual axial dipole moment, changes in which can be related to changes in eccentricity. Thus, an analysis of the accumulated data on the processes, proceeding in the Earth’s atmosphere during the interaction with cosmic rays on the scales of several years to several hundreds of thousand years, indicates that the cosmophysical factor of influence on climate cannot be rejected. To make the conclusion more convincing, it is necessary to collect data for the studied time interval in a much wider region, to more accurately date samples, and to study the response of the climatic system to the external influence.  相似文献   

10.
It has been indicated that the cross section of the streamer belt in the solar corona and its extension in the heliosphere—heliospheric plasma sheet (HPS)—have the form of two radially oriented closely located (at a distance of d ≈ 2.0–2.5° in the heliocentric coordinate system) rays with increased and generally different densities. The angular dimensions of the rays are ≈d. The neutral line of the magnetic field in the corona and the related sector boundary in the Earth’s orbit are located between the peaks of densities of these two rays. In the events, during which the true sector boundary coincides with the heliospheric current sheet, the transverse structure of the streamer belt in the heliosphere (or the HPS structure) is quasistationary; i.e., this structure slightly changes when the solar wind moves from the Sun to the Earth in, at least, 50% of cases. A hypothesis that a slow solar wind, flowing in the rays with increased density of the streamer belt, is probably generated on the Sun’s surface rather than at the top of the helmet, as was assumed in [Wang et al., 2000], is put forward.  相似文献   

11.
12.
13.
1997年1月6日爆发的日冕物质抛射(CME)到达地球时引起了强烈的地球物理效应,CME在行 星际空间传播时,广州的多方向μ介子望远镜观测到银河宇宙线强度的变化. 本文采用 小波分析方法分析了磁暴前后广州台宇宙线强度的频谱变化特征,结果表明,在磁暴前 宇宙线周期为16~32h的信号发生了较明显的变化,其中周期为24~32h的周期特征过去没有 被报道过. 广州台垂直方向宇宙线强度的谱在磁暴发生前48h就出现明显的变化,比各向异 性分析方法得到的时间提前量更大. 同时还分析了几个方向宇宙线强度的最强信号以及达到 最大值的时间,并进行了简要的分析与讨论.  相似文献   

14.
Geomagnetism and Aeronomy - The ability of cosmic rays to penetrate the magnetosphere is characterized by the rigidity of the geomagnetic cutoff R, i.e., the stiffness below which the particle flux...  相似文献   

15.
Galactic cosmic rays, registered by ground-based neutron monitors, are strongly affected by the heliosphere, i.e., being subjected to solar modulation. Cosmic ray variations are closely related to different solar activity indices and IMF parameters. The longitudinal inhomogeneity of the general solar magnetic field as a star and the manifestation of this inhomogeneity in the magnetic field are considered in the work. It has been established that the longitudinal inhomogeneity of this field, with the dipole distribution of polarities along heliolongitude, mainly contributes to 27-day modulation of galactic cosmic rays.  相似文献   

16.
17.
One of the variants of the global survey method developed and used for many years at the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences is described. Data from the world network of neutron monitors for every hour from July 1957 to the present has been processed by this method. A consistent continuous series of hourly characteristics of variation of the density and vector anisotropy of cosmic rays with a rigidity of 10 GV is obtained. A database of Forbush decreases in galactic cosmic rays caused by large-scale disturbances of the interplanetary medium for more than half a century has been created based on this series. The capabilities of the database make it possible to perform a correlation analysis of various parameters of the space environment (characteristics of the Sun, solar wind, and interplanetary magnetic field) with the parameters of cosmic rays and to study their interrelationships in the solar–terrestrial space. The features of reception coefficients for different stations are considered, which allows the transition from variations according to ground measurements to variations of primary cosmic rays. The advantages and disadvantages of this variant of the global survey method and the opportunities for its development and improvement are assessed. The developed method makes it possible to minimize the problems of the network of neutron monitors and to make significant use of its advantages.  相似文献   

18.
Variations in the cosmic ray intensity (specifically, Forbush effects) and in the geomagnetic cutoff rigidity planetary system during powerful geomagnetic disturbances in cycle 23 were studied based on worldwide station network data by the global spectrographic survey method. The cosmic ray variation spectra during these periods and the spectral indices of these variations when the spectrum was approximated by the power function of the particle rigidity varying from 10 to 50 GV during different Forbush effect development phases are presented. It was indicated that the spectral indices of cosmic ray variations during spectrum approximation by the power function of the particle rigidity are larger during the maximal modulation phase than during the cosmic ray intensity decline and recovery phases. The fact that the amplitude of the second harmonic of the cosmic ray pitch angle anisotropy did not increase on November 20, 2003, confirms that the Earth fell into a Sun-independent spheromark magnetic cloud. The increased amplitudes of the second harmonic of the cosmic ray pitch angle anisotropy during other Forbush effects in July 2000, March–April 2001, October 2003, and November 2004 indicate that the Earth was in the coronal mass ejection region, in which the interplanetary magnetic field structure was loop-like during these periods.  相似文献   

19.
Reconstructions of solar activity in the past epochs based on information on the past atmospheric content of the cosmogenic 14C isotope are nowadays actively discussed. The 14C isotope is generated in the atmosphere of the Earth under the influence of cosmic rays, and its concentration in annual tree rings carries information on the past solar activity. However, the concentration of this isotope in annual tree rings may also be influenced by climatic factors. In the present work, the possible correlation between variations in the 14C atmospheric content and in the Earth’s global temperature from the late 14th century to the middle of the 19th century is studied. It is shown that variations in global temperature may produce changes in the 14C atmospheric content and consequently have to be taken into account in reconstructions of the past solar activity.  相似文献   

20.
The effects of the geomagnetic storms of November 8 and 10, 2004, in variations in the strength and power spectra of the electric field in the near-Earth’s atmosphere in Kamchatka were studied, together with the meteorological and geophysical phenomena observed simultaneously. A sequence of strong solar flares was shown to cause an anomalous increase in air temperature and humidity. This resulted in the excitation of anomalously strong thunderstorm processes in the atmosphere during the storm of November 8 and made it impossible to distinguish the effects associated with cosmic rays on this background. During the storm of November 10, on the background of weak variations in meteorological parameters, an increase in the strength and intensity of power spectra of the electric field on the day before the storm of November 10 was detected; it was followed by an attenuation of these parameters on the date of the storm. These effects were supposed to be associated with the action of cosmic rays on currents of the global electric circuit. It was shown that the influence of the Forbush effect of galactic cosmic rays in the power spectrum of the electric field first of all shows as the amplification of the component with the period T ~ 48 h; in variations in humidity, the effect shows as the amplification of the component with T ~ 24 h. Cause-and-effect relationships between variations in the electric field strength and the horizontal component of the geomagnetic field were shown to be absent both under the conditions of “fair weather” and during the storm of November 10. A diurnal negative-difference atmospheric pressure was detected on the second day after the geomagnetic storms of November 8 and 10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号