首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Three decades of slope streak activity on Mars   总被引:1,自引:0,他引:1  
Slope streaks are surficial mass movements that are abundant in the dust-covered regions of Mars. Targeting of slope streaks seen in Viking images with the Mars Orbiter Camera provides observations of slope streak dust activity over two to three decades. In all study areas, new and persisting dark slope streaks are observed. Slope streaks disappeared in one area, with persisting streaks nearby. New slope streaks are found to be systematically darker than persisting streaks, which indicates gradual fading. Far more slope streaks formed at the study sites than have faded from visibility. The rate of formation at the study sites was 0.03 new slope streaks per existing streak per Mars year. Bright slope streaks do not presently form in sudden events as dark slope streaks do. Instead, bright streaks might form from old dark slope streaks, perhaps transitioning through a partially faded stage.  相似文献   

2.
Recent images from the High Resolution Imaging Science Experiment (HiRISE) camera have shown that slope streaks have relief on the order of a meter or less. This study presents observations of transverse bedforms and infill deposits within slope streak beds that were not previously identified or were uncommon from earlier analyses of HiRISE images. Transverse bedforms are linear to slightly arcuate features oriented transverse to the slope streak bed which may be analogous to terrestrial splash or coarse-grained ripples based on their morphology, wavelength, and amplitude. In addition to the bedforms, there is also evidence that slope streak beds gradually shallow over time by infilling of material. The presence of ripples within slope streaks implies that saltation-capable material is available on the surface today and/or was available in the recent past. Although airfall dust is not a capable saltation source material, aggregates of electrostatically-bound dust that are possibly later cemented by salts may serve as a source. From the results of this study, we hypothesize a sequence of events in a slope streak formation and modification cycle where grains saltate to form ripples along the bed of a slope streak, airfall dust mantling causes gradual fading of the streak, and infill material buries the ripples, eventually reaching the pre-avalanche surface that removes all traces of relief.  相似文献   

3.
Slope steaks are one of the most intriguing modern phenomena observed on Mars. They have been mostly interpreted as some specific type of granular flow. We propose another mechanism for slope streak formation on Mars. It involves natural seasonal formation of a modest amount of highly concentrated chloride brines within a seasonal thermal skin, and runaway propagation of percolation fronts. Given the current state of knowledge of temperature regimes and the composition and structure of the surface layer in the slope streak regions, this mechanism is consistent with the observational constraints; it requires an assumption that a significant part of the observed chlorine to be in form of calcium and ferric chloride, and a small part of the observed hydrogen to be in form of water ice. This “wet” mechanism has a number of appealing advantages in comparison to the widely accepted “dry” granular flow mechanism. Potential tests for the “wet” mechanism include better modeling of the temperature regime and observations of the seasonality of streak formation.  相似文献   

4.
P.C Thomas  P Gierasch  D.S Miller  B Cantor 《Icarus》2003,162(2):242-258
Variable surface albedo features on Mars are likely caused by the entrainment and deposition of dust by the wind. Most discrete markings are associated with topographic forms or with regional slopes that serve to alter the effective wind shear stress on the surface. Some of the largest variable features, here termed mesoscale linear streaks, are up to 400 km in length and repeatedly occur in one of the smoothest regions of Mars: Amazonis Planitia. Their orientations and apparent season of variability as observed by Viking and Mars Orbiter cameras indicate linear streak formation by enhanced surface wind stresses during regional or local dust storms and during the initial stages of global dust storms. They provide an example of the ability of large-scale winds, without significant local enhancement, to initiate dust motion on Mars. The sizes and spacing of the linear streaks may be controlled by boundary layer rolls. The repetitive formation of these streaks, over a span of more than 11 Mars years, gives one measure of the stability of Mars’ eolian processes.  相似文献   

5.
Slope streaks are gravity-driven albedo features observed on martian slopes since the Viking missions. The debated mechanism of formation could involve alternatively dry granular flow or wet mass wasting. A systematic mapping of slope streaks from the High Resolution Stereo Camera is presented in this paper. Two regions known for their slope streaks activity have been studied, the first one is located close to Cerberus lava flow, and the second one is inside the Olympus Mons Aureole. The statistics of slope streaks shapes measured from orthorectified images confirm previous results from Mars Orbiter Camera surveys. Preferential orientations of slope streaks are reported. Slope streaks occur preferentially on west facing slopes at latitudes lower than 30° N for Olympus and on south-west facing slopes for Cerberus. Wind directions derived from a General Circulation Model during the dusty season correlate with these orientations. Furthermore, west facing slopes at Olympus have a thicker dust cover. These observations indicate that slope streaks are dust avalanches controlled by the preferential accumulation of dust in the downstream side of the wind flow. The paucity of slope streaks at high latitudes and their preferential orientation on south-facing slopes have been presented as an evidence for a potential role of H2O phase transition in triggering or flow. The potential role of H2O cannot be ruled out from our observations but the dust avalanche model together with the atmospheric circulation could potentially explain all observations. The role of H2O might be limited to a stabilizing effect of dust deposits on northward facing slopes at intermediate latitudes (30° N-33° N) and on all slopes further north.  相似文献   

6.
Steven W. Lee 《Icarus》1984,58(3):339-357
The characteristics of wind streaks associated with Martian craters and hills in the size range of ~100 m to ~80 km (corresponding to obstacle heights of a few to several hundred meters) have been analyzed from Viking Orbiter images. Both dark erosional and bright depositional streaks form over the entire obstacle size range, but there are preferred obstacle sizes for producing streaks. Bright streaks form more readily in association with relatively smaller obstacles than do dark streaks. Small obstacles produce both types of streaks more effectively than do large ones. Hills produce streaks as effectively as do craters of comparable height. Alternative explanations of bright streak formation are evaluated in terms of their ability to account for these observations. The most satisfactory models invoke blocking of atmospheric flow downwind of an obstacle and consequent deposition of dust within the sheltered zone.  相似文献   

7.
Crater morphology and size play a major role in determining whether wind-blown streaks emanating from craters or dark splotches within craters will form. Both bright and dark streaks emanate almost exclusively from bowl-shaped craters. Dark splotches are found mainly in flat-floored craters, especially those that are deep and have high rim relief. Trends of dark splotches in the northern to southern midlatitudes closely follow those of bright streaks, suggesting both were formed by similar winds. In the high southern latitudes, on the other hand, dark splotch trends closely follow those of dark streaks.Qualitative models of streak and splotch formation have been derived from these data and results of Sagan et al. (1972, 1973). Bright streaks probably form by trapping and simultaneous streaming of bright dust downwind. Dark splotched craters in regions with bright streaks usually have upwind bright patches, suggesting these features form by dumping of bright dust over crater rims with some minor redistribution of dark materials toward the downwind sides of craters. Data are consistent with dark streaks forming by erosion or nondeposition of bright material or by trapping of dark material. Dark splotches in these regions are probably mainly the result of trapping of dark sand in the downwind sides of crater floors. Craters with dark splotches and dark streaks are usually rimless and shallow. This is consistent with ponded dark sands easily washing over crater walls and extending downwind.Plots of streak length versus crater diameter suggest a complex history of streak formation for most regions.Bright streak trends and latitudinal distributions are consistent with return flow of dust to the southern hemisphere. Some dark streaks may be direct relics of passing sand and dust storms. Trends of dark streaks and splotches away from the south pole are consistent with the spreading of a debris mantle from the polar regions toward the equator.  相似文献   

8.
Alan R. Peterfreund 《Icarus》1981,45(2):447-467
Estimation of surface properties and physical setting of three common Martian wind streak types (bright, dark, and splotch related) provides constraints on models of the formation and variability of streaks. Bright streaks form independently of surface properties other than local topography. This is consistent with their formation being due to deposition of atmospheric dust in the lee of topographic features. Although they are widespread on Mars, dark streaks are noted as variable only in regions near 30°S latitude and elevations between 3 and 7 km, and are associated with dark surfaces that have relatively high thermal inertias. Splotch-related streaks occur at elevations between 0 and 6 km and in regions of relatively high thermal inertia. Splotch-related streaks occur near the boundaries of thermally defined regions, such as the south polar cap and other areas of either low or high thermal inertia. These thermal conditions are responsible for the production of surface winds which form and modify these streaks. The source of sidements which form splotch-related streaks varies from dunes to well-indurated stratified deposits. Regional studies of the various types in Syrtis Major, Syria Planum-Claritas Fossae, Oxia Palus, Mesogea, and Pettit craters and Noachis confirm that the correlations found at the global level occur at regional scales.  相似文献   

9.
An unusual, prominent dark streak located in Mesogaea (near 8°N, 191°W) is described. Its appearance is unlike that of most dark streaks on Mars, many of which have ragged outlines, are variable on short time-scales, and are presumed to be erosional. The Mesogaea streak has a tapered, smooth outline, and no changes within it were observed. We suggest that this streak is depositional and that the low-albedo material originated within the associated crater itself. The source area is identified with a compact, low-albedo region on the crater floor. Two possible origins for the dark material are suggested: (1) deflation from a recently exposed, relatively unconsolidated subsurface deposit, and (2) production of ash by a volcanic vent.  相似文献   

10.
Visible images from the Mars Reconnaissance Orbiter have revealed more than 200 new impact sites on Mars (almost all in dust-mantled regions) containing 1–50 m diameter craters, often in clusters. We count approximately 65,000 small-scale slope streaks within 2 to 3 km of one such cluster and categorize them into four morphologically distinct types. Here we show that these slope streaks (interpreted as dust avalanches) are triggered by the impact event but, surprisingly, are not due to seismic shaking; instead, the dust avalanches are due to airblasts created by the supersonic meteor(s) before impact. Sixteen of the new impact sites are associated with high areal densities of dust avalanches. The observed dust avalanche frequency suggests that impact-generated airblasts constitute a locally important and previously unrecognized process for inducing slope degradation on Mars.  相似文献   

11.
We report observations of a set of surface features on Mars that form a distinct class of avalanche scars. These features have a horizontal scale of hundreds of meters, but a depth scale of meters distinguishes them from the shallower features known as slope streaks. The meters-thick avalanche scars have escaped previous attention because of weak contrast between the interiors of the scarred regions and their surroundings. Often the most visible feature is a shadow cast by the trough wall, a band 1-3 pixels wide in Mars Orbiter Camera narrow angle images, indicating maximum depths of 4-10 m. We investigate the morphology of more than 500 such features. Slopes upon which the avalanches occur average about 27°. Impact craters are seen at the heads of some avalanche scars; this subset exhibits statistically wider opening angles. The scars span an estimated several Ma in age. Those found so far occurred mainly in the Olympus Mons lower aureole. We compare shapes of slope streaks to shapes of meters-thick avalanches, and the results support the notion that the two classes are distinct. The newly-discovered avalanches resemble some terrestrial flows of loose, dry material such as dry snow and glass beads. On the basis of these analogs, we suggest a physical model.  相似文献   

12.
We documented the distribution and the time-variation of the specific dark wind streaks at Pavonis Mons. We focused on the streaks we named “Spire Streaks”, which are overlapping spindle shaped dark streaks at the upper boundary of the coalesced dark streaks on Tharsis volcanoes. We investigated both visible and infrared images obtained by Viking orbiter camera, Mars Orbiter Camera (MOC), THEMIS, CTX and HiRISE of the spire streaks at Pavonis Mons. We also used topographic data obtained by Mars Orbiter Laser Altimeter (MOLA) to see the relationship between the topography and the distribution of the spire streaks. The spire streaks at Pavonis Mons provide us high-resolution information about the direction of the nighttime slope wind, and could be indirect clues for the time-variation of the nighttime environment. We conclude that the spire streaks are erosional features. However, some features of the spire streaks reported in this paper are outside the scope of previous modeling for erosional process, and we need a new category of model for the formation.  相似文献   

13.
J. Veverka  P. Thomas  Carl Sagan 《Icarus》1978,36(1):147-152
R. O. Kuzmin has proposed that all crater-associated wind streaks on Mars are depositional and consist of unresolved barchan-like dunes. He claims that any streak can appear either bright or dark relative to its surroundings depending on the azimuth of the Sun relative to the streak axis and on the elevation of the Sun above the horizon. Our studies of the entire Mariner 9 picture collection as well as of available Viking data lend no support to these ideas. We find that the conditions for visibility of bright and dark streaks are identical. In Mariner 9 images both types of streaks are visible for viewing angles ? ? 60°, illumination angles of 15° ? i ? 75°, and over the whole range of phase angles covered (about 15 to 85°). There are numerous examples of dark and light streaks visible at the same azimuth angle of the Sun, contrary to Kuzmin's claim. There is much evidence to indicate that bright and dark streaks differ both in morphology and in character. The common ragged dark streaks are probably erosion scars, while most bright streaks probably represent accumulations of bright dust-storm fallout. There is no evidence at present that these accumulations have a barchan-like texture.  相似文献   

14.
J. Veverka  K. Cook  J. Goguen 《Icarus》1978,33(3):466-482
A statistical study of all crater-related wind streaks visible on Mariner 9 A-camera frames between latitudes 0 and 30°N has been completed. Of the 2325 streaks identified 1914 (82%) are light tone streaks, 189 (8%) are dark tone, and the remaining 222 (10%) are of mixed tone. Nine parameters characterizing each streak and its associated crater were measured and intercorrelated. Because of the large number of light streaks in our sample fir findings for this type of streak are most significant statistically: light tone streaks occur preferentially in Pc terrain (heavily cratered plains); they are preferentially associated with fresh craters; the surface density of light streaks is not a strong function of elevation; a significant latitude effect does emerge—the density of light tone streaks reaches a maximum between 10 and 15°N, and drops off appreciably both toward the equator and toward higher latitudes; the mean angular width of light streaks is about 25°—long light streaks are significantly narrower than short ones; about 50% of streaks have streak length/crater diameter ratios of ?4; light streak directions conform closely to the wind regime expected at the season of global dust storms (southern summer). Generally speaking, the results for dark and mixed tone streaks in the northern equatorial zone are similar, with the following possible exceptions: dark streaks may show a slight preference to form at higher elecations; dark streaks may be slightly wider on average than light or mixed tone streaks; mixed tone streaks do not share the preference for sharp craters exhibited by light and dark streaks; in general, the directions of dark streaks do not conform to the general circulation pattern expected at the season of global dust storms as well as do those of the light streaks.  相似文献   

15.
The future exploration of Mars is likely to utilize resources that can be extracted in situ. An overview of the geology of Mars has been presented and several mechanisms that could result in the formation of ore deposits have been identified. These include deposits caused by hydrothermal fluids resulting from volcanic activity, large igneous province formation and impact craters. Surface enrichment of mineral sand deposits is also discussed. Where appropriate, terrestrial analogues of these mechanisms have been discussed and supporting evidence from observations of Mars undertaken to date presented. Types of deposits that are unlikely to be found on Mars are also listed.  相似文献   

16.
Analyses of Mars Express OMEGA hyperspectral data (0.4-2.7 μm) for Terra Meridiani and western Arabia Terra show that the northern mantled cratered terrains are covered by dust that is spectrally dominated by nanophase ferric oxides. Dark aeolian dunes inside craters and dark streaks extending from the dunes into the intercrater areas in mantled cratered terrains in western Arabia Terra have similar pyroxene-rich signatures demonstrating that the dunes supply dark basaltic material to create dark streaks. The dissected cratered terrains to the south of the mantled terrains are dominated spectrally by both low-calcium and high-calcium pyroxenes with abundances of 20-30% each retrieved from nonlinear radiative transfer modeling. Spectra over the hematite-bearing plains in Meridiani Planum are characterized by very weak but unique spectral features attributed to a mixture of a dark and featureless component (possibly gray hematite) and minor olivine in some locations. Hydrated minerals (likely hydrous ferric sulfates and/or hydrous hydroxides) associated with poorly ferric crystalline phases are found in the etched terrains to the north and east of the hematite-bearing plains where erosion has exposed ∼1 km of section of layered outcrops with high thermal inertias. These materials are also found in numerous craters in the northern Terra Meridiani and may represent outliers of the etched terrain materials. A few localized spots within the etched terrain also exhibit the spectral signature of Fe-rich phyllosilicates. The ensemble of observations show that the evidence for aqueous processes detected by the Opportunity Rover in Meridiani Planum is widespread and confirms the extended presence of surface or near-surface water over this large region of Mars. The scenarios of formation of Terra Meridiani (“dirty” acidic evaporite, impact surge or weathering of volcanic ash) cannot satisfactorily explain the mineralogy derived from the OMEGA observations. The formation of the etched terrains is consistent with leaching of iron sulfides and formation of sulfates and hydrated iron oxides, either in-place or via transport and evaporation of aqueous fluids and under aqueous conditions less acidic than inferred from rocks examined by Opportunity.  相似文献   

17.
P. Thomas  J. Veverka  S. Lee  A. Bloom 《Icarus》1981,45(1):124-153
A classification of Martian wind streaks has been developed to assist in investigations of eolian transport and related meteorological phenomena on Mars. Streaks can be grouped by their albedo contrast with their surroundings and by the presence of either topographic obstacles or sediment deposits at their points of origin. The vast majority of wind streaks can be included in three categories. (1) Bright streaks with no source deposit: interpreted to be formed by preferential deposition of dust from suspension. (2) Dark streaks with no source deposit: interpreted to be formed by preferential erosion of bright dust and its removal in suspension. (3) Dark streaks associated with deposits of sediment: interpreted to be formed by deposition of dark material moved by saltation. The orientations of the different streak types are distinctive and reflect both global flow patterns and slope-controlled winds. The wind directions derived from streaks and the geographical distribution of the features show a strong north-south asymmetry—consistent with the fact that perihelion (and hence maximum wind activity) occurs near southern summer solstice.  相似文献   

18.
Nathalia Alzate 《Icarus》2011,211(2):1274-1283
Central pit craters are common on Mars, Ganymede and Callisto, and thus are generally believed to require target volatiles in their formation. The purpose of this study is to identify the environmental conditions under which central pit craters form on Ganymede. We have conducted a study of 471 central pit craters with diameters between 5 and 150 km on Ganymede and compared the results to 1604 central pit craters on Mars (diameter range 5-160 km). Both floor and summit pits occur on Mars whereas floor pits dominate on Ganymede. Central peak craters are found in similar locations and diameter ranges as central pit craters on Mars and overlap in location and at diameters <60 km on Ganymede. Central pit craters show no regional variations on either Ganymede or Mars and are not concentrated on specific geologic units. Central pit craters show a range of preservation states, indicating that conditions favoring central pit formation have existed since crater-retaining surfaces have existed on Ganymede and Mars. Central pit craters on Ganymede are generally about three times larger than those on Mars, probably due to gravity scaling although target characteristics and resolution also may play a role. Central pits tend to be larger relative to their parent crater on Ganymede than on Mars, probably because of Ganymede’s purer ice crust. A transition to different characteristics occurs in Ganymede’s icy crust at depths of 4-7 km based on the larger pit-to-crater-diameter relationship for craters in the 70-130-km-diameter range and lack of central peaks in craters larger than 60-km-diameter. We use our results to constrain the proposed formation models for central pits on these two bodies. Our results are most consistent with the melt-drainage model for central pit formation.  相似文献   

19.
As in seen from comparisons of Mariner 9 images obtained in 1972 and Viking Orbiter 1 images obtained in 1978, several changes have occurred in the Cerberus region of Mars. Changes in the boundary of the low albedo feature resulted in an increase of the total area of Cerberus by slightly more than 1%, although the southwestern boundary had shifted as much as 90 km. Relative darkening of Cerberus has resulted in a more uniform tone, and is accompanied by the disappearance of dark filamentary markings. Although several bright streaks within Cerberus changed in length, neither lengthening nor shortening of the streaks predominated. However, changes in streak direction indicate a clockwise rotation of mean streak azimuth between 1972 and 1978. These changes in the outline and appearance of Cerberus can best be explained by eolian redistribution and removal of bright material during major dust storms. Volcanic flow fronts which show through the albedo feature indicate that the contrast between Cerberusand the surrounding light plains is not due to a difference in lithology, but to the distribution of surficial deposits. Because of local topographic influences on the regional atmospheric circulation patterns, it is probable that Cerberus will retain a similar appearance and location.  相似文献   

20.
Two constraints placed upon the cratering flux at Mars by the SNC meteorites are examined: crystallization ages as a constraint on surface ages and cosmic ray exposure ages and number of impacts as a constraint on absolute rates. The crystallization ages of the SNC meteorites appear to constrain the Martian cratering rate to be 4xLunar or more if the parent lavas are in the north of Mars and the number of SNC ejecting impacts are small. If the SNCs result from a single impact that formed the Lyot basin then the cratering rate must be at least 7xLunar or higher to produce a basin age less than the SNC crystallization age because the basin ages are themselves determined by crater counting. Assuming multiple uncorrelated impacts for SNC ejection from Mars over 10 million years a cratering rate of approximately 4xLunar is also found for ejecting impacts that form craters over 12km in diameter. Therefore, both crystallization ages and ejection ages and number of impacts appear consistent with a 4xLunar cratering rate at Mars. The effect on Martian chronologies of such a high cratering rate is to place the SNC crystallization ages partly within the epoch of channel formation on Mars and to extend this liquid water epoch over much of Mars history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号