首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Organic geochemical analysis and palynological studies of the organic matters of subsurface Jurassic and Lower Cretaceous Formations for two wells in Ajeel oil field, north Iraq showed evidences for hydrocarbon generation potential especially for the most prolific source rocks Chia Gara and Sargelu Formations. These analyses include age assessment of Upper Jurassic (Tithonian) to Lower Cretaceous (Berriasian) age and Middle Jurassic (Bathonian–Tithonian) age for Chia Gara and Sargelu Formations, respectively, based on assemblages of mainly dinoflagellate cyst constituents. Rock-Eval pyrolysis have indicated high total organic carbon (TOC) content of up to 18.5 wt%, kerogen type II with hydrogen index of up to 415 mg HC/g TOC, petroleum potential of 0.70–55.56 kg hydrocarbon from each ton of rocks and mature organic matter of maximum temperature reached (Tmax) range between 430 and 440 °C for Chia Gara Formation, while Sargelu Formation are of TOC up to 16 wt% TOC, Kerogen type II with hydrogen index of 386 mg HC/g TOC, petroleum potential of 1.0–50.90 kg hydrocarbon from each ton of rocks, and mature organic matter of Tmax range between 430 and 450 °C. Qualitative studies are done in this study by textural microscopy used in assessing amorphous organic matter for palynofacies type belonging to kerogen type A which contain brazinophyte algae, Tasmanites, and foraminifera test linings, as well as the dinoflagellate cysts and spores, deposited in dysoxic–anoxic environment for Chia Gara Formation and similar organic constituents deposited in distal suboxic–anoxic environment for Sargelu Formation. The palynomorphs are of dark orange and light brown, on the spore species Cyathidites australis, that indicate mature organic matters with thermal alteration index of 2.7–3.0 for the Chia Gara Formation and 2.9–3.1 for the Sargelu Formation by Staplin's scale. These characters have rated the succession as a source rock for very high efficiency for generation and expulsion of oil with ordinate gas that charged mainly oil fields of Baghdad, Dyala (B?aquba), and Salahuddin (Tikrit) Governorates. Oil charge the Cretaceous-Tertiary total petroleum system (TPS) are mainly from Chia Gara Formation, because most oil from Sargelu Formation was prevented passing to this TPS by the regional seal Gotnia Formation. This case study of mainly Chia Gara oil source is confirmed by gas chromatography–mass spectrometry analysis for oil from reservoirs lying stratigraphically above the Chia Gara Formation in Ajeel and Hamrine oil fields, while oil toward the north with no Gotnia seal could be of mainly Sargelu Formation source.  相似文献   

2.
Gas chromatography, palynomorph constituents, and maturation are analyzed for oil samples of the Campanian Khasib and Tannuma Formations in the wells of East Baghdad oil field for biomarker studies, while palynomorph constituents and their maturation, Rock Eval pyrolysis, total organic carbon (TOC) analysis are carried on for the Upper Jurassic and the Cretaceous Formations of core samples from the same wells for dating and evaluation of the source rocks. The gas chromatography of these oils have shown biomarkers of abundant ranges of n-alkanes of less than C22(C17–C21) with C19 and C18 peaks to suggest mainly liquid oil constituents of paraffinic hydrocarbons from marine algal source of restricted palaeoenvironments in the reservoir as well as low nonaromatic $ {\hbox{C}}_{15}^{+} $ peaks to indicate their slight degradation and water washing. Oil biomarkers of $ \Pr ./{\hbox{Ph}}{.} = {0}{.85,}{{\hbox{C}}_{31}}/{{\hbox{C}}_{30}} < 1.0 $ , location is in the triangle of C27–C29 sterane, C28/C29 of 0.6 sterane, oleanane of 0.01, and CPI = 1.0, could indicate anoxic marine environment with carbonate deposition of Upper Jurassic–Early Cretaceous source. The recorded palynomorph constituents in this oil and associated water are four miospore, seven dinoflagellates, and one Tasmanite species that could confirm affinity to the Upper most Jurassic–Lower Cretaceous Chia Gara and Ratawi Formations. The recorded palynomorphs from the reservoir oil (Khasib and Tannuma Formations) are of light brown color of $ {\hbox{TAI}} = 2.8 - 3.0 $ and comparable to the mature palynomorphs that belong to Chia Gara and Lower part of Ratawi Formations. Chia Gara Formation had generated and expelled high quantity of oil hydrocarbons according their TOC weight percent of 0.5–8.5 with ${S_2} = 2.5 - 18.5\,{\hbox{mg}}\,{\hbox{Hc/g}}\;{\hbox{rock}} $ , high hydrogen index of the range 150–450 mg Hc/g Rock, good petroleum potential of 4.5–23.5 mg Hc/g rock, mature ( $ {\hbox{TAI}} = 2.8 - 3.0 $ and $ {\hbox{T}}\max = 428 - 443{\hbox{C}} $ ), kerogen type II, and palynofacies parameters of up to 100 amorphous organic matters with algae deposited in dysoxic–anoxic to suboxic–anoxic basin, while the palynomorphs of the rocks of Khasib Formation are of amber yellow color of TAI = 2.0 with low TOC and hence not generated hydrocarbons. But, this last formation could be considered as oil reservoir only according their high porosity (15–23%) and permeability (20–45 mD) carbonate rocks with structural anticline closure trending NW-SE. That oil have generated and expelled during two phases; the first is during Early Palaeogene that accumulated in traps of the Cretaceous structural deformation, while the second is during Late Neogene’s.  相似文献   

3.
Hydrocarbon potential of the Sargelu Formation,North Iraq   总被引:1,自引:1,他引:0  
Microscopic and chemical analysis of 85 rock samples from exploratory wells and outcrops in northern Iraq indicate that limestone, black shale and marl within the Middle Jurassic Sargelu Formation contain abundant oil-prone organic matter. For example, one 7-m (23-ft.)-thick section averages 442 mg?HC/g S2 and 439 °C Tmax (Rock-Eval pyrolysis analyses) and 16 wt.% TOC. The organic matter, comprised principally of brazinophyte algae, dinoflagellate cysts, spores, pollen, foraminiferal test linings and phytoclasts, was deposited in a distal, suboxic to anoxic basin and can be correlated with kerogens classified as type A and type B or, alternatively, as type II. The level of thermal maturity is within the oil window with TAI?=?3? to 3+, based on microspore colour of light yellowish brown to brown. Accordingly, good hydrocarbon generation potential is predicted for this formation. Terpane and sterane biomarker distributions, as well as stable isotope values, were determined for oils and potential source rock extracts to determine valid oil-to-source rock correlations. Two subfamily carbonate oil types—one of Middle Jurassic age (Sargelu) carbonate rock and the other of Upper Jurassic/Cretaceous age—as well as a different oil family related to Triassic marls, were identified based on multivariate statistical analysis (HCA and PCA). Middle Jurassic subfamily A oils from Demir Dagh oil field correlate well with rich, marginally mature, Sargelu source rocks in well MK-2 near the city of Baiji. In contrast, subfamily B oils have a greater proportion of R28 steranes, indicating they were generated from Upper Jurassic/Lower Cretaceous carbonates such as those at Gillabat oil field north of Mansuriyah Lake. Oils from Gillabat field thus indicate a lower degree of correlation with the Sargelu source rocks than do oils from Demir Dagh field. One-dimension petroleum system models of key wells were developed using IES PetroMod Software to evaluate burial-thermal history, source-rock maturity and the timing and extent of petroleum generation; interpreted well logs served as input to the models. The oil-generation potential of sulphur-rich Sargelu source rocks was simulated using closed system type II-S kerogen kinetics. Model results indicate that throughout northern Iraq, generation and expulsion of oil from the Sargelu began and ended in the late Miocene. At present, Jurassic source rocks might have generated and expelled between 70 % and 100 % of their total oil.  相似文献   

4.
《China Geology》2019,2(2):133-141
Source rocks are the material basis of oil and gas generation and determine the potential resources of exploration blocks and have important research value. This paper studies the lithology, thickness, and geochemistry of Mesozoic source rocks in the southeastern East China Sea continental shelf. The results show that the Mesozoic source rocks are mainly dark mudstone and coal-bearing strata. The total thickness of Lower–Middle Jurassic source rocks ranges from 100 m to 700 m, and that of Lower Cretaceous source rocks ranges from 50 m to 350 m. The overall thickness of Mesozoic source rocks is distributed in the NE direction and their thickness center is located in the Jilong Depression. The Lower–Middle Jurassic source rocks are mainly developed shallow marine dark mudstone and transitional coal measure strata. Those of the Lower Cretaceous are mainly mudstone of a fan delta front. Lower–Middle Jurassic and Lower Cretaceous hydrocarbon source rocks are dominated by type III kerogen, with Lower–Middle Jurassic hydrocarbon source rocks having high organic matter abundance and being medium–good hydrocarbon source rocks, while Lower Cretaceous hydrocarbon source rocks have relatively poor quality. From northwest to southeast, the vitrinite reflectance Ro of Mesozoic source rocks increases gradually. Source rocks in the study area are divided into three types. The first hydrocarbon-generating area is mainly located in the southeastern region of the study area, and the Jilong Depression is the hydrocarbon-generating center. The results of this study can provide a basis for exploration of Mesozoic oil and gas resources in the southeastern East China Sea continental shelf.© 2019 China Geology Editorial Office.  相似文献   

5.
Palynomorphs and nannofossils were examined from the Lower Cretaceous interval of the well North Scarborough-1, drilled on the Exmouth Plateau, North West Shelf of Australia. Integration of the chronostratigraphic information from both fossil groups revealed discrepancies in the age information with the nannofossils suggesting a younger age than dinoflagellate cysts. The nannofossil events have a stronger tie to the global time scale than the dinoflagellate zones which are mainly local. The direct comparison of nannofossil and dinoflagellate events in the same section allows for improved stratigraphic precision and a revised correlation of Australian dinoflagellate zonal ages to the global time scale, GTS12. Global nannofossil ages confirm a Barremian–late Hauterivian age for the Muderongia australis Zone, but the Systematophora areolata to Dissimulidinium lobispinosum Zones appear to be 1–2 my younger than previously estimated.  相似文献   

6.
There are several source rock units in the Zagros Basin, but the Cretaceous Kazhdumi and Paleogene Pabdeh formations probably have produced the majority of the commercial hydrocarbons in this area. Among the hydrocarbon provinces of Iran, the Dezful Embayment, which is located southwest of Zagros Mountains, is one of the most prolific regions in the Middle East. Numerous studies have been made in the northern part of the Dezful Embayment, but relatively few have been done in its southern part. The present study focuses on organic matter characterization of two potential source rocks (Kazhdumi and Pabdeh formations) in southern part of the Dezful Embayment. Cuttings samples (114) were collected from 10 wells and evaluated using Rock–Eval pyrolysis and organic petrography in order to characterize the content and type of organic matter and thermal maturity. The results showed that the average total organic carbon (TOC) content of Kazhdumi and Pabdeh formations are 2.48 and 1.62 wt%, respectively. The highest TOC contents for both formations are found in the northern compartment and decreased gradually toward the south. Pyrolysis data reveal that organic matter has a fair to very good hydrocarbon generation potential and are classified as Type II–III and Type III. Rock–Eval Tmax and vitrinite reflectance show that the majority of samples are in the early mature to mature stage of the oil generation window.  相似文献   

7.
《Applied Geochemistry》1993,8(4):325-337
Hydrous pyrolysis has been used to simulate maturation of source rocks with respect to the generation of organic acids and CO2. The results from pyrolysis experiments on eight different source rocks at this laboratory are given and compared with published data. The investigation show levels of generation for acetic acid equivalent to 0.2–1.2% of the TOC of the source rock and total acids at a level of 1–2% of the TOC. The generated CO2 is equivalent to 1–10% of the TOC. The relative amounts of CO2 and organic acids and the maturity dependence of the yield are a function of the source rock type.The amounts of acids generated are sufficient to give significant concentrations in the fluid phases of the source rock and, after migration, in adjacent rocks. Reaction and equilibration with minerals will occur at the first contact, which in most cases will be in or close to the source rock. The organic acids may initially be dissolved in the oil phase, but their high aqueous solubilities will make them diffuse rapidly out of the oil phase and into the surrounding water phase as soon as the oil has migrated into porous carrier beds. The migration of the petroleum phase is driven by buoyancy and there is no equivalent drive for water flow from source rock to reservoir. If the distance between source and reservoir s large, the organic acids found in the reservoir formation waters must therefore have been transported in the oil phase or generated in situ from emplaced oil or disseminated kerogen. The high water solubility of the acids will, however, limit the distances they can be transported in the oil phase. In situ generation in the reservoir must therefore be seriously considered.  相似文献   

8.
准噶尔盆地西南缘四棵树凹陷主要分布侏罗系、白垩系和古近系3套潜在烃源岩,其中侏罗系八道湾组烃源岩有机质丰度较高,有机质类型以Ⅲ型为主,部分为Ⅱ2型,生烃潜力较高;三工河组烃源岩有机质丰度、类型明显偏差,生烃潜力较低;西山窑组泥岩有机质丰度较高,但由于受西山窑组沉积末期构造抬升导致地层剥蚀的影响,烃源岩厚度较小,总体上生烃条件较差;白垩系烃源岩在四棵树凹陷最大厚度可达300 m,处于低熟阶段,生烃潜力较小;古近系烃源岩有机质丰度较高、类型好,但成熟度偏低,生烃条件较差。侏罗系八道湾组烃源岩处于主要生油阶段;白垩系烃源岩已达到生烃门限,处于低熟—中等成熟阶段;古近系烃源岩成熟度偏低,目前仍处于未熟到低熟阶段。油源对比表明,四棵树凹陷北部斜坡及车排子凸起带原油主要来源于四棵树凹陷及沙湾凹陷侏罗系烃源灶,后期受到白垩系低熟油源灶的侵染,古近系烃源岩的油源贡献有限。  相似文献   

9.
The origin of the oil in Barremian–Hauterivian and Albian age source rock samples from two oil wells (SPO-2 and SPO-3) in the South Pars oil field has been investigated by analyzing the quantity of total organic carbon (TOC) and thermal maturity of organic matter (OM). The source rocks were found in the interval 1,000–1,044 m for the Kazhdumi Formation (Albian) and 1,157–1,230 m for the Gadvan Formation (Barremian–Hauterivian). Elemental analysis was carried out on 36 samples from the source rock candidates (Gadvan and Kazhdumi formations) of the Cretaceous succession of the South Pars Oil Layer (SPOL). This analysis indicated that the OM of the Barremian–Hauterivian and Albian samples in the SPOL was composed of kerogen Types II and II–III, respectively. The average TOC of analyzed samples is less than 1 wt%, suggesting that the Cretaceous source rocks are poor hydrocarbon (HC) producers. Thermal maturity and Ro values revealed that more than 90 % of oil samples are immature. The source of the analyzed samples taken from Gadvan and Kazhdumi formations most likely contained a content high in mixed plant and marine algal OM deposited under oxic to suboxic bottom water conditions. The Pristane/nC17 versus Phytane/nC18 diagram showed Type II–III kerogen of mixture environments for source rock samples from the SPOL. Burial history modeling indicates that at the end of the Cretaceous time, pre-Permian sediments remained immature in the Qatar Arch. Therefore, lateral migration of HC from the nearby Cretaceous source rock kitchens toward the north and south of the Qatar Arch is the most probable origin for the significant oils in the SPOL.  相似文献   

10.
Chemical analysis was carried out to evaluate the potentiality of rock samples having hydrocarbon characteristics, identified by chemical methods as one of the approaches to evaluate the source rocks encountered from Sehkanian, Sargelu, Naokelekan, Sarmord and Ghia Gara of (Middle to Upper Jurassic–Lower Cretaceous) stratigraphic sequence of Iraq, representing source rocks, which are recovered from oil exploratory wells Butmah-15, Ajeel-8, Makhul-2, Qarachuq (1 and 2) and TaqTaq-1 (Bm-15, Aj-8, Mk-2, Qc-1,Qc-2 and Taq-1) alternatively, located in the northern part of Iraq and also the outcrop samples extracted from the type locality at Surdash Anticline. Additional samples were taken from another exposure section of the Jurassic rocks from Banik village, those various samples represent Varity of palynofacies. The bulk of chemical analysis enables to enhance the potentiality of the source rocks, leading to believe generating tremendous amount of oil and subordinate gas promising more than earlier predictions for forming super giant oil and thermogenic gas fields in this area. The value of the production indices determines that the system of the oil in Iraq is not widely different from the depocenters of the surrounding countries. Accordingly Iraq is considered as an ideal and systematic basin that all the total petroleum system elements are available, giving indications of good source rocks, extensive reservoirs and excellent seals. Typical oil fields, which as determined by the remarkable total organic carbon exceeds 20 %, and maturation evidences accompanied with maximum temperature up to 450°C indicate obviously various values of the hydrogen and oxygen indices, kerogen type II and type III, of marine to mixed to terrestrial origin that lead to determine that the oil and gas prone Sargelu, Naokelekan and Ghia Gara were good source rocks. Meanwhile Barsarin and Sarmord were reservoir rocks. The area of study is widely promising to produce oil with condensed gas.  相似文献   

11.
Seventy-two core and cutting samples of the Ratawi Formation from selected wells of central and southern Iraq in Mesopotamian Foredeep Basin are analysed for their sedimentary organic matters. Dinoflagellates, spores and pollen are extracted by palynological techniques from these rocks. Accordingly, Hauterivian and late Valanginian ages are suggested for their span of depositional time. These palynomorphs with other organic matter constituents, such as foraminifer’s linings, bacteria and fungi, are used to delineate three palynofacies types that explain organic matter accumulation sites and their ability to generate hydrocarbons. Palaeoenvironments of these sites were mainly suboxic to anoxic with deposition of inshore and neritic marine environments especially for palynofacies type 2. Total organic matters of up to 1.75 total organic carbon (TOC) wt.% and early mature stage of up to 3.7 TAI based on the brown colour of the spore species Cyathidites australis and Gleichenidites senonicus with mottled interconnected amorphous organic matter are used for hydrocarbon generation assessment from this formation. On the other hand, these rock samples are processed with Rock-Eval pyrolysis. Outcomes and data calculations of these analyses are plotted on diagrams of kerogen types and hydrocarbon potential. Theses organic matter have reached the mature stage of up to T max?=?438 °C, hydrogen index of up to 600 mg hydrocarbons for each gram of TOC wt.% and mainly low TOC (0.50–1.55). Accordingly, this formation could generate fair quantities of hydrocarbons in Baghdad oil field and Basrah oil fields. Organic matters of this formation in the fields of Euphrates subzone extends from Hilla to Nasiriyah cities have not reached mature stage and hence not generated hydrocarbons from the Ratawi Formation. Software 1D PetroMod basin modelling of the Ratawi Formation has confirmed this approach of hydrocarbon generation with 100 % transformations of the intended organic matters to generate hydrocarbons to oil are performed in especially oil fields of East Baghdad, West Qurna and Majnoon while oil fields Ratawi and Subba had performed 80–95 % transformation to oil and hence end oil generation had charged partly the Tertiary traps that formed during the Alpine Orogeny. Oil fields of Nasiriyah and Kifle had performed least transformation ratio of about 10–20 % transformation to oil, and hence, most of the present oil in this field is migrated from eastern side of the Mesopotamian Foredeep Basin that hold higher maturation level.  相似文献   

12.
Hydrous pyrolysis (HP) experiments were used to investigate the petroleum composition and quality of petroleum generated from a Brazilian lacustrine source rock containing Type I kerogen with increasing thermal maturity. The tested sample was of Aptian age from the Araripe Basin (NE-Brazil). The temperatures (280–360 °C) and times (12–132 h) employed in the experiments simulated petroleum generation and expulsion (i.e., oil window) prior to secondary gas generation from the cracking of oil. Results show that similar to other oil prone source rocks, kerogen initially decomposes in part to a polar rich bitumen, which decomposes in part to hydrocarbon rich oil. These two overall reactions overlap with one another and have been recognized in oil shale retorting and natural petroleum generation. During bitumen decomposition to oil, some of the bitumen is converted to pyrobitumen, which results in an increase in the apparent kerogen (i.e., insoluble carbon) content with increasing maturation.The petroleum composition and its quality (i.e., API gravity, gas/oil ratio, C15+ fractions, alkane distribution, and sulfur content) are affected by thermal maturation within the oil window. API gravity, C15+ fractions and gas/oil ratios generated by HP are similar to those of natural petroleum considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous age. API gravity of the HP expelled oils shows a complex relationship with increasing thermal maturation that is most influenced by the expulsion of asphaltenes. C15+ fractions (i.e., saturates, aromatics, resins and asphaltenes) show that expelled oils and bitumen are compositionally separate organic phases with no overlap in composition. Gas/oil ratios (GOR) initially decrease from 508–131 m3/m3 during bitumen generation and remain essentially constant (81–84 m3/m3) to the end of oil generation. This constancy in GOR is different from the continuous increase through the oil window observed in anhydrous pyrolysis experiments. Alkane distributions of the HP expelled oils are similar to those of natural crude oils considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous age. Isoprenoid and n-alkane ratios (i.e., pristane/n-C17 and phytane/n-C18) decrease with increasing thermal maturity as observed in natural crude oils. Pristane/phytane ratios remain constant with increasing thermal maturity through the oil window, with ratios being slightly higher in the expelled oils relative to those in the bitumen. Generated hydrocarbon gases are similar to natural gases associated with crude oils considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous, with the exception of elevated ethane contents. The general overall agreement in composition of natural and hydrous pyrolysis petroleum of lacustrine source rocks observed in this study supports the utility of HP to better characterize petroleum systems and the effects of maturation and expulsion on petroleum composition and quality.  相似文献   

13.
Four wells (K-109, Hr-1, Tk-3, and Bj-1) in NE Iraq (including parts of the Kurdistan Region) were selected to study the Tithonian–Berriasian Chia Gara Formation from the inorganic geochemical point of view. The intervals studied in each well occurred at present-day burial depths of Hr-1 3,075–3,310 m; K-109 2,780–3,090; Tk-1 2,770–2,890; and Bj-1 2,150–2,310 m. A total of 16 samples from the four studied wells were investigated geochemically using X-ray fluorescence in order to measure their major element oxides and their trace element contents. Among the major oxides, CaO has the highest weight percentages in all samples as expected in this limestone-dominated formation. SiO2 and Al2O3 show higher concentrations only in well Bj-1 than the other sections, due to its shallower depth of deposition and its marginal location within the depositional basin. The general trace element distribution along all studied well successions showed good similarity. However, the ratios of V/Ni and V/Cr were of higher values in the lower part of the formation, which is considered as a good indicator to the deposition of this part of the formation within anoxic depositional environment. An exception was in well Bj-1, where the V/Ni ratio was lower in the this lower part of the formation than the upper part that may be due to the different lithology in this succession which is lacking distinct shale or calcareous shale beds. However, the V/Cr ratio can still indicate the prevailing of reducing condition because V/Cr ratios in all samples are >2. Also, Th/U ratio in the lower part of the studied successions was lower than the upper part, which is also coinciding with the domination of the reducing geochemical conditions in the depositional environment. It may be concluded from this study that the R-mode cluster analysis of the main oxides indicated to the main mineral constituent of the rock which is calcite. It is also confirmed that the SiO2 and Al2O3 contents in the Chia Gara limestones are especially high in well Bj-1, particularly in the lower and upper parts of the succession. On the other hand, R-mode cluster analysis of the trace elements showed lower amounts of Zr and V in relation to silica and confirmed the random distribution of Sr and Ba in the studied samples. Q-mode cluster analysis indicated that the upper part of the studied formation is pure limestone in well H-1 and such purity of limestone beds also occurs in the lower part of the studied formation in well Tk-3. The elemental distribution within the sections as inferred from the studied samples indicates that the anoxic depositional conditions were prevailed during the Chia Gara Formation, especially during the accumulation of the lower part.  相似文献   

14.
青藏措勤盆地早白垩世多巴组烃源岩评价   总被引:3,自引:0,他引:3  
该区早白垩世多巴组烃源岩岩石类型、有机质丰度、有机质类型、有机质热演化程度等方面研究表明,多巴组烃源岩有机质丰度偏低,有机质以腐泥型和腐殖腐泥型为主,有机质的热演化以高成熟为主,总体评价为较差烃源岩.该成果为在措勤盆地进一步开展油气勘探提供可靠的地质资料。  相似文献   

15.
A new biostratigraphic correlation for Late Cretaceous and Palaeocene strata of the Côte d’Ivoire–Ghana continental margin has been developed from the identification of significant dinoflagellate cyst events in ODP Hole 959D. The Late Cretaceous stage boundaries are mostly consistent with previous studies. However, the Maastrichtian/Danian boundary is placed much lower than previously recognized on the basis of the first occurrences of Carpatella cornuta and Damassadinium californicum. The base of the Selandian is recognized from the last occurrence of Cerodinium diebelii and the first occurrence of Adnatosphaeridium multispinosum. The base of the Thanetian is recognized from the first occurrence of Areoligera gippingensis. The rarity of the age-marker taxa is the main reason for different age determinations among studies of the same section.  相似文献   

16.
对河西走廊地区石炭系—二叠系沉积演化、生烃条件、储集条件、生储盖组合类型和保存条件进行了研究,认为区内石炭系—二叠系具有良好的油气地质条件,是值得重视的油气勘探新层系。研究区早石炭世—早二叠世早期,以浅海相—海陆交互相沉积为主,前黑山组—太原组发育多套暗色泥岩或炭质泥岩为主的烃源岩,有机质含量中等—较高,以Ⅱ~Ⅲ型干酪根为主,烃源岩演化进入成熟—高成熟阶段;储集层以碎屑岩为主,成岩作用强烈,原始粒间孔隙不发育,但不乏溶蚀孔隙较发育的中等—较好的碎屑岩储集层,而且碳酸盐岩也是区内重要的储集层类;中生界为区域盖层,石炭系—二叠系内部的砂泥岩组合构成纵向上的储盖组合;可形成内生连续式、上生下储式、潜山式等多种生储盖组合类型。石炭系—二叠系广泛分布的油气苗或钻井油气显示,为存在油气生成、运移与聚集的过程提供了依据。  相似文献   

17.
The current work investigates the hydrocarbon potentiality of the upper Jurassic–lower Cretaceous rocks in the Marib-Shabwah Basin, Central Yemen, through the Sabatayn-1 well. Therefore, palynological and organic geochemical analyses were carried out on 37 ditch cutting and 12 core samples from the well. Palynofacies analysis of the Madbi (late Oxfordian–early Tithonian) and Nayfa (Berriasian–Valanginian) Formations sediments indicates deposition of their organic-rich shale, calcareous shale and marl in middle to outer shelf environments under dysoxic–anoxic conditions, containing mainly kerogen of types II to III. However, the shales of the lower Sabatayn (Tithonian) Formation were deposited in an inner shelf environment of prevailing dysoxic–suboxic conditions, and show kerogen types III to II. Regional warm and relatively dry palaeoclimate but with local humid conditions developed near the site of the well is thought to have prevailed during deposition of the studied well sediments. The geochemical analyses of the Madbi Formation show higher total organic carbon content (TOC) than the overlying Sabatayn and Nayfa formations: it is varies between 1.2 and 7, and with average 4 wt% TOC, and the obtained S2 values (~3–10, average 7 mg HC/g rock) indicates that the Madbi Formation is mainly good source rock. It shows a good petroleum potential of 4–11 mg HC/g dry rock, and the Rock-Eval pyrolysis indicates mainly kerogen types II to III (oil to gas prone) of hydrogen index values (132–258, and only one sample from Lam Member is of 360 and average 215 mg HC/g TOC). The thermal maturation parameters as T max (425–440 °C), production index (average 0.13 mg HC/g rock) and thermal alteration index (2 to 2+) reflected that this formation is present at margin of maturation to early mature stage oil window. So, the Lam Member (upper part) of the Madbi Formation is considered the main hydrocarbon (oil and gas) source rock in the Marib-Shabwah Basin. Accordingly, we predict that the Meem Member is an active source for gas and oil accumulations in the overlying sandstone reservoir of the Sabatayn Formation in the Sabatayn-1 well.  相似文献   

18.
宾参1井是松辽盆地北部宾县断陷中的第一口参数井,钻遇白垩系地层,自下至上依次为沙河子组、营城组、登娄库组、泉头组和青山口组。在对宾参1井白垩系暗色泥岩进行一系列有机地球化学样品分析测试的基础上,从有机碳(TOC)、氯仿沥青"A"、有效碳(PC)、生烃潜量Pg(S1+S2)、热解峰温Tmax值、镜质体反射率(Ro)、烃源岩气相色谱特征、干酪根碳同位素特征、干酪根元素特征和源岩甾萜烷特征等方面着手,从有机质丰度、有机质类型和有机质成熟度三个角度认识该井白垩系烃源岩,并进行烃源岩的初步评价,认为:(1)青一段干酪根主要为Ⅱ1和Ⅱ2型,其中、下部已进入生油门限,属于非—差烃源岩,个别深度段为较好烃源岩,其上部及青二、三段处于未成熟阶段;(2)泉头组和登娄库组干酪根主要为Ⅲ型,已进入成熟生油阶段,前者属于非—差烃源岩,后者属于差烃源岩;(3)营城组和沙河子组干酪根主要为Ⅲ型,有些层段为Ⅱ2型,处于高成熟—过成熟阶段,以生气为主。对该井白垩系烃源岩的认识和初步评价为勘探程度极低的宾县凹陷含油气前景的评价预测和石油地质研究奠定了基础,具有现实意义和重要的理论意义。  相似文献   

19.
Palynological investigation of the Cretaceous Abu Roash, Bahariya, Kharita, Alamein, Alam El Bueib and Betty formations, encountered in the Gebel Rissu-1 well, north Western Desert, Egypt yielded 27 species of pteridophytic spores, 24 of gymnosperm pollen, 25 of angiosperm pollen and 11 of dinoflagellate cysts in addition to some acritarchs, foraminiferal test linings and freshwater algae. This enabled us to recognize five miospore biozones arranged from youngest to oldest as: Classopollis brasiliensisAfropollis cf. kahramanensisDichastopollenites ghazalataensis Assemblage Zone (Late Cenomanian); Elaterosporites klasziiSofrepites legouxaeAfropollis jardinus Assemblage Zone (Middle/Late Albian–Early Cenomanian); Pennipollis peroreticulatusDuplexisporites generalis-Tricolpates Assemblage Zone (Early Aptian–Early Albian); Tucanopollis crisopolensisAfropollis sp. Assemblage Zone (Barremian) and Appendicisporites cf. tricornitatusEphedripites spp. Assemblage Zone (Late Neocomian).The Early Cretaceous Kharita, Alam El Bueib and the Betty formations encountered in the Gebel Rissu-1 well are interpreted to indicate oxic proximal and distal shelf deposits, characterized by type III/IV, V kerogen, which is gas prone but having little potential to produce hydrocarbons. The Upper Cretaceous Abu Roash and Bahariya formations are characterized by a distal suboxic–anoxic and marginal dysoxic–anoxic environment, and their kerogen type III/II indicates gas/oil prone nature. The Bahariya and Kharita Albian–Cenomanian sediments in the present study witnessed the onset of a semi-arid to arid climate, with local or seasonal humid conditions, based on the continuous high abundance of the elaterates pollen and Afropollis-producing plants that inhabited the paleotropical humid coastal plains.  相似文献   

20.
Early Cretaceous sediments of Aptian–Albian age outcrop at Munday’s Hill Quarry, Bedfordshire, England. Previous papers describing the section have resulted in different terminologies being applied. The Lower Cretaceous in Bedfordshire is represented by sediments belonging to the Lower Greensand Group and the Gault Clay Formation. Within the Lower Greensand Group in the study area the Woburn Sands Formation, are of Aptian–Albian age. Selected samples have been analysed for palynology. The analysis reveals diverse palynomorph assemblages, including well-preserved dinoflagellate cysts and sporomorphs. Comparison of the assemblages with published records indicates that the lower samples are of Late Aptian age. Forms recorded include common Kiokansium unituberculatum, Cerbia tabulata, Aptea polymorpha and Cyclonephelium inconspicuum. An Early Albian age is indicated for the uppermost sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号