首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The land-surface flux model (PROGSURF) designed jointly at the Universities of Vienna and Budapest is reviewed; it belongs to the broad spectrum of PILPS1 models. PROGSURF comprises one vegetation layer and three soil layers. Temperature prediction is made by the heat conduction equation in conjunction with the force-restore method. Turbulent heat fluxes are parameterized by gradient laws using the resistance concept. The formula for the canopy surface resistance involves both a parameter describing atmospheric demand and one describing moisture availability. Soil moisture prediction is made with Richards' equation. PROGSURF is tested in off-line mode for the Cabauw data set. The observed annual mean values of the state and flux quantities at the earth's surface are well reproduced. For example, the model yields latent and sensible heat fluxes of −35.3 and −2.4 W/m2, respectively; evapotranspiration and runoff is −449 and 326 mm/yr; and root zone soil moisture content is 0.344 m3/m3. Further, the seasonal changes of water and energy balance components are well simulated. The sensitivity of PROGSURF to the canopy resistance formulation is analysed. We find that the atmospheric demand is largely represented by the saturation value of the evapotranspiration/soil moisture curve with maximum summer impact upon the annual value and further that the moisture availability is represented by the slope of the evapotranspiration curve. Both saturation value and slope control the amplitude of the seasonal fluctuation of the water balance components; at Cabauw site the saturation value is the governing parameter. These results fit satisfactorily into the other PILPS models. In particular, we are able to reproduce with PROGSURF the total variability of most other PILPS models by simply changing the atmospheric demand and soil moisture availability parameters. PROGSURF presently serves to simulate observed surface fluxes for an atmospheric diagnostic model.  相似文献   

2.
Expansion and contraction of desert margins around the globe have been inferred from a variety of proxy data and have since been linked, particularly in northern China and in the sub-Sahel, to changes in freshwater flux, vegetation cover, sea surface temperatures and, perhaps most importantly, monsoon circulations. We present a direct comparison of results from numerical general circulation model experiments for the mid-Holocene and for the Last Glacial Maximum (LGM) with the climatic conditions that have been inferred from loess–paleosol sequences taken from the Chinese Loess Plateau.During the mid-Holocene in northern China, the northwestward migration of the southeast desert margin that has been suggested by grain size analysis is also expressed in the model results. There is a statistically significant wetting of the Plateau region, and increased soil moisture is a consequence of an enhanced summer monsoon whose latent heat release deepens the cyclonic Tibetan low and brings increased low-level convergence and precipitation to the area. North of the desert region, this circulation dries the soil through enhanced atmospheric subsidence, although the northern margin of the desert does not migrate significantly.Expansion of the desert margin toward the southeast at the LGM is small, but there is a statistically significant drying of the Plateau. The local hydrological cycle is reduced, and there is an increase in large-scale atmospheric subsidence over the region that is caused by the presence of the Fennoscandian ice sheet upwind. Model results therefore suggest that, in addition to local micro- and mesoclimatic conditions, regional effects, such as monsoon circulations and distal orography, are also important factors in determining the location of desert margins.  相似文献   

3.
The climate cooling and vegetation changes in the Miocene/Pliocene are generally well documented by various proxy data. Some important ecosystem changes occurred at that time. Palaeobotanical evidence suggests that the Sahara desert first appeared in the Pliocene, whereas in the Miocene North Africa was green. In the present study, we investigate the Late Miocene climate response to the appearance of the Sahara desert from a climate modelling sensitivity experiment. We compare a model experiment, which includes a full set of Late Miocene boundary conditions, with another one using the same boundary conditions except that the North African vegetation refers to the present-day situation. Our sensitivity study demonstrates that the introduction of the Sahara desert leads to a cooling and an aridification in Africa. In addition, we observe teleconnection patterns related to the North African desertification at around the Miocene/Pliocene boundary. From our sensitivity experiment, we observe that the Sahara contributes to a cooling in Central Asia and in North America. As compared to hypsodonty data for Central Asia, an increased aridity is underestimated in the Sahara experiment. Finally, we observe that the introduction of the Sahara leads to a cooling in the northern high latitudes. Hence, our sensitivity experiment indicates that the appearance of the Sahara desert is one piece to better understand Late Cenozoic climate cooling being most pronounced in the high latitudes.  相似文献   

4.
HAPEX-MOBILHY data, consisting of one year of hourly atmospheric forcing data at Caumont (SAMER No. 3, 43.68°N, 0.1°W) were used repeatedly to run the two-layer Variable Infiltration Capacity (VIC-2L) land-surface scheme until the model reached equilibrium in its water and energy balance. The equilibrium results are compared with one year of weekly soil moisture measurements at different depths, the estimated latent heat fluxes for 35 days of the intensive observation period (IOP), and the accumulated evaporation, runoff and drainage for the entire soya crop season. The latent heat flux comparisons show that VIC-2L tends to underestimate the evaporation due to the low soil moisture in its upper layer. The soil moisture comparison shows that the total soil water content is well simulated in general, but the soil water content in the top 0.5 m is underestimated, especially in May and June. These comparisons suggest that the lack of a mechanism for moving moisture from the lower to the upper soil layer in VIC-2L is the main cause for model error in the HAPEX-MOBILHY application. A modified version of VIC-2L, which has a new feature that allows diffusion of moisture between soil layers, and a 0.1 m thin layer on top of the previous upper layer, is described. In addition, the leaf area index (LAI) and the fraction vegetation cover are allowed to vary at each time step in a manner consistent with the rest PILPS-RICE Workshop, rather than being seasonally fixed. With these modifications, the VIC-2L simulations are re-evaluated. These changes are shown to resolve most of the structural deficiencies in the original version of the model. The sensitivity analysis of the new version of the model to the choices of soil depths and root distribution show that the evapotranspiration and soil moisture at the model equilibrium state are more sensitive to the root distribution than to the soil depth.  相似文献   

5.
Results from the 14 land surface parameterization schemes involved in the PILPS-RICE Workshop are compared for a soya crop growing season (from June to September). During this period, the transpiration flux dominates the total surface evapotranspiration and observed data from HAPEX-MOBILHY are available for comparison. Results indicate that during the month of June half of the models fall within the uncertainty range of the observations. The scatter between models behaviour is explained by three major reasons:
• The functional dependency between soil moisture and transpiration;
• the initial moisture content at the beginning of the period;
• the vertical discretization within the soil and the extension of the root system that defines the soil water holding capacity for plants
Examination of diurnal cycles of evaporation reveals that formulations based on the supply-demand concept are very sensitive to the specification of the root zone.This analysis underlines the need for more sensitivity experiments to be done with the current forcing data set and more detailed datasets to be collected in future field experiments (e.g. latent heat flux during all the growing season, root zone distribution).  相似文献   

6.
The problem of heat flux at the critical surfaces and the surfaces of a pellet of deuterium and tritium (conduction zone) heated by laser have been considered. Ion-electron collisions are only allowed for: i.e., the linear transport equation is used to describe the problem with boundary conditions consists of isotropic and diffuse boundary conditions. The bi-variational technique has been used to calculate the electron density and temperature across the conduction zone as well as the heat flux. Numerical results are given and compared with those of Rouse and Williams (1981) results.  相似文献   

7.
The possible response of life zones in China under global climate change   总被引:5,自引:0,他引:5  
The response of natural vegetation to climate change is of global concern. In this research, an aggregated Holdridge Life Zone System was used to study the possible response of life zones in China under doubled atmospheric CO2 concentration with the input climatic parameters at 0.5×0.5° resolution of longitude and latitude from NCAR regional climate model 2 (RegCM2) coupled with the CSIRO global climate model. The results indicate that the latitudinal distribution of life zones would become irregular because of the complicated climate change. In particular, new life zones, such as subtropical desert (SD), tropical desert (TDE) and tropical thorn woodland (TTW), would appear. Subtropical evergreen broadleaved forest (SEBF), tropical rainforest and monsoon forest (TRF), SD, TDE and TTW zones would appear in the northeastern China. Cool-temperate mixed coniferous and broadleaved forest (CMC) and warm-temperate deciduous broadleaved forest (WDBF) zones would appear at latitudes 25–35°N. The temperate desert (TD) in the western China would become Tibetan high-cold plateau (THP), SEBF, WDBF and temperate steppe (TS), and a large part of THP would be replaced by TRF, TDE, SEBF, TS and TTW. The relative area (distribution area/total terrestrial area) of CMC, TRF, TDE and TTW zone would increase about 3%, 21%, 3% and 6%, respectively. However, the relative area of SEBF, TS, TD and THP would decrease about 5%, 3%, 19% and 4%, respectively. In all, the relative area of forests (CCF, CMC, WDBF, SEBF, TRF) would increase about 15%, but the relative area of desert (TD, SD, TDE, and TTW) and THP would decrease about 9% and 4%, respectively. Therefore, responses of different life zones in China to climate change would be dramatic, and nationwide corridors should be considered for the conservation of migrating species under climate change.  相似文献   

8.
The energy balance and ablation of Glaciar Lengua were investigated during the austral summer of 1999/2000. Glaciar Lengua is located in Patagonia, in the southernmost Andes of Chile (53°S), within an extremely maritime climate. The aim of this study was to gain insight into current energy fluxes at this location and to evaluate how the energy fluxes depend on meteorological variables. From February to April 2000 an automated weather station was operated on Glaciar Lengua. Ablation was measured repeatedly at stakes during the same period. The point energy balance was calculated using the bulk approach formulation. The effective roughness length was adjusted in order to calibrate the model to the measured ablation. It was revealed that sensible heat transfer is the major contribution to the energy balance adding 54% of the energy available for melt. Net radiation contributes only 35% to the overall energy balance. Minor contributors are the latent heat flux (7%) and the heat flux by precipitation (4%). The net radiation shows little variance from day to day. Cross-correlations of the daily mean values of the energy fluxes derived from the energy balance model and meteorological variables reveal that air temperature and wind speed are the key factors controlling the summer energy balance in the ablation area. Melt derived from a multiple regression model based on these two variables correlates with computed melt with a correlation coefficient of 0.92. From the measured ablation, a summer-time degree-day factor of 7.6 mm·°C− 1 was derived for the ablation area.  相似文献   

9.
Ablation characteristics of five glaciers in Patagonia and New Zealand were compared. Investigated glaciers were Tyndall and Moreno in southern Patagonia, Soler and San Rafael in northern Patagonia, and Franz Josef in New Zealand. Micro-meteorological observations were carried out at the glaciers and the heat balance components were estimated. At Franz Josef and Soler glaciers, the sensible heat flux is the largest and the latent heat flux is the second, and they are larger than the net radiation. At San Rafael Glacier, the net radiation is the largest and the latent heat flux is the smallest component, which is similar to Moreno and Tyndall glaciers. Though the latent heat flux is the smallest component at San Rafael Glacier, it is more than twice as large as that at Tyndall Glacier and contributes substantially to ice melting. The ratios of heat balance components were very different among glaciers, but the total heat flux ranged from about 240 to 300 W m−2 showing little difference among glaciers.  相似文献   

10.
One response of vegetation to future increases in atmospheric CO2 may be a widespread increase in stomatal resistance. Such a response would increase plant water usage efficiency while still allowing CO2 assimilation at current rates. The associated reduction in transpiration rates has the potential of causing significant modifications in climate on regional and global scales.This paper describes the effects of a uniform doubling of the stomatal resistance parameterization in a global climate model (GENESIS). The model includes a land-surface transfer scheme (LSX) that accounts for the physical effects of vegetation, including stomatal resistance and transpiration, which is described in detail in an appendix. The atmospheric general circulation model is a heavily modified version of the NCAR Community Climate Model version 1 with new treatments of clouds, penetrative convection, planetary boundary layer mixing, solar radiation, the diurnal cycle, and semi-Lagrangian transport of water vapor. The other surface models include multi-layer models of soil, snow and sea ice, and a 50-m slab ocean mixed layer.The effects of doubling the stomatal resistance parameterization are largest in heavily forested regions: tropical South America, and parts of the Northern Hemispheric boreal forests in Canada, Russia and Siberia in summer. The primary surface changes are a decrease in evapotranspiration, an increase in upward sensible heat flux, and a surface-air warming. Secondary effects include shifts in the ITCZ which cause large increases in precipitation, soil moisture and runoff in western tropical South America, and decreases in these quantities in northern subtropical Africa. Noticeable changes in relative humidity, cloudiness and meridional circulation occur throughout the troposphere. The global effects on atmospheric temperature and specific humidity are small fractions of those found in other doubled CO2 experiments. However, unlike doubled CO2 the signs of those changes combine to give relatively large reductions in relative humidity and cloudiness. It is suggested that the stomatal-resistance effect and other plant responses to large-scale environmental perturbations should be included in models of future climate.  相似文献   

11.
Magnetic buoyancy is thought to play an important role in the dynamical behavior of the Sun's magnetic field in the convection zone. Magnetic buoyancy is commonly thought to cause inescapable rapid loss of toroidal flux from much of the convection zone, thereby suppressing effective operation of a solar dynamo. This paper re-examines the detailed character of magnetic buoyancy, especially as it is influenced by the magnetic field's effect on heat transport and temperature gradients in the convection zone. It is suggested that suppression of convective heat transport across strong magnetic flux tubes can alter the temperature within the tubes and can subdue, or even reverse, the effect of magnetic buoyancy.  相似文献   

12.
The global climate–vegetation model HadSM3_TRIFFID has been used to estimate the equilibrium states of climate and vegetation with pre-industrial and last glacial boundary conditions. The present study focuses on the evaluation of the terrestrial biosphere component (TRIFFID) and its response to changes in climate and CO2 concentration. We also show how, by means of a diagnosis of the distribution of plant functional types according to climate parameters (soil temperature, winter temperature, growing-degree days, precipitation), it is possible to get better insights into the strengths and weaknesses of the biosphere model by reference to field knowledge of ecosystems.The model exhibits profound changes between the vegetation distribution at the Last Glacial Maximum and today that are generally consistent with palaeoclimate data, such as the disappearance of the Siberian boreal forest (taiga), an increase in shrub cover in Europe and an increase of the subtropical desert area. The effective equatorial and sub-tropical tree area is reduced by 18%. There is also an increase in cover of wooded species in North-Western Africa and in Mexico. The analysis of bioclimatic relationships turns out to be an efficient method to infer the contributions of different climatic factors to vegetation changes, both at high latitudes, where the position of the boreal treeline appears in this model to be more directly constrained by the water stress than by summer temperature, and in semi-humid areas where the contributions of temperature and precipitation changes may partly compensate each other. Our study also confirms the major contribution of the decrease in CO2 to environmental changes and carbon storage through its selective impact on gross primary productivity of C3 and C4 plants and a reduction by 25% of water-use efficiency. Specifically, the reduction in CO2 concentration increases the amount of precipitation necessary to sustain at least 20% of grass fraction by 50 mm/year; the corresponding threshold for trees is increased by about 150 mm/year. As a consequence, a reduction in CO2 concentration considerably widens the climatic range where grasses and shrubs dominate.  相似文献   

13.
Ideas and models for the appearance of photospheric magnetic structure are confronted with observational data. Some findings are: The magnetic flux emerging in an active region consists of a bundle of flux tubes which were already concentrated before penetrating into the photosphere. A model of a rising bunch of flux tubes joining into a few strands at larger depths describes the coalescence of spots near the leading and following edges of the active region while more flux may surface near the center of the region. There is no observational evidence for appreciable helical twists in the flux bundles.Throughout the region's lifetime the magnetic elements move coherently, the whole magnetic structure rotates faster than the quiet photosphere. In active regions the convective flow at scales larger than the granulation is arrested by the magnetic structure. The long-lived supergranular cells around spots and in the enhanced network in turn determine the decay properties of spots and facular clusters. The modulation of the convective flow by the magnetic structure explains the slow dispersal of faculae.The hierarchy of magnetic elements (sunspots-pores-knots-facular clusters-facular points) may be explained by a set of magnetostatic flux tube models in the top of the convection zone. The underlying assumptions are that the heat flow along the magnetic field is reduced and that there is no heat exchange across the field except by radiation.A tentative model is proposed to account for the amplification, ascent and emergence of intense flux bundles. The assumptions are: (i) the field is concentrated in toroidal bundles by differential rotation, (ii) in the deep convection zone flux bundles are contained by the external turbulent pressure, and (iii) for field strengths up to the equipartition value efficient lateral heat exchange is possible. After a loop has surfaced radiative cooling and subsequent convective downflow reduce the temperature in the top of the flux tubes which then contract to field strengths well above the local equipartition value. There the heat flow is channelled along the field, which creates the conditions for the magnetostatic flux tube models without requiring a blocking of the heat flow somewhere within the tubes.The paper contains a brief review on the evolution of the magnetic field from the emergence in active regions up to the enigmatic disappearance, and a list of topics for further observational investigation.  相似文献   

14.
Linear polarization in two chromospheric lines (Hα and SI 1437 A) was observed in the gradual phase of solar flares. The polarized electric vector is directed towards disk center. This polarization could be due to collisional excitation of hydrogen and SI by energetic electrons beamed in the vertical direction. Direct excitation by a highly energetic beam of electrons of order 10–100 keV. is doubtful. The heat flux in the region connecting the transition zone to the high chromosphere during the gradual phase of a flare could lead to an anisotropic excitation. Selecting a function which represents the velocity distribution of electrons carrying heat flux, the relationship between conductive heat flux and linear line polarization has been computed. The application of the relationship between linear polarization and heat flux to the observed degree of polarization leads to the determination of the conductive heat flux in the high chromosphere. This conductive flux is of the order of magnitude of the total radiation loss in the chromosphere and below, which is also of the order of magnitude of the conductive flux in the transition zone.  相似文献   

15.
In future astrobiology, like in modern astrophysics, the numerical simulations can be a very important tool for proving theories. In this paper, I propose a simple lattice model of a multi-species ecosystem suitable for the study of emergent properties of macroevolution. Unlike the majority of ecological models, the number of species is not fixed—they emerge by “mutation” of existing species, then survive or go extinct depending on the balance between local ecological interactions. The Monte-Carlo numerical simulations show that this model is able to qualitatively reproduce phenomena that have been empirically observed, like the dependence between size of the isolated area and the number of species inhabiting there, primary production and species-diversity. The model allows also studying the causes of mass extinctions and more generally, repeatability, and the role of pure chance in macroevolution.  相似文献   

16.
The spectroscopic variability of Arcturus hints at cyclic activity cycle and differential rotation. This could provide a test of current theoretical models of solar and stellar dynamos. To examine the applicability of current models of the flux transport dynamo to Arcturus, we compute a mean‐field model for its internal rotation, meridional flow, and convective heat transport in the convective envelope. We then compare the conditions for dynamo action with those on the Sun. We find solar‐type surface rotation with about 1/10th of the shear found on the solar surface. The rotation rate increases monotonically with depth at all latitudes throughout the whole convection zone. In the lower part of the convection zone the horizontal shear vanishes and there is a strong radial gradient. The surface meridional flow has maximum speed of 170 m/s and is directed towards the equator at high and towards the poles at low latitudes. Turbulent magnetic diffusivity is of the order 1015–1016 cm2/s. The conditions on Arcturus are not favorable for a circulation‐dominated dynamo (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We study the influence of faculae on sunspot heat blockage using a thermal model based on eddy heat diffusion through the convection zone. The facula is represented as a localized area of excess emission surrounding the sunspot, which is represented as a thermal plug. Our computations using a range of reasonable combinations of spot and facular depths show no significant influence of the facula on the long storage times of heat blocked by sunspots. However, the local cooling of surface layers produced by excess facular emission in this model propagates globally within the convection zone in a similar way to the heating produced by a spot. The net effect of spots and faculae on L over time scales longer than an active region lifetime should thus be determined by the global sum of sunspot flux deficits and facular excesses.  相似文献   

18.
Disturbances in the heat flow in the solar convection zone are calculated with a turbulent thermal diffusion coefficient based on a mixing length approximation. As a consequence of the radiative boundary condition at the surface and the strong increase of the diffusion coefficient with depth, the convection zone resembles a thermally superconducting shell enclosed between a thin surface layer and an interior core of low thermal conductivity. Thermal disturbances originating in the convection zone do not penetrate into the interior, and penetrate only weakly through the solar surface. A thermally isolating obstacle buried entirely in the convection zone casts a shadow of reduced temperature at the solar surface; the brightening surrounding this shadow is undetectable. The shadow is weak unless the object is located close to the surface (less than 2000 km). Assuming a sunspot to be an area of reduced thermal conductivity which extends a finite depth into the convection zone, the heat flow around this obstacle is calculated. The heat flux blocked below the spot (missing flux) spreads over a very extended area surrounding the spot. The brightening corresponding to this missing flux is undetectable if the reduction of the thermal conductivity extends to a depth greater than 1000 km. It is concluded that no effect other than a decrease of the convective efficiency is needed to explain the temperature change observed at the solar surface in and around a sunspot. The energy balance is calculated between magnetic flux tubes, oriented vertically in the solar surface, (magnetic elements in active regions and the quiet network) and their surroundings. Near the visible surface radiation enters the tube laterally from the surrounding convection zone. The heating effect of this influx is important for small tubes (less than a few arcseconds). Due to this influx tubes less than about 1 in diameter can appear as bright structures irrespective of the amount of heat conveyed along the tube itself. Through the lateral influx, small tubes such as are found in the quiet network act as little leaks in the solar surface through which an excess heat flux escapes from the convection zone.  相似文献   

19.
Atmospheric and land surface data collected from the HAPEX-MOBILHY field experiment were used to compare the bare soil evaporation simulations of 13 land surface schemes and to examine the relationship between differences in evaporation and differences in soil moisture. For a 120-day period in which there was no vegetation present, computed total evaporation ranged between 100 and 250 mm. This large range in evaporation was not related to soil moisture differences. Prescribing surface soil moisture and temperature did not reduce the range in evaporation and instead the range was increased. The models' predictions of evaporation were in closer agreement with each other when they were allowed to select their own surface conditions than when they were forced to use the same conditions. The bare soil evaporation formulations used by the land-surface schemes are not consistent with each other and these inconsistencies produce widely-varying bare soil evaporation rates. The range in bare soil evaporation is unlikely to be reduced by improving the simulation of soil moisture and instead an assessment of why the bare soil evaporation formulations are inconsistent is required.  相似文献   

20.
In view of the pivotal role that continental water storage plays in the Earth’s water, energy and biogeochemical cycles, the temporal and spatial variations of water storage for large areas are presently not known with satisfactory accuracy. Estimates of the seasonal storage change vary between less than 50 mm water equivalent in areas with uniform climatic conditions to 450 mm water equivalent in tropical river basins with a strong seasonality of the climate. Due to the lack of adequate ground-based measurements of water storage changes, the evapotranspiration rate, which depends on the actual climatic and environmental conditions, is only an approximation for large areas until now, or it is based on the assumption that storage changes level out for long time periods. Furthermore, the partitioning of the water storage changes among different storage components is insufficiently known for large scales. The direct measurement of water storage changes for large areas by satellite-based gravity field measurements is thus of uttermost importance in the field of hydrology in order to close the water balance at different scales in space and time, and to validate and improve the predictive capacity of large-scale hydrological models. Due to the high spatial variability of hydrological processes temporal and spatial resolutions beyond that of GRACE are essential for a spatial differentiation in evapotranspiration and water storage partitioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号