首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
为查明冀东北地区中低温对流型地热系统中氟的富集过程,通过对地热流体水化学特征和同位素数据的分析,研究地热流体中氟的分布特征、富集规律、水化学过程及影响因素。结果表明:研究区地热流体F^-含量为1.36~23.83 mg/L,呈现北高南低的趋势;在HCO3^-—Na^+和SO4^2-·HCO3^-—Na^+等Na型水中富集程度高于HCO3^-—Ca^2+和HCO3^-—Ca^2+·Mg^2+等Ca型水;碱性环境、温度和循环深度是影响氟离子富集的主要因素;水岩作用、含氟矿物溶解及阳离子交换作用,是控制高氟地热水水化学特征的主要地球化学过程。氟浓度异常可为寻找地热资源提供基础参考线索,为地热资源的科学合理利用提供科学依据。  相似文献   

2.
在内陆干旱区,作为重要饮用水源的地下水常面临氟含量超标问题。查明内陆干旱区高氟地下水的分布规律,了解氟在地下水中的富集过程及其影响因素,既可丰富高氟地下水的研究体系,也是保证内陆干旱区饮水安全的重要基础。以新疆阿克苏地区典型山前洪积扇——依格齐艾肯河-喀拉玉尔滚河河间地带为研究区,基于水文地球化学调查结果,刻画了高氟地下水的分布区;结合氟离子含量与特征性水化学指标间的关系,揭示了高氟地下水的成因机制。结果表明:(1)地下水中氟含量的变化范围为0.8~6.1 mg/L,83%的水样氟含量超过《生活饮用水卫生标准》(GB 5749-2006)规定的上限(1.0 mg/L);(2)总体上,氟含量沿地下水流动路径逐渐增大,低氟地下水(ρ(F~-)≤1.0 mg/L)分布在国道314以北的补给区,高氟地下水(ρ(F~-)1.0 mg/L)分布在国道314以南的径流区和排泄区;(3)高氟地下水的水化学类型以Cl·HCO_3-Na型为主,而低氟地下水则以Cl·SO_4-Na型为主,高氟地下水相比于低氟地下水优势阴离子偏向于HCO~-_3;(4)地下水的pH值范围为7.9~8.9(均值为8.4),表明其处于弱碱环境中。地下水中ρ(F~-)与pH值呈正相关,此外构成浅层含水层的上更新统沉积物中含有黑云母、氟磷灰石等矿物,其表面存在一定数量的可交换F~-,这表明水中OH~-与矿物表面F~-间的阴离子交换可能对氟的富集有一定贡献;(5)地下水的F~-含量与Ca~(2+)含量呈负相关,即高氟地下水中ρ(Ca~(2+))小于低氟地下水。考虑到氟化钙(CaF_2)是自然界中的主要含氟矿物,也是地下水中氟的主要来源,ρ(F~-)与ρ(Ca~(2+))间的这种负相关指示着高氟地下水中可能存在去Ca~(2+)、Mg~(2+)作用,如阳离子交替吸附或碳酸盐岩沉淀等。研究区地下水样中ρ(F~-)与ρ(Mg~(2+))间也呈负相关关系,且和ρ(F~-)与ρ(Ca~(2+))间的关系高度相似,也佐证了高氟地下水中去Ca~(2+)、Mg~(2+)作用的存在;(6)绝大部分地下水样品都位于氯碱性指数图的负值区域,且ρ(F~-)与CAI-1和CAI-2均呈较好负相关,CAI-1和CAI-2都随ρ(F~-)的增大而减小,这表明高氟地下水中存在Ca~(2+)、Mg~(2+)与Na~+间更强的交换作用,对氟富集起着重要作用。地下水中ρ(F~-)与SAR间呈较好正相关关系,且高氟地下水样的SAR均值(5.71)远大于低氟地下水SAR均值(1.67),这也进一步证明高氟地下水中的Ca~(2+)、Mg~(2+)与含水介质的Na~+间存在强烈的交替作用,对氟的富集起着重要作用;(7)所有地下水样中的萤石均处于未饱和状态,且萤石的饱和指数(SI)与F~-含量间呈现较好的正相关,这表明地下水对含氟矿物(主要是萤石)的持续溶解应是导致研究区地下水中氟富集的主要原因。与之相反,研究区所有地下水样中的方解石均处于过饱和状态(SI0)。这表明CaCO_3的沉淀可能促进了CaF_2的溶解,导致地下水中氟离子质量浓度增高;(8)研究区低氟地下水的δ~(18)O值介于-11.20‰~-10.67‰间,平均值为-10.94‰,而高氟地下水的δ~(18)O值介于-11.65‰~-11.21‰间,平均值为-11.49‰,即低氟地下水较高氟地下水富集δ~(18)O。此外,F~-质量浓度较低(ρ(F~-)≤3.0 mg/L)的地下水样中δ~(18)O值与F~-质量浓度呈负相关,即低氟地下水具有更正的δ~(18)O值;F~-质量浓度较高(ρ(F~-)≥4.8 mg/L)的地下水样中δ~(18)O值与F~-质量浓度的相关性不显著,随F~-质量浓度的增高,δ~(18)O值基本维持不变。以上表明蒸发浓缩作用对地下水中氟的富集贡献较小;(9)研究区地下水中ρ(F~-)/ρ(Cl~-)比值与ρ(F~-)间呈现正相关,即ρ(F~-)/ρ(Cl~-)比值随ρ(F~-)增高呈增大趋势,这也说明地下水中氟富集的主要原因是含氟矿物的溶解,而不是蒸发浓缩作用。此外,Gibbs图也提供了证据:研究区地下水样基本处于水岩作用主导区域,表明地下水化学特征(包括氟的富集)主要受水岩作用控制,蒸发浓缩影响很小。总之,地下水中氟的富集主要由溶解作用引起,OH~-与矿物表面F~-间的交换也有贡献,但蒸发浓缩作用影响微弱。含氟矿物持续溶解的驱动机制是阳离子交替吸附(地下水中Ca~(2+)与岩土颗粒表面Na~+之间)及方解石沉淀所引起的地下水中Ca~(2+)的衰减。  相似文献   

3.
<正>在CO2地下埋存工程中,对储层上覆泥岩盖层的研究是碳埋存安全性能评估中十分重要的内容。天然CO2气藏的稳定同位素数据表明,CO2长期存在的主要方式是溶解于地层水中,这一行为会将地层水酸化至p H值3—5[1-2]。尽管盖层渗透率通常小于1 m D1,但孔隙度范围较大,有时可达30%[3-4],溶解CO2的酸性地层水可能进入到这些孔隙中从而引发与矿物的相互作用,潜在的流体-岩石地球化学反应可  相似文献   

4.
<正> 萤石——CaF_2,其化学成分中Ca 占51.1%,F占48.9%,是含氟矿物中氟含量最高的矿物。由于它具有一些独特的性质,使其在工业上占据重要的地位(图1)。萤石的低熔点,决定了它在冶金、玻璃、陶瓷、水泥工业上的作用;在炼钢时,它是一种很好的助熔剂,可以提高矿石的易熔性与炉渣的流动性,并有助于脱硫;在透明玻璃制造中作助熔剂,在搪瓷和乳色玻璃中用作乳浊剂;在水泥工业中可作为添加剂等。萤石与浓硫酸反应,完全溶解而生成氟化氢(即无水氢氟酸),其反应式为:CaF_2+H_2SO_4→CaSO_4+2HF↑正因为这种化学特性以及它含氟高的特点,使萤石成为生产氢氟酸的主要原料,氟化学工业  相似文献   

5.
南四湖流域许多地段浅层地下水中氟含量明显超出国家标准,最高含量达16.4mg/L,地方性氟中毒病分布范围广.为流域内主要的环境地质问题。从自然地理环境、地质环境、水文地质条件、水文地球化学环境等方面对地氟病成因进行了分析研究,认为湖东泰沂隆起区出露的岩浆岩和各类变质岩提供了丰富的氟源.岩石中的氟矿物通过表面扩散的反应动力学机制向地下水中传递,氟元素则通过对氟矿物的溶解和溶滤进入地下水中。南黄河冲洪积、湖积作用形成的粘土、亚粘土和粉细砂为主的含水层,氟的含量较高,其氟矿物以云母为主,粘性土巾有大量吸附性氟。地下水的垂向与侧向补给条件差,交替滞缓,氟存水中的集聚作用以蒸发浓缩为主,有利于氟元素富集。  相似文献   

6.
氟广泛分布于地下水且与人体健康相关,世界上许多国家和地区均存在高氟水。本文以江西省均村-高兴地区为例,结合区域水文地质调查成果开展地下水中氟水文地球化学特征研究,探讨研究区地下水中F-的分布特征与来源。对研究区4个地下水系统中的442个地下水样品的F-、Ca2+、HCO_3^-浓度及pH值、TDS等进行分析,研究认为各地下水系统地下水中的F-浓度与Ca2+浓度、HCO_3^-浓度、pH值、TDS正相关,含氟矿物的溶解是地下水中氟的主要来源,较强烈的地下水交替条件及弱酸性的地下水特征是导致地下水中氟浓度低的重要原因。  相似文献   

7.
地方性氟中毒主要是饮用高氟水所致。它是西北黄土地区主要的地方病之一, 它的形成、分布与作为含水介质的黄土有较密切的关系。据有关资料研究, 黄土中含有云母、电气石、角闪石类及磷灰石等多种含氟矿物。分析资料表明, 黄土含有较高的氟, 如洛川黄土全溶氟含量160-404ppm, 其中古土壤层含量较高。笔者认为黄土层地下水的含戴量与含水介质有关, 但直接影响地下水中含氟量的不是黄土的全氟量, 而是它的活性氟使水浸溶液中含氟。由于黄土的形成和分布地区的地球化学环境的不同, 则氟在黄土中存在的状态和被水释出的强度有较大的差异, 因此它向水中迁移的数量也就不同。  相似文献   

8.
分析了山西东山调水工程调入区高氟地下水的区域分布规律,并对高氟水形成机制进行了深入研究,发现研究区高氟水的主要水化学特征为HCO-3和Na+浓度高、pH值高,且多为HCO3-Na型水。认为该区高氟水形成的主导性地球化学过程包括含氟矿物溶解、地下水中OH-与氟代羟基云母矿物的离子交换等。另外,排泄区的蒸发浓缩过程和含氟工业废水排放也是研究区部分地区出现高氟水的重要因素。  相似文献   

9.
钾在自然界主要以硅酸盐、硫酸盐化合物和卤化物存在,在表生带具有较强的迁移能力,因此在地下水中分布较广。钾是人体中的必需元素,正常情况下需摄入3g/d,过量摄入钾或缺钾都可能导致疾病的发生。饮用水中的钾是人体所需钾的主要来源。因此,寻找和开发含钾量较高的地下水作为生活饮用水,将有利人群健康。  相似文献   

10.
1硼元素的形成与分布硼是亲石新生物元素,在自然界中硼离子为B~(3+),变形能力弱,主极化能力强,能形成(BO3)~(3-)、(BO4)~(5-)络离子并存在于造岩矿物中。这些含硼的造岩矿物在风化分解的作用下,通过溶滤释放出大量的硼离子,并进入地下水中。硼在地下水中,特别是在含氯、羟基、氟等组分的溶液中,是一个很活跃的元素。它与离子化合能力强的Na~+及其他强阳离于多硼酸盐易在水中溶解,并作长时间搬运,因此,B~(3+)广泛分布于下述地区。根据"七五"国家科技攻关的研究结果,硼在地下水中的形成和迁移富集与岩土中硼含量和地下水的…  相似文献   

11.
本次采用11组稳定同位素地下水样品数据,对其地热流体来源、迁移特征进行了研究,确定了补给来源、补给高程及其水力联系等;采用放射性同位素数据,研究了地热流体年龄。结果表明:本区地热流体主要源于大气降水;地热流体滞留时间较长,具有深部水循环特征;地下水中HCO3-和CO23-主要来源于土壤或有机质分解,并且有地表冷水混入到向上运移的地下水中,大气溶解的CO2进入水中导致HCO3-的含量增加;研究区地下水中的硫主要来源于沉积层的溶滤作用。研究成果为本区地热水的勘查、开发奠定了基础。  相似文献   

12.
西藏羊八井现代地下热水系统硫矿的成矿作用   总被引:15,自引:3,他引:12  
通过对羊八井盆地地热流体的地球化学、气体成分、同位素特征以及泉华、岩矿等资料的研究 ,确认该地下热水溶液中的水主要来自大气降水 ,部分来自深部 ;矿质大部分源自对围岩的淋滤和溶解 ,少部分物质 ,如易挥发成分则与岩浆体有关 ;热源则由地壳浅部岩浆体供给。根据羊八井地热水成矿作用特点和矿化分布规律 ,提出成矿区主要位于地热流体卸压排泄系统成矿的论点 ,并建立了羊八井盆地地热水系统成矿概念模型。地热田内自然硫及其它硫化矿物的形成过程中微生物起着重要的作用  相似文献   

13.
岩溶热储中地热流体多为中低温低矿化度热水,而岩溶热储中出现高矿化度地热水多与岩溶含水层矿物溶解有关。然而,湖北省巴东县盐场河地热田中地热水TDS高达12 477.7 mg·L-1,水温约34℃,含水层矿物溶解并不足以解释其成因。文章在野外调查和地热钻探的基础上,对4个地热钻孔、1个温泉及附近4个冷泉进行了水文地球化学采样和测试。研究结果表明:盐场河地热田地热水化学类型为Cl-Na型,单位涌水量最大可达1 767 m3·d-1,出水口温度在30.2~34.5℃。对比钻孔测温和SiO2温度计分析,热储温度为59.1℃,循环深度为1 923 m。Phreeqc水化学模拟揭示含水层中的水–岩相互作用(主要是含水层矿物溶解)为地热水化学组分提供了部分贡献,主要来源于径流过程中咸化潮坪泻湖相盐岩的溶解。水文地质条件和氢氧同位素指示地热水的大气降水来源,但季节性的冷水混入控制了水-岩相互作用的平衡。可见,巴东县盐场河岩溶热储高矿化度地热水主要是径流过程中盐岩的溶解提供了水化学组分,但是出露过程中受到季节性的冷水混合影响。  相似文献   

14.
本文以生命必需元素氟为研究对象,选择地方性氟病分布典型、地下水类型分布全面的山东省全境为研究区,依托2006~2016年间采集的4321件地下水无机分析数据,综合运用数理统计分析、离子比值分析、水化学平衡体系分析,详细研究了山东省高氟地下水的分布特征和富集机制.结果表明:山东省浅层高氟地下水集中连片分布于胶莱盆地和鲁西南平原地区地势低洼地带,地下水氟含量超过1 mg/L的分布面积13227 km2,最大值22 mg/L;深层承压孔隙水高氟区集中分布于平原盆地中心的德州、滨州、菏泽等地深层承压孔隙水水位降落漏斗区,氟含量超过2 mg/L的分布面积15086 km2,最大值7.5 mg/L,地下水开采是驱动深层承压孔隙水氟富集的主要因素;不同类型地下水氟平均含量从大到小依次是深层承压孔隙水、浅层松散岩类孔隙水、侵入岩变质岩基岩裂隙水、碳酸盐岩类裂隙岩溶水、碎屑岩类孔隙裂隙水;深层承压孔隙水F-含量与Ca2+含量呈明显的负相关,其他类型地下水F-含量与Ca2+含量相关关系不明显.综合得出:山东省高氟地下水形成受地貌与地质构造部位、含水介质地球化学特性、人类地下水开采等三方面因素共同驱动,含氟矿物的溶解是地下水中氟的物质来源,淋滤、蒸发浓缩、水岩相互作用使得地下水氟含量进一步升高,氟-钙拮抗作用机制最终决定地下水中氟含量.此研究揭示了控制不同类型地下水氟富集的关键因素,深化了氟在地下水中化学行为的认识.  相似文献   

15.
李义曼  罗霁  陈凯  黄天明  天娇  程远志 《地质论评》2023,69(2):2023020004-2023020004
广东丰顺丰良地区出露的地热水温度高达96℃,热储层为裂隙发育的下侏罗统的英安斑岩,F-含量较高。但关于其地热流体的补给来源、循环演化过程及热储温度研究较少。本文基于早期开展的勘探工作和补充采集、测试的地热水和气体数据,探讨了该地热系统的流体成因及热储温度。结果表明,丰良地区地热水存在2类,A类地热水温度普遍低于40℃,Ca2+含量高,Na+和K+含量低,以HCO-3—Ca2+型为主;B类地热水Na+含量高,Ca2+含量低,为HCO-3—Na+型。A类地下水可能受浅层地下水混入影响,但缺少直接证据。B 类地下水由周边山区的大气降水补给,沿裂隙或者断裂系统进入英安斑岩储层,循环深度和水—岩相互作用时间分别可达5200~6300 m和22 ka;储层温度条件下铝硅酸盐矿物的溶解以及阳离子交换作用促进了富N2、SiO2、F-、Na+、Sr和Li的地热水的形成;深部地热水上升至地表过程中,受冷水混入(混入比例为10%~25%)及少量CO2脱气(蒸汽散失比例为0. 3%~0. 5%)的影响;F-含量受控于富氟副矿物萤石矿物的溶解,与温度和pH值成正比。基于校正了混合作用和CO2脱气作用的地温计组合方法,得到深部热储温度为138~143℃,与其南部的汤坑地热系统热储温度一致,二者有可能属于同一大的地热系统。  相似文献   

16.
大同盆地高氟地下水水化学特征及其成因   总被引:4,自引:0,他引:4  
为查明控制大同盆地高氟地下水形成的主要地球化学过程,对大同盆地地下水高氟区31个水样进行了水化学特征及因子分析研究.结果表明,研究区浅层和深层地下水中均检测出氟,且氟含量高,最大ρ(F)达10.37 mg/L.该区高氟地下水以Na-HCO3型水为主,具有典型的富Na特征.PHREEQC饱和指数计算结果表明,地下水中萤石为不饱和状态,地下水中ρ(F)主要受到萤石溶解影响.因子分析研究表明,水一岩相互作用、碳酸盐矿物溶解沉淀及Na- Ca离子交换作用是控制大同盆地地下水氟富集的主要水化学过程.  相似文献   

17.
以江西赣南地区某地区为研究对象,对地下水中的氟分布含量特征及成因进行了调查分析。结果表明:不同岩类孔隙水中的地下水氟含量主要以低氟水为主,这与研究区地下水呈酸性、低矿化度、低钙离子和碳酸氢根离子等特征有关;松散岩类孔隙水中的低氟水、中氟水以及高氟水占比分别为94.3%、4.6和1.1%;碎屑岩类孔隙裂隙水中各含量分级占比分比为97.7%、0%和2.3%;花岗岩类裂隙水中各含量分级占比分比为93.2%、4.1%和2.7%;变质岩类裂隙水中各含量分级占比分比为96.4%、3.6%和0%。不同地层地下水氟含量大小依次为花岗岩类孔隙水松散岩类孔隙水碎屑岩类孔隙水变质岩类孔隙水。研究区的水氟主要来源于氟矿物的溶解,同时受水动力、水化学以及地层岩性等的影响,不同地区的水氟含量有所差异。  相似文献   

18.
天然成因的高氟地下水是世界范围内备受关注的环境问题和饮用水安全问题。前人对高氟地下水的形成过程已开展了大量研究,但是对于高原盆地复杂水文地质条件下不同类型含水层组(第四系松散层含水层、基岩裂隙或岩溶含水层以及新生代古近纪以来的碎屑岩含水层)高氟地下水的分布和形成过程尚不明确。本文以化隆—循化盆地为研究区,通过采集、测试研究区内的各类地下水样品,分析研究区内不同类型含水层中地下水的化学特征及同位素特征。结果表明,高氟地下水(1.007.73 mg/L)主要分布在沿黄河的河谷区域和巴燕低山丘陵区域的泉水和潜水中以及深部的承压水中,在垂向上高氟地下水无明显分布规律。接受黄河水入渗补给的河谷潜水中氟离子浓度较低,补给黄河的河谷潜水中氟离子浓度较高。贫钙富钠的弱碱性苏打型水有利于地下水中氟的富集。泉水和潜水中氟主要来源于萤石的溶解,而承压水中氟除了来源于萤石外,还来源于其他含氟矿物。对于潜水和第四系松散层泉水,蒸发浓缩作用促进了地下水中氟的富集。另外,阴离子竞争吸附作用、阳离子交换吸附作用是泉水(第四系松散层泉水和基岩裂隙泉水)和潜水中氟元素富集的主要原因,而承压水中氟离子浓度受竞争吸附作用影响较大,阳离子交换吸附作用影响较小。研究成果可为化隆—循化盆地低氟地下水的勘查和开发提供科学依据。  相似文献   

19.
青海西宁盆地中低温地热资源丰富,但热储地层以含黏土矿物的弱胶结砂岩为主,地热水溶解性总固体较高,回灌过程中存在显著的结垢风险。基于对西宁盆地地热成因及资源分布特征分析,采用矿物溶解度法、饱和指数法等方法对典型地热水回灌结垢趋势及风险进行了综合判断。结果表明:西宁盆地“凹中凸”构造有利于地热水在深部热储富集和增温,同时将深部溶解的大量矿物质带到西宁地区中央凸起地带;西宁地区地热储层埋深主要在700~1600 m,水温30~70 ℃,主要为SO4·Cl—Na水化学类型,溶解性总固体1.85×103~4.80×104 mg/L;回灌过程中结垢以碳酸钙结垢为主,当回灌水与地下热水性质相近时,结垢风险主要发生在回灌井筒中,地层结垢风险较小,而当回灌水与地下热水性质差异较大时,不配伍性将导致地层结垢风险大大提高,其中药王泉与DR2005原1∶ 1混合时结垢量最大可达177.57 mg/L,而其他地热水结垢量较小。根据以上特征,提出以下综合解决方案:物理防垢+管材防腐、系统增压防垢+管材防腐和地面预处理+管材防腐,并辅之以阴极保护防腐、优化排量、酸洗井筒等措施,可为今后保障地热水回灌能力措施的制定提供理论依据与技术支持。  相似文献   

20.
氟是维持人体健康所必需的微量元素,过多或过少的摄入都会造成相应的健康问题。本研究从氟的来源、迁移和富集等角度,揭示了内蒙古呼和浩特市托克托县高氟地下水的空间分布规律及其在潜水和承压水中富集的原因。对研究区60个水样(30个潜水和30个承压水)进行了统计分析、水化学特征研究、聚类分析以及相关性分析。结果表明:潜水中F- 浓度为0.40~7.20(2.30±1.80) mg/L,承压水中F- 浓度为0.29~12.70(1.67±2.48) mg/L;地下水中F-浓度与HCO-3、Na+、溶解性总固体(TDS)和电导率(EC)呈正相关,与Ca2+呈一定的负相关关系。高氟水的水化学类型主要为HCO3·Cl-Na型。受地下水流场的控制,高氟潜水(>5 mg/L)主要分布在地下水的排泄区;承压水中F- 的富集主要受含水层岩性的影响,氟高浓度(>1.5 mg/L)分布区主要集中在研究区南部的湖积台地区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号