首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 773 毫秒
1.
We present a new calculation for the evolution of the one-point probability distribution function (PDF) of the cosmological density field based on an exact statistical treatment. Using the Chapman–Kolmogorov equation and second-order Eulerian perturbation theory we propagate the initial density distribution into the non-linear regime. Our calculations yield the moment generating function, allowing a straightforward derivation of the skewness of the PDF to second order. We find a new dependence on the initial perturbation spectrum. We compare our results with other approximations to the one-point PDF, and with N -body simulations. We find that our distribution accurately models the evolution of the one-point PDF of dark matter.  相似文献   

2.
I derive a second-order local relation between the redshift-space mass density field and the real-space velocity field. This relation can be useful for comparisons between the cosmic density and peculiar velocity fields, for a number of reasons. First, relating the real-space velocity directly to the redshift-space density enables one to avoid the Ω-dependent reconstruction of the density field in real space. Secondly, the reconstruction of the three-dimensional velocity field in redshift space, questionable because of its vorticity, is also unnecessary. Finally, a similar relation between the galaxy density field and the velocity field offers a way to break the Ω-bias degeneracy in density–velocity comparisons, when combined with an additional measurement of the redshift-space galaxy skewness. I derive the latter relation under the assumption of non-linear but local bias; accounting for stochasticity of bias is left for further study.  相似文献   

3.
We develop a general formalism for analysing parameter information from non-Gaussian cosmic fields. The method can be adapted to include the non-linear effects in galaxy redshift surveys, weak lensing surveys and cosmic velocity field surveys as part of parameter estimation. It can also be used as a test of non-Gaussianity of the cosmic microwave background. Generalizing maximum-likelihood analysis to second order, we calculate the non-linear Fisher information matrix and likelihood surfaces in parameter space. To this order we find that the information content is always increased by including non-linearity. Our methods are applied to a realistic model of a galaxy redshift survey, including non-linear evolution, galaxy bias, shot-noise and redshift-space distortions to second order. We find that including non-linearities allows all of the degeneracies between parameters to be lifted. Marginalized parameter uncertainties of a few per cent will then be obtainable using forthcoming galaxy redshift surveys.  相似文献   

4.
We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift-space probability distribution function (PDF), as well as the p -order hierarchical amplitudes S p , in both real and redshift space. We compare our results with numerical simulations, focusing on the     standard CDM model, where redshift distortions are strongest. We find good agreement between the SC predictions and the numerical PDF in real space even for     , where σ L is the linearly evolved rms fluctuation on the smoothing scale. In redshift space, reasonable agreement is possible only for     . Numerical simulations also yield a simple empirical relation between the real-space PDF and the redshift-space PDF: we find that for     , the redshift-space PDF, [ P δ ( z )], is, to a good approximation, a simple rescaling of the real-space PDF, P [ δ ], i.e.,     where σ and σ ( z ) are the real-space and redshift-space rms fluctuations, respectively. This result applies well beyond the validity of linear perturbation theory, and it is a good fit for both the standard CDM model and the ΛCDM model. It breaks down for SCDM at     , but provides a good fit to the ΛCDM models for σ L as large as 0.8.  相似文献   

5.
Dynamical dark energy (DE) is a viable alternative to the cosmological constant. Constructing tests to discriminate between Λ and dynamical DE models is difficult, however, because the differences are not large. In this paper we explore tests based on the galaxy mass function, the void probability function (VPF), and the number of galaxy clusters. At high z , the number density of clusters shows large differences between DE models, but geometrical factors reduce the differences substantially. We find that detecting a model dependence in the cluster redshift distribution is a significant challenge. We show that the galaxy redshift distribution is potentially a more sensitive characteristic. We do this by populating dark matter haloes in N -body simulations with galaxies using well-tested halo occupation distributions. We also estimate the VPF and find that samples with the same angular surface density of galaxies, in different models, exhibition almost model-independent VPF which therefore cannot be used as a test for DE. Once again, geometry and cosmic evolution compensate each other. By comparing VPFs for samples with fixed galaxy mass limits, we find measurable differences.  相似文献   

6.
We study the power spectrum of galaxies in redshift space, with third-order perturbation theory to include corrections that are absent in linear theory. We assume a local bias for the galaxies: i.e., the galaxy density is sampled from some local function of the underlying mass distribution. We find that the effect of the non-linear bias in real space is to introduce two new features: first, there is a contribution to the power which is constant with wavenumber, whose nature we reveal as essentially a shot-noise term. In principle this contribution can mask the primordial power spectrum, and could limit the accuracy with which the latter might be measured on very large scales. Secondly, the effect of second- and third-order bias is to modify the effective bias (defined as the square root of the ratio of galaxy power spectrum to matter power spectrum). The effective bias is almost scale-independent over a wide range of scales. These general conclusions also hold in redshift space. In addition, we have investigated the distortion of the power spectrum by peculiar velocities, which may be used to constrain the density of the Universe. We look at the quadrupole-to-monopole ratio, and find that higher order terms can mimic linear theory bias, but the bias implied is neither the linear bias, nor the effective bias referred to above. We test the theory with biased N -body simulations, and find excellent agreement in both real and redshift space, providing the local biasing is applied on a scale whose fractional rms density fluctuations are < 0.5.  相似文献   

7.
Future weak lensing surveys will directly probe the density fluctuation in the Universe. Recent studies have shown how the statistics of the weak lensing convergence field is related to the statistics of collapsed objects. Extending earlier analytical results on the probability distribution function of the convergence field, we show that the bias associated with the convergence field can be directly related to the bias associated with the statistics of underlying overdense objects. This will provide us with a direct method to study the gravity-induced bias in galaxy clustering. Based on our analytical results, which use the hierarchical Ansatz for non-linear clustering, we study how such a bias depends on the smoothing angle and the source redshift. We compare our analytical results with ray-tracing experiments through N -body simulations of four different realistic cosmological scenarios, and find a very good match. Our study shows that the bias in the convergence map strongly depends on the background geometry and hence can help us in distinguishing different cosmological models in addition to improving our understanding of the gravity-induced bias in galaxy clustering.  相似文献   

8.
9.
We investigate the number density of maxima in the cosmological galaxy density field smoothed with a filter as a probe of clustering. In previous work it has been shown that this statistic is closely related to the slope of the linear power spectrum, even when the directly measured power spectrum is non-linear. In the present paper we investigate the sensitivity of the peak number density to various models with differing power spectra, including rolling index models, cosmologies with massive neutrinos and different baryon densities. We find that rolling index models which have given an improved fit to CMB/LSS (cosmic microwave background/large scale structure) data yield a ∼10 per cent difference in peak density compared to the scale invariant case. Models with 0.3 eV neutrinos have effects of similar magnitude and it should be possible to constrain them with data from current galaxy redshift surveys. Baryon oscillations in the power spectrum also give rise to distinctive features in the peak density. These are preserved without modification when measured from the peak density in fully non-linear N -body simulations. Using the simulations, we also investigate how the peak density is modified in the presence of redshift distortions. Redshift distortions cause a suppression of the number of peaks, largely due to fingers of God overlapping in redshift space. We find that this effect can be modelled by using a modification of the input power spectrum. We also study the results when the simulation density field is traced by galaxies obtained by populating haloes with a halo occupation distribution consistent with observations. The peak number density is consistent with that in the dark matter for filter scales  >4  h −1 Mpc  , for which we find good agreement with the linear theory predictions. In a companion paper we analyse data from the 2dF Galaxy Redshift Survey.  相似文献   

10.
11.
We have investigated the statistical clustering properties of galaxies by calculating the two-point galaxy correlation function from the optically selected Durham/UKST Galaxy Redshift Survey. This survey is magnitude-limited to b J∼17, contains ∼2500 galaxies sampled at a rate of one-in-three and surveys a ∼4×106 ( h −1 Mpc)3 volume of space. We have empirically determined the optimal method of estimating the two-point correlation function from just such a magnitude-limited survey. Applying our methods to this survey, we find that our redshift-space results agree well with those from previous optical surveys. In particular, we confirm the previously claimed detections of large-scale power out to ∼40 h −1 Mpc scales. We compare with two common models of cosmological structure formation and find that our two-point correlation function has power significantly in excess of the standard cold dark matter model in the 10–30 h −1 Mpc region. We therefore support the observational results of the APM galaxy survey. Given that only the redshift-space clustering can be measured directly, we use standard modelling methods and indirectly estimate the real-space two-point correlation function from the projected two-point correlation function. We then invert this projected correlation function to obtain an estimate of the spatial two-point correlation function in real space. This correlation function in real space has a lower amplitude than that in redshift space, but a steeper slope.  相似文献   

12.
13.
14.
We present a simple model for the shape of the distribution function of galaxy peculiar velocities. We show how both non-linear and linear theory terms combine to produce a distribution which has an approximately Gaussian core with exponential wings. The model is easily extended to study how the statistic depends on the type of particle used to trace the velocity field (dark matter particles, dark matter haloes, galaxies), and on the density of the environment in which the test particles are located. Comparisons with simulations suggest that our model is accurate. We also show that the evolution of the peculiar velocities depends on the local, rather than the global, density. Since clusters populate denser regions on average, using cluster velocities with the linear theory scaling may lead to an overestimate of the global value of Ω0. Conversely, using linear theory with the global value of Ω0 to scale cluster velocities from the initial to the present time results in an underestimate of their true velocities. In general, however, the directions of motions of haloes are rather well described by linear theory. Our results help to simplify models of redshift-space distortions considerably.  相似文献   

15.
16.
Weak gravitational lensing surveys have the potential to probe mass density fluctuation in the Universe directly. Recent studies have shown that it is possible to model the statistics of the convergence field at small angular scales by modelling the statistics of the underlying density field in the highly non-linear regime. We propose a new method to model the complete probability distribution function of the convergence field as a function of smoothing angle and source redshift. The model relies on a hierarchical ansatz for the behaviour of higher order correlations of the density field. We compare our results with ray-tracing simulations and find very good agreement over a range of smoothing angles. Whereas the density probability distribution function is not sensitive to the cosmological model, the probability distribution function for the convergence can be used to constrain both the power spectrum and cosmological parameters.  相似文献   

17.
We compare the probability density function (PDF) and its low-order moments (variance and skewness) of the smoothed IRAS Point Source Catalogue Redshift Survey (PSC z ) galaxy density field and of the corresponding simulated PSC z look-alikes, generated from N -body simulations of six different dark matter models: four structure-normalized with     and     , one COBE -normalized, and the old standard cold dark matter model. The galaxy distributions are smoothed with a Gaussian window at three different smoothing scales,     , 10 and 15  h −1 Mpc. We find that the simulation PSC z look-alike PDFs are sensitive only to the normalization of the power spectrum, probably owing to the shape similarity of the simulated galaxy power spectrum on the relevant scales. We find that the only models that are consistent, at a high significance level, with the observed PSC z PDF are models with a relatively low power spectrum normalization     . From the phenomenologically derived σ 8–moments relation, fitted from the simulation data, we find that the PSC z moments suggest     .  相似文献   

18.
We have investigated the redshift-space distortions in the optically selected Durham/UKST Galaxy Redshift Survey using the two-point galaxy correlation function perpendicular and parallel to the observer's line of sight, ξ(σ, π). On small, non-linear scales we observe an elongation of the constant ξ(σ, π) contours in the line-of-sight direction. This is a result of the galaxy velocity dispersion and is the common 'Finger of God' effect seen in redshift surveys. Our result for the one-dimensional pairwise rms velocity dispersion is 〈 w 21/2=416±36 km s−1, which is consistent with those from recent redshift surveys and canonical values, but inconsistent with SCDM or LCDM models. On larger, linear scales we observe a compression of the ξ(σ, π) contours in the line-of-sight direction. This is caused by the infall of galaxies into overdense regions, and the Durham/UKST data favours a value of (Ω0.6/ b )∼0.5, where Ω is the mean mass density of the Universe and b is the linear bias factor that relates the galaxy and mass distributions. Comparison with other optical estimates yields consistent results, with the conclusion that the data do not favour an unbiased critical-density universe.  相似文献   

19.
We use the spherical evolution approximation to investigate non-linear evolution from the non-Gaussian initial conditions characteristic of the local f nl model. We provide an analytic formula for the non-linearly evolved probability distribution function (PDF) of the dark matter which shows that the underdense tail of the non-linear PDF in the f nl model should differ significantly from that for Gaussian initial conditions. Measurements of the underdense tail in numerical simulations may be affected by discreteness effects, and we use a Poisson counting model to describe this effect. Once this has been accounted, our model is in good quantitative agreement with the simulations. In principle, our calculation is an important first step in programs which seek to reconstruct the shape of the initial PDF from observations of large-scale structures in the Lyα forest and the galaxy distribution at later times.  相似文献   

20.
By combining a model for the evolution of the radio luminosity of an individual source with the radio luminosity function, we perform a multidimensional Monte Carlo simulation to investigate the cosmological evolution of the Fanaroff–Riley type II (FR II) radio galaxy population by generating large artificial samples. The properties of FR II sources are required to evolve with redshift in the artificial samples to fit the observations. Either the maximum jet age or the maximum density of the jet environment or both evolve with redshift. We also study the distribution of FR II source properties as a function of redshift. From currently available data we cannot constrain the shape of the distribution of environment density or age, but jet power is found to follow a power-law distribution with an exponent of approximately −2. This power-law slope does not change with redshift out to   z = 0.6  . We also find the distribution of the pressure in the lobes of FR II sources to evolve with redshift up to   z ∼ 1.2  .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号