首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A general tetrad fields, with an arbitrary function of radial coordinate, preserving spherical symmetry, is provided. Such tetrad is split into two matrices: The first matrix represents a Local Lorentz Transformation (LLT), which contains an arbitrary function. The second matrix represents a proper tetrad fields which satisfy the field equations of f(T) gravitational theory. This general tetrad is applied to the field equations of f(T). We derive a solution with one constant of integration to the resulting field equations of f(T). This solution gives a vanishing value of the scalar torsion. We calculate the energy associated with this solution to investigate what is the nature of the constant of integration.  相似文献   

2.
This paper discusses the evolution of a thin spherically symmetric self gravitating phantom shell around the charged shell. The general equations describing the motion of shell with a general form of equation of state are derived. The different types of space-time R ± and T ± regions and shell motion are classified depending on the parameters of the problem. The mechanical stability analysis of this spherically symmetric thin shell with charge in Reissner-Nordstrom (RN) to linearized spherically symmetric perturbation about static equilibrium solution is carried out.  相似文献   

3.
Cylindrically symmetric inhomogeneous magnetized string cosmological model is investigated. The source of the magnetic field is due to an electric current produced along x-axis. F 23 is the only non-vanishing component of electromagnetic field tensor. To get the deterministic solution, it has been assumed that the expansion (θ) in the model is proportional to the eigen value σ 1 1 of the shear tensor σ j i . The physical and geometric properties of the model are also discussed in presence and absence of magnetic field.  相似文献   

4.
Profiles of the UV semiforbidden lines of C III and Si III of RW Aur have been obtained with the HST/STIS. The C III profile shows two high velocity components at v = ± 170 km s?1 and a central one. The Si III profile is very broad (FWHM = 293 km s?1) and the high velocity components are unresolved. It is shown that the high velocity components are most probably produced in a rotating belt alike the detected in other sources of bipolar outflows. A radius between 2.7 R * and the corotation radius (6.1 R *) is derived and a log T e (K) ?4.7 and log n e(cm ?3) = 11.6 are estimated. The belt is clumpy and the most likely source of heating is local X-rays radiation, probably associated with the release of magnetic energy.  相似文献   

5.
The scattered radiation field in homogeneously absorbing and isotropically scattering spherical layers is studied, when the isotropic point source is at the centre. A complete frequency redistribution is assumed. It is shown, that on the inner boundaryr=R 0 of the cavity, whenR 0?1 (all radii are expressed in the path lengths), the source functionB~R 0 ?1 ln ?1/2 R 0 for the Doppler profile andB~R 0 ?3/2 for the Voigt and Lorentz profiles. The asymptotical behaviour of the source functionB(r) significantly differs from the analogous behaviour of solution for an infinite medium.  相似文献   

6.
Based on a second-order approximation of nonlinear force-free magnetic field solutions in terms of uniformly twisted field lines derived in Paper I, we develop here a numeric code that is capable to forward-fit such analytical solutions to arbitrary magnetogram (or vector magnetograph) data combined with (stereoscopically triangulated) coronal loop 3D coordinates. We test the code here by forward-fitting to six potential field and six nonpotential field cases simulated with our analytical model, as well as by forward-fitting to an exactly force-free solution of the Low and Lou (Astrophys. J. 352, 343, 1990) model. The forward-fitting tests demonstrate: i) a satisfactory convergence behavior (with typical misalignment angles of μ≈1°?–?10°), ii) relatively fast computation times (from seconds to a few minutes), and iii) the high fidelity of retrieved force-free α-parameters (α fit/α model≈0.9?–?1.0 for simulations and α fit/α model≈0.7±0.3 for the Low and Lou model). The salient feature of this numeric code is the relatively fast computation of a quasi-force-free magnetic field, which closely matches the geometry of coronal loops in active regions, and complements the existing nonlinear force-free field (NLFFF) codes based on photospheric magnetograms without coronal constraints.  相似文献   

7.
The effect of the Earth??s compression on the physical libration of the Moon is studied using a new vector method. The moment of gravitational forces exerted on the Moon by the oblate Earth is derived considering second order harmonics. The terms in the expression for this moment are arranged according to their order of magnitude. The contribution due to a spherically symmetric Earth proves to be greater by a factor of 1.34 × 106 than a typical term allowing for the oblateness. A linearized Euler system of equations to describe the Moon??s rotation with allowance for external gravitational forces is given. A full solution of the differential equation describing the Moon??s libration in longitude is derived. This solution includes both arbitrary and forced oscillation harmonics that we studied earlier (perturbations due to a spherically symmetric Earth and the Sun) and new harmonics due to the Earth??s compression. We posed and solved the problem of spinorbital motion considering the orientation of the Earth??s rotation axis with regard to the axes of inertia of the Moon when it is at a random point in its orbit. The rotation axes of the Earth and the Moon are shown to become coplanar with each other when the orbiting Moon has an ecliptic longitude of L ? = 90° or L ? = 270°. The famous Cassini??s laws describing the motion of the Moon are supplemented by the rule for coplanarity when proper rotations in the Earth-Moon system are taken into account. When we consider the effect of the Earth??s compression on the Moon??s libration in longitude, a harmonic with an amplitude of 0.03?? and period of T 8 = 9.300 Julian years appears. This amplitude exceeds the most noticeable harmonic due to the Sun by a factor of nearly 2.7. The effect of the Earth??s compression on the variation in spin angular velocity of the Moon proves to be negligible.  相似文献   

8.
A new class of solutions of Einstein field equations has been investigated for inhomogeneous cylindrically symmetric space-time with string source. To get the deterministic solution, it has been assumed that the expansion (θ) in the model is proportional to the eigen value σ 1  1 of the shear tensor σ i    j . Certain physical and geometric properties of the models are also discussed.  相似文献   

9.
Using the Faraday rotation technique with the ATS-3 satellite, it has been possible to monitor changes in the total electron content (NT) of the mid-latitude ionosphere during the first day of 20 geomagnetic storms. Our analysis has shown that during the positive phase (ΔNT > 0) of ionospheric storms the absolute magnitude of the increase in NT exhibits a very pronounced maximum near sunset. The mean value of ΔNT at 17:00 LT is more than five times the average ΔNT value at local noon. This effect is basically independent of the storm commencement time and is usually associated with substantial local enhancements of the total geomagnetic field. The NT enhancements are discussed in terms of a contraction and draining of the plasmasphere. A model is presented in which the dawn-dusk electric field responsible for the magnetospheric convection slows down the corotational motion of the plasmaspheric ionization in the dusk sector. This braking action causes a ‘pile up’ of the plasma and the magnetic field along the entire dusk sector.  相似文献   

10.
The particles making up the Jovian ring may be debris which has been excavated by micrometeoroids from the surfaces of many unseen (R ? 1 km) parent bodies (or “mooms” as we will occasionally call them) residing in the ring. A distribution of particle sizes exists: large objects are sources for the small visible ring particles and also account for the absorption of charged particles noted by Pioneer; the small grains are generated by micrometeoroid impacts, by jostling collisions among different-sized particles, and by self-fracturing due to electrostatic stresses. The latter are most effective in removing surface asperities to thereby produce smooth and crudely equidimensional grains. The presence of intermediate-sized (radius of several to several hundred microns) objects is also expected; these particles will have a total area comparable to the area of the visible ring particles. The nominal size (?2 μm) of the visible particles derived from their forward-scattering characteristics is caused, at least in part, by a selection effect but may also reflect a fundamental grain size or the preferential generation of certain sizes along with the destruction of others. The tiny ring particles have short lifetimes (?102?103 years) limited by erosion due to sputtering and meteoroid impacts. Plasma drag significantly modifies orbits in ~102 years but Poynting-Robertson drag is not effective (TPR ~ 105 years) in removing debris. The ring width is influenced by the distribution of source satellites, by the initial ejection velocity off them, by electromagnetic scattering, and by solar radiation forces. In the absence of electromagnetic forces, debris will reimpact a mother satellite or collide with another particle in about 10 years. A relative drift between different-sized particles, caused by a lessened effective gravity due to the Lorentz force, will substantially shorten these times to less than a month. The ring thickness is determined by a balance between initial conditions (abetted perhaps by electromagnetic scattering) and collisional damping; existence of the “halo” over the diffuse disk compared to its relative absence over the bright ring indicates the presence of mooms in the bright ring but not in the faint disk. Small satellites (R ? 1 km) will not reaccumulate colliding dust grains whereas satellites having the size of J14 or J16 may be able to do so, depending upon their precise shape, size, density, and location. Visible ring structure could indicate separate source satellites. The particles in the faint inner disk are delivered from the bright ring by orbital evolution principally under plasma drag. The halo is comprised of small particles (~0.1 μm) partially drawn out of the faint disk by interactions with the tilted Jovian magnetic field.  相似文献   

11.
Using steady, axisymmetric, ideal magnetohydrodynamics (MHD) we analyze relativistic outflows by means of examining the momentum equation along the flow and in the transfield direction. We argue that the asymptotic Lorentz factor is γ ~ μ ? σ M , and the asymptotic value of the Poynting-to-matter energy flux ratio—the so-called σ function—is given by σ/(1 + σ) ~ σ M /μ, where σ M is the Michel's magnetization parameter and μc 2 the total energy-to-mass flux ratio. We discuss how these values depend on the conditions near the origin of the flow. By employing self-similar solutions we verify the above result, and show that a Poynting-dominated flow near the source reaches equipartition between Poynting and matter energy fluxes, or even becomes matter-dominated, depending on the value of σ M /μ.  相似文献   

12.
We consider the planar restricted three-body problem and the collinear equilibrium point L 3, as an example of a center × saddle equilibrium point in a Hamiltonian with two degrees of freedom. We explore numerically the existence of symmetric and non-symmetric homoclinic orbits to L 3, when varying the mass parameter μ. Concerning the symmetric homoclinic orbits (SHO), we study the multi-round, m-round, SHO for m ≥ 2. More precisely, given a transversal value of μ for which there is a 1-round SHO, say μ 1, we show that for any m ≥ 2, there are countable sets of values of μ, tending to μ 1, corresponding to m-round SHO. Some comments on related analytical results are also made.  相似文献   

13.
We report on spectro-imaging infrared observations of Jupiter's auroral zones, acquired in October 1999 and October 2000 with the FTS/BEAR instrument at the Canada-France-Hawaii Telescope. The use of narrow-band filters at 2.09 and 2.12 μm, combined with high spectral resolution (0.2 cm−1), allowed us to map emission from the H2S1(1) quadrupole line and from several H3+ lines. The H2 and H3+ emission appears to be morphologically different, especially in the north, where the latter notably exhibits a “hot spot” near 150°-170° System III longitude. This hot spot coincides in position with the region of increased and variable hydrocarbon, FUV and X-ray emission, but is not seen in the more uniform H2S1(1) emission. We also present the first images of the H2 emission in the southern polar region. The spectra include a total of 14 H3+ lines, including two hot lines from the 3ν2-ν2 band, detected on Jupiter for the first time. They can be used to determine H3+ column densities, rotational (Trot) and vibrational (Tvib) temperatures. We find the mean Tvib of the v2=3 state to be lower (960±50 K) than the mean Trot in v2=2 (1170±75 K), indicating an underpopulation of the v2=3 level with respect to local thermodynamical equilibrium. Rotational temperatures and associated column densities are generally higher and lower, respectively, than inferred previously from ν2 observations. This is a likely consequence of a large positive temperature gradient in the sub-microbar auroral atmosphere. While the signal-to-noise is not sufficient to take full advantage of the 2-D capabilities of the observations, the search for correlations between line intensities, Tvib and column densities, indicates that variations in line intensities are mostly due to correlated variations in the H3+ column densities. The thermostatic role played by H3+ at ionospheric levels may provide an explanation. The exception is the northern “hot spot,” which exhibits a Tvib about 250 K higher than other regions. A partial explanation might invoke a homopause elevation in this region, but a fully consistent scenario is not yet available. The different distributions of the H2 and H3+ emission are equally difficult to explain.  相似文献   

14.
The minimum dissipative rate (MDR) method for deriving a coronal non-force-free magnetic field solution is partially evaluated. These magnetic field solutions employ a combination of three linear (constant-α) force-free-field solutions with one being a potential field (i.e., α=0). The particular case of the solutions where the other two α’s are of equal magnitude but of opposite sign is examined. This is motivated by studying the SOLIS (Synoptic Optical Long-term Investigation of the Sun (SOLIS), a National Solar Observatory facility) vector magnetograms of AR 10987, which show a global α value consistent with an α=0 value as evaluated by (×B) z /B z over the region. Typical of the current state of the observing technology, there is no definitive twist for input into the general MDR method. This suggests that the special α case, of two α’s with equal magnitudes and opposite signs, is appropriate given the data. Only for an extensively twisted active region does a dominant, nonzero α normally emerge from a distribution of local values. For a special set of conditions, is it found that (i) the resulting magnetic field is a vertically inflated magnetic field resulting from the electric currents being parallel to the photosphere, similar to the results of Gary and Alexander (Solar Phys. 186:123, 1999), and (ii) for α≈(α max /2), the Lorentz force per unit volume normalized by the square of the magnetic field is on the order of 1.4×10−10 cm−1. The Lorentz force (F L) is a factor of ten higher than that of the magnetic force d(B 2/8π)/dz, a component of F L. The calculated photospheric electric current densities are an order of magnitude smaller than the maximum observed in all active regions. Hence both the Lorentz force density and the generated electric current density seem to be physically consistent with possible solar dynamics. The results imply that the field could be inflated with an overpressure along the neutral line. However, the implementation of this or any other extrapolation method using the electric current density as a lower boundary condition must be done cautiously, with the current magnetography.  相似文献   

15.
A new solution of the magnetospheric heat equations capable of covering the whole region from 300 km along a field line to the equatorial plane has been achieved by adapting the searching procedure of Murphy (1974). It has been found that the protonospheric heat reservoir is sufficient to maintain Te >Tn down to the height of the F2-peak electron density all through the night at mid-latitudes. Full solution of the equations has also shown that Ti >Te in the protonosphere at night and the ions constitute a significant source of heat for the electrons.  相似文献   

16.
17.
The Ultraviolet Spectrometer Experiment on the MARINER 10 spacecraft measured the hydrogen Lyman α emmission resonantly scattered in the Venus exosphere at several viewing aspects during the encounter period. Venus encounter occurred at 17:01 GMT on 5 February 1974. Exospheric emissions above the planet's limb were measured and were analyzed with a spherically symmetric, single scattering, two-temperature model. On the sunlit hemisphere the emission profile was represented by an exospheric hydrogen atmosphere with Tc = 275±50 K and nc = 1.5 × 105 cm?3 and a non-thermal contribution represented by TH = 1250±100 K with nH = 500±100 cm?3. The observations of the dark limb showed that the spherically symmetric model used for the sunlit hemisphere was inappropriate for the analysis of the antisolar hemisphere. The density of the non-thermal component had increased at low altitudes, < 12,000 km, and decreased at high altitudes, > 20,000 km, by comparison. We conclude that the non-thermal source is on the sunward side of the planet. Analysis of the dark limb crossing suggests that the exospheric temperature on the dark side is <125 K if the exospheric density remains constant over the planet; upper limits are discussed. An additional source of Lyman α emission, 70 ± 15 R, was detected on the dark side of the planet and is believed to be a planetary albedo in contrast to multiple scattering from the sunlit side. Our analysis of the MARINER 10 data is consistent when applied to the MARINER 5 data.  相似文献   

18.
In any matter-antimatter symmetric cosmology the primeval nucleosynthesis imposes a typical size of a region of matter (antimatter) much larger than the diffusion length of neutrons. Observational results on the abundances of cosmic deuterium and helium are used to evaluate how large it has to be. As a result we find that a minimal sizeL 1~1.5×108 cm at the temperatureT=1 MeV is compatible with the standard abundances of primeval helium and deuterium.  相似文献   

19.
Two extreme ultraviolet (EUV) spectrophotometers flown in December 1978 on Venera 11 and Venera 12 measured the hydrogen Lyman α emission resonantly scattered in the atmosphere of Venus. Measurements were obtained across the dayside of the disk, and in the exosphere up to 50,000 km. They were analyzed with spherically symmetric models for which the radiative transfer equation was solved. The H content of the Venus atmosphere varies from optically thin to moderately thick regions. A shape fit at the bright limb allows one to determine the exospheric temperature Tc and the number density nc independently of the calibration of the instrument or the exact value of the solar flux. The dayside exospheric temperature was measured for the first time in the polar regions, with Tc = 300 ± 25°K for Venera 11 (79°S) and Tc = 275 ± 25°K (59°S) for Venera 12. At the same place, the density is nc = 4?2+3 × 104 atom.cm?3, and the integrated number density Nt from 250 to 110 km (the level of CO2 absorption) is 2.1 × 1012 atom.cm?2, a factor of 3 to 6 lower than that predicted in aeronomical models. This probably indicates that the models should be revised in the content of H-bearing molecules and should include the effect of dynamics. Across the disk the value of Nt decreases smoothly with a total variation of two from the morning side to the afternoon side. Alternately it could be a latitude effect, with less hydrogen in the polar regions. The nonthermal component if clearly seen up to 40,000 km of altitude. It is twice as abundant as at the time of Mariner 10 (solar minimum). Its radial distribution above 4000 km can be simulated by an exospheric distribution with T = 1030K and n = 103 atom.cm?3 at the exobase level. However, there are less hot atoms between 2000 and 4000 km than predicted by an ionospheric source. A by-product of the analysis is a determination of a very high solar Lyman α flux of 7.6 × 1011 photons (cm2 sec Å)?1 at line center (1 AU) in December 1978.  相似文献   

20.
A survey of the main characteristics of solar microwave bursts in relation to their usefulness for indicating the intensity of associated solar proton emissions suggests that time parameters give much better results than intensity or spectrum parameters. In particular, best results are obtained by using the effective, or mean, burst duration defined by $$T_M = 1/P_{max} \int_0^T {P(t)dt} $$ where T is the overall burst duration, P is the power density at time T, and P max is the maximum power density. For proton energies > 10 MeV the proton flux N p is given approximately by N p = 0.034 T M 3 particles ster?1 cm?2 s?1, where T m is in minutes, with a correlation factor of 0.8. Corresponding coefficients have been derived for a number of energy ranges. Using this parameter solar proton warnings and intensity estimates can be made with observations at only one frequency, preferably in the range 5–20 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号