首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The standard thin accretion disk model can explain the soft X-ray spectra of Galactic black hole systems and AGN successfully. However, there are still a few observational documents for Radiation pressure theory in X-ray novae in black hole binary systems and AGN. The luminosity in accretion onto black holes is corresponds to L>0.01L E . According to standard thin disk model, when the accretion rate is over a small fraction of the Eddington rate, L>0.01L E , the inner region of the disk is radiation-pressure-dominated and thermally unstable. However, observations of the high/soft state of black hole X-ray binaries with luminosity within (0.01L E <L<0.5L E ) show that the disk is quite stable. Thus, this contradiction shows the objection of this model and maybe it is essential to change the standard viscosity law or one of the other basic assumptions in order to get a stable disk models. In this paper, we revisit and recalculate the thermal instability with a different models of viscosity and cooling functions and show that the choosing of an arbitrary cooling and viscosity functions can affect on the stability of a general disk model and hence maybe answer to a this problem in accretion disk theory. We choose an arbitrary functions of surface density Σ and half thickness of disk H for cooling and viscosity. Also, we discuss a general disk with thermal conduction, radial force and advection. Then, we solve the equations numerically. We obtain a fourth degree dispersions relation and discuss solutions and instability modes. This analysis shows the great sensitivity of stability of disk to the form of viscosity, so there are various effective factors to stabilize the disk. For example the exist of advection and thermal conduction can effect to stability of disks also.  相似文献   

2.
3.
4.
5.
We explore the global structure of the accretion flow around a Schwarzschild black hole where the accretion disc is threaded by toroidal magnetic fields. The accretion flow is optically thin and advection dominated. The synchrotron radiation is considered to be the active cooling mechanism in the flow. With this, we obtain the global transonic accretion solutions and show that centrifugal barrier in the rotating magnetized accretion flow causes a discontinuous transition of the flow variables in the form of shock waves. The shock properties and the dynamics of the post-shock corona are affected by the flow parameters such as viscosity, cooling rate and strength of the magnetic fields. The shock properties are investigated against these flow parameters. We further show that for a given set of boundary parameters at the outer edge of the disc, accretion flow around a black hole admits shock when the flow parameters are tuned for a considerable range.  相似文献   

6.
We consider the problem of poloidal magnetic field advection and bending of an initially vertical field owing to radial inflow in thin accretion discs. For a ratio of kinematic viscosity to magnetic diffusivity of order unity, significant bending of an externally applied vertical field cannot occur in a disc with no internal dynamo. However, we show that if poloidal field is generated by a dynamo operating near its critical state, then significant field bending may be possible. Our results are of particular relevance to wind launching from accretion discs.  相似文献   

7.
本文采用微扰方法导出色散方程,并在四种情况下详细讨论了薄吸积盘的不稳定性。结果表明:在纯粘滞和纯磁场盘中都存在脉动不稳定性。而且在吸积盘内同时考虑粘滞和磁场时,存在两种不稳定性,一种是脉动不稳定性,另一种是单调不稳定性。同时数值计算还表明,脉动不稳定性更可能存在于盘的内区,而单调不稳定性则只在盘的外区,对短波扰动才有意义。这些结果为解释BLLac天体、Seyfert星系及类星体等活动星系核的光变现象进一步提供了理论依据。  相似文献   

8.
含粘滞性弱磁化吸积盘的轴对称脉动不稳定性   总被引:1,自引:0,他引:1  
本文讨论了一种含扩散型粘滞的弱磁化等温吸积盘模型,在此模型中研究了扩散型粘滞、垂向磁场Bz和环向磁场B对轴对称脉动不稳定性的影响.结果表明,对于轴对称扰动,一般情况下盘内存在四种轴对称振荡模式.其中二种模式是脉动不稳定的,粘滞和磁场对它们表现为非稳因素;而另外二种模式是稳定的,粘滞和磁场对它们表现为致稳因素.此外我们还注意到,Bz和B主要影响近轴向的脉动不稳定性,扩散型弱粘滞主要影响径向脉动不稳定性.  相似文献   

9.
Based on the equations of the self-generated magnetic field in the q-distributed plasmas, the studies show that the magnetic field is modulationally unstable by the perturbation method and the equations have self-similar collapse solution. The anomalous magnetic viscosity of accretion disks generates from highly spatially intermittent flux of the self-generated magnetic field. In addition, the anomalous viscosity coefficient is 8 orders more than the molecular viscosity and is modified by the adjustable index q, which may preferably explain the observations.  相似文献   

10.
11.
The global structure of accretion disks is investigated in a unified scheme. We use a general radiative cooling formula applicable to both optically thick and thin regimes and we include radial advection cooling. Within the -viscosity models, we found distinct families of global solutions. If the accretion rate is low, there are three non-intersecting solutions, corresponding to optically thick and thin, local cooling and optically thin advection cooling. If the accretion rate is high, and the viscosity coefficient is large, the two local cooling solutions coincide at radii R1 and R2 and exist independently below R1 and above R2 while the advection solution is stable at all radii. If the accretion is high and the viscosity is low, the two optically thin solutions will cross each other while the optically thick solution exists at all radii.  相似文献   

12.
We study the effects of winds on advection dominated accretion flows in the presence of a global magnetic field under a self-similar treatment. The disk gas is assumed to be isothermal. For a steady state structure of such accretion flows a set of self similar solutions are presented. We consider the wind in a general magnetic field with three components (r,φ,z) in advection-dominated accretion flows. The mass-accretion rate $\dot{M}$ decreases with radius r as $\dot{M}\propto r^{s+1/2}$ , where s is an arbitrary constant. We will see, by increasing the wind parameter s, radial and rotational velocities increase.  相似文献   

13.
The twisting of magnetic fields threading an accretion system can lead to the generation on axis of toroidal field loops. As the magnetic pressure increases, the toroidal field inflates, producing a flow. Collimation is due to a background corona, which radially confines this axially growing “magnetic tower”. We investigate the possibility of studying in the laboratory the dynamics, confinement and stability of magnetic tower jets. We present two-dimensional resistive magnetohydrodynamic simulations of radial arrays, which consist of two concentric electrodes connected radially by thin metallic wires. In the laboratory, a radial wire array is driven by a 1 MA current which produces a hot, low density background plasma. During the current discharge a low plasma beta (β < 1), magnetic cavity develops in the background plasma (β is the ratio of thermal to magnetic pressure). This laboratory magnetic tower is driven by the magnetic pressure of the toroidal field and it is surrounded by a shock envelope. On axis, a high density column is produced by the pinch effect. The background plasma has >rsim1, and in the radial direction the magnetic tower is confined mostly by the thermal pressure. In contrast, in the axial direction the pressure rapidly decays and an elongated, well collimated magnetic-jet develops. This is later disrupted by the development of m = 0 instabilities arising in the axial column.  相似文献   

14.
Magnetically mediated disk outflows are a leading paradigm to explain winds and jets in a variety of astrophysical sources, but where do the fields come from? Since accretion of mean magnetic flux may be disfavored in a thin turbulent disk, and only fields generated with sufficiently large scale can escape before being shredded by turbulence, in situ field production is desirable. Nonlinear helical inverse dynamo theory can provide the desired fields for coronae and outflows. We discuss the implications for contemporary protostellar disks, where the (magneto-rotational instability (MRI)) can drive turbulence in the inner regions, and primordial protostellar disks, where gravitational instability drives the turbulence. We emphasize that helical dynamos are compatible with the magneto-rotational instability, and clarify the relationship between the two.  相似文献   

15.
The presence of an imposed vertical magnetic field may drastically influence the structure of thin accretion discs. If the field is sufficiently strong, the rotation law can depart from the Keplerian one. We consider the structure of a disc for a given eddy magnetic diffusivity but neglect details of the energy transport. The magnetic field is assumed to be in balance with the internal energy of the accretion flow. The thickness of the disc as well as the turbulent magnetic Prandtl number and the viscosity, α , are the key parameters of our model. The calculations show that the radial velocity can reach the sound speed for a magnetic disc if the thickness is comparable to that of a non-magnetic one. This leads to a strong amplification of the accretion rate for a given surface density. The inclination angle of the magnetic field lines can exceed the critical value 30° (required to launch cold jets) even for a relatively small magnetic Prandtl number of order unity. The toroidal magnetic fields induced at the disc surface are smaller than predicted in previous studies.  相似文献   

16.
17.
We investigate the variation of the gas and the radiation pressure in accretion disks during the infall of matter to the black hole and its effect to the flow. While the flow far away from the black hole might be non-relativistic, in the vicinity of the black hole it is expected to be relativistic behaving more like radiation. Therefore, the ratio of gas pressure to total pressure (β) and the underlying polytropic index (γ) should not be constant throughout the flow. We obtain that accretion flows exhibit significant variation of β and then γ, which affects solutions described in the standard literature based on constant β. Certain solutions for a particular set of initial parameters with a constant β do not exist when the variation of β is incorporated appropriately. We model the viscous sub-Keplerian accretion disk with a nonzero component of advection and pressure gradient around black holes by preserving the conservations of mass, momentum, energy, supplemented by the evolution of β. By solving the set of five coupled differential equations, we obtain the thermo-hydrodynamical properties of the flow. We show that during infall, β of the flow could vary up to ∼300%, while γ up to ∼20%. This might have a significant impact to the disk solutions in explaining observed data, e.g. super-luminal jets from disks, luminosity, and then extracting fundamental properties from them. Hence any conclusion based on constant γ and β should be taken with caution and corrected.  相似文献   

18.
The aim of this work is to study the effects of an external magnetic field generated by a magnetized compact star on the outflows of its accretion disc. For this purpose, we solve a set of magneto-hydrodynamic (MHD) equations for an accretion disc in spherical coordinates to consider the disc structure along the θ-direction. We also consider the magnetic field of a compact star beyond its surface as a dipolar field, producing a toroidal magnetic field inside the disc. We convert the equations to a set of ordinary differential equations (ODEs) as a function of the θ only by applying self-similar assumptions in the radial direction. Then, this set of equations is solved under symmetrical boundary conditions in the equatorial plane to obtain the velocity field. The results are considered in the gas-pressure-dominated (GPD) region and radiation-pressure-dominated (RPD) region as well. The dipolar field of the compact stars can significantly enhance the speed of outflows. It also can change the structure of the disc. The results of this work would be useful in the study of X-ray binaries, the origin of ultra-relativistic outflows, and jet formation around the compact stars.  相似文献   

19.
We elaborate the model of accretion disks of young stars with the fossil large-scale magnetic field in the frame of Shakura and Sunyaev approximation. Equations of the MHD model include Shakura and Sunyaev equations, induction equation and equations of ionization balance. Magnetic field is determined taking into account ohmic diffusion, magnetic ambipolar diffusion and buoyancy. Ionization fraction is calculated considering ionization by cosmic rays and X-rays, thermal ionization, radiative recombinations and recombinations on the dust grains. Analytical solution and numerical investigations show that the magnetic field is coupled to the gas in the case of radiative recombinations. Magnetic field is quasi-azimuthal close to accretion disk inner boundary and quasi-radial in the outer regions. Magnetic field is quasi-poloidal in the dusty “dead” zones with low ionization degree, where ohmic diffusion is efficient. Magnetic ambipolar diffusion reduces vertical magnetic field in 10 times comparing to the frozen-in field in this region. Magnetic field is quasi-azimuthal close to the outer boundary of accretion disks for standard ionization rates and dust grain size a d=0.1 μm. In the case of large dust grains (a d>0.1 μm) or enhanced ionization rates, the magnetic field is quasi-radial in the outer regions. It is shown that the inner boundary of dusty “dead” zone is placed at r=(0.1–0.6) AU for accretion disks of stars with M=(0.5–2)?M . Outer boundary of “dead” zone is placed at r=(3–21) AU and it is determined by magnetic ambipolar diffusion. Mass of solid material in the “dead” zone is more than 3?M for stars with M≥1?M .  相似文献   

20.
The observed reduction in the fraction of quasars with polarized radiation as the redshift increases is explained by an increase in the magnetic-field strength in accretion disks at high z. The emerging Faraday rotation causes the radiation to be depolarized. This mechanism allows the magnetic fields in accretion disks to be estimated at several hundred gauss. We give simple asymptotic formulas that describe the Faraday depolarization in optically thick accretion disks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号