首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental deformation of partially melted granitic aggregates   总被引:16,自引:1,他引:16  
Abstract The effects of varying amounts of partial melt on the deformation of granitic aggregates have been tested experimentally at conditions (900°C, 1500 MPa, 10-4 to 10-6/s) where melt-free samples deform by dislocation creep, with microstructures approximately equivalent to those of upper greenschist facies. Experiments were performed on samples of various grain sizes, including an aplite (150 μm) and sintered aggregates of quartz-albitemicrocline (10–50 and 2–10 μm). Water was added to the samples to obtain various amounts of melt (1–15% in the aplite, 1–5% in the sintered aggregates). Optical and TEM observations of the melt distribution in hydrostatically annealed samples show that the melt in the sintered aggregates is homogeneously distributed along an interconnected network of triple junction channels, while the melt in the aplites is inhomogeneously distributed. The effect of partial melt on deformation depends an melt amount and distribution, grain size and strain rate. For samples deformed with ? 1% melt, all grain sizes exhibit microstructures indicative of dislocation creep. For samples deformed with 3–5% melt, the 150 μm and 10–50 μm grain size samples also exhibit dislocation creep microstructures, but the 2–10 μm grain size samples exhibit abundant TEM-scale evidence of dissolution-precipitation and little evidence of dislocation activity, suggesting a switch in deformation mechanism to predominantly melt-enhanced diffusion creep. At natural strain rates melt-enhanced diffusion creep would predominate at larger grain sizes, although probably not for most coarse-grained granites. The effects of melt percentage and strain rate have been studied for the 150 μm aplites. For samples with ? 5 and 10% melt, deformation at 10–6/s squeezes excess melt out of the central compressed region allowing predominantly dislocation creep. Conversely, deformation at 10-5/s produces considerable cataclasis presumably because the excess melt cannot flow laterally fast enough and a high pore fluid pressure results. For samples with 15% melt, deformation at both strain rates produces cataclasis, presumably because the inhomogeneous melt distribution resulted in regions of decoupled grains, which would produce high stress concentrations at point contacts. At natural strain rates there should be little or no cataclasis if an equilibrium melt texture exists and if the melt can flow as fast as the imposed strain rate. However, if the melt is confined and cannot migrate, a high pore fluid pressure should promote brittle deformation.  相似文献   

2.
Microstructural, electron backscatter diffraction (EBSD), and misorientation analyses of a migmatitic granulite-facies orthogneiss from the exhumed lower crust of a Cretaceous continental arc in Fiordland, New Zealand show how deformation was accommodated during and after episodes of melt infiltration and high-grade metamorphism. Microstructures in garnet, omphacite, plagioclase, and K-feldspar suggest that an early stage of deformation was achieved by dislocation creep of omphacite and plagioclase, with subsequent deformation becoming partitioned into plagioclase. Continued deformation after melt infiltration resulted in strain localization in the leucosome of the migmatite, where a change of plagioclase deformation mechanism promoted the onset of grain boundary sliding, most likely accommodated by diffusion creep, in fine recrystallized plagioclase grains. Our results suggest three distinctive transitions in the rheology of the lower crust of this continental arc, where initial weakening was primarily achieved by deformation of both omphacite and plagioclase. Subsequent strain localization in plagioclase of the leucosome indicates that the zones of former melt are weaker than the restite, and that changes in deformation mechanisms within plagioclase, and an evolution of its strength, primarily control the rheology of the lower crust during and after episodes of melting and magma addition.  相似文献   

3.
Creation of pathways for melt to migrate from its source is the necessary first step for transport of magma to the upper crust. To test the role of different dehydration‐melting reactions in the development of permeability during partial melting and deformation in the crust, we experimentally deformed two common crustal rock types. A muscovite‐biotite metapelite and a biotite gneiss were deformed at conditions below, at and above their fluid‐absent solidus. For the metapelite, temperatures ranged between 650 and 800 °C at Pc=700 MPa to investigate the muscovite‐dehydration melting reaction. For the biotite gneiss, temperatures ranged between 850 and 950 °C at Pc=1000 MPa to explore biotite dehydration‐melting under lower crustal conditions. Deformation for both sets of experiments was performed at the same strain rate (ε.) 1.37×10?5 s?1. In the presence of deformation, the positive ΔV and associated high dilational strain of the muscovite dehydration‐melting reaction produces an increase in melt pore pressure with partial melting of the metapelite. In contrast, the biotite dehydration‐melting reaction is not associated with a large dilational strain and during deformation and partial melting of the biotite gneiss melt pore pressure builds more gradually. Due to the different rates in pore pressure increase, melt‐enhanced deformation microstructures reflect the different dehydration melting reactions themselves. Permeability development in the two rocks differs because grain boundaries control melt distribution to a greater extent in the gneiss. Muscovite‐dehydration melting may develop melt pathways at low melt fractions due to a larger volume of melt, in comparison with biotite‐dehydration melting, generated at the solidus. This may be a viable physical mechanism in which rapid melt segregation from a metapelitic source rock can occur. Alternatively, the results from the gneiss experiments suggest continual draining of biotite‐derived magma from the lower crust with melt migration paths controlled by structural anisotropies in the protolith.  相似文献   

4.
The grain‐scale spatial arrangement of melt in layer‐parallel leucosomes in two anatectic rocks from two different contact aureoles located in central Maine, USA, is documented and used to constrain the controls on grain‐scale melt localization. The spatial distribution of grain‐scale melt is inferred from microstructural criteria for recognition of mineral pseudomorphs after melt and mineral grains of the solid matrix that hosted the melt. In both rocks, feldspar mimics the grain‐scale distribution of melt, and quartz is the major constituent of the solid matrix. The feldspar pockets consist of individual feldspar grains or aggregates of feldspar grains that show cuspate outlines. They have low average width/length ratios (0.54 and 0.55, respectively), and are interstitial between more rounded and equant (width/length ratios 0.65 for both samples) quartz grains. In two dimensions, the feldspar pockets extend over distances equivalent to multiple quartz grain diameters, possibly forming a connected three‐dimensional intergranular network. Both samples show similar mesoscopic structural elements and in both samples the feldspar pockets have a shape‐preferred orientation. In one sample, feldspar inferred to replace melt is aligned subparallel to the shape‐preferred orientation of quartz, indicating that pre‐ or syn‐anatectic strain controlled the grain‐scale distribution of melt. In the other sample, the preferred orientation of feldspar inferred to replace melt is different from the orientations of all other mesoscopic or microscopic structures in the rock, indicating that differential stress controlled grain‐scale melt localization. This is probably facilitated by conditions of higher differential stress, which may have promoted microfracturing. Grain‐scale melt distribution and inferred melt localization controls give insight into possible grain‐scale deformation mechanisms in melt‐bearing rocks. Application of these results to the interpretation of deep crustal anatectic rocks suggests that grain‐scale melt distribution should be controlled primarily by pre‐ or syn‐anatectic deformation. Feedback relations between melt localization and deformation are to be expected, with important implications for deformation and tectonic evolution of melt‐bearing rocks.  相似文献   

5.
The grain‐ and outcrop‐scale distribution of melt has been mapped in anatectic rocks from regional and contact metamorphic environments and used to infer melt movement paths. At the grain scale, anatectic melt is pervasively distributed in the grain boundaries and in small pools; consequently, most melt is located parallel to the principal fabric in the rock, typically a foliation. Short, branched arrays of linked, melt‐bearing grain boundaries connect melt‐depleted parts of the matrix to diffuse zones of melt accumulation (protoleucosomes), where magmatic flow and alignment of euhedral crystals grown from the melt developed. The distribution of melt (leucosome) and residual rocks (normally melanocratic) in outcrop provides different, but complementary, information. The residual rocks show where the melt came from, and the leucosomes preserve some of the channels through which the melt moved, or sites where it pooled. Different stages of the melt segregation process are recorded in the leucosome–melanosome arrays. Regions where melting and segregation had just begun when crystallization occurred are characterized by short arrays of thin, branching leucosomes with little melanosome. A more advanced stage of melting and segregation is marked by the development of residual rocks around extensive, branched leucosome arrays, generally oriented along the foliation or melting layer. Places where melting had stopped, or slowed down, before crystallization began are marked by a high ratio of melanosome to leucosome; because most of the melt has drained away, very few leucosomes remain to mark the melt escape path — this is common in melt‐depleted granulite terranes. Many migmatites contain abundant leucosomes oriented parallel to the foliation; mostly, these represent places where foliation planes dilated and melt drained from the matrix via the branched grain boundary and larger branched melt channel (leucosome) arrays collected. Melt collected in the foliation planes was partially, or fully, expelled later, when discordant leucosomes formed. Leucosomes (or veins) oriented at high angles to the foliation/layering formed last and commonly lack melanocratic borders; hence they were not involved in draining the matrix of the melting layer. Discordant leucosomes represent the channels through which melt flowed out of the melting layer.  相似文献   

6.
A detailed field study reveals a gradual transition from high‐grade solid‐state banded orthogneiss via stromatic migmatite and schlieren migmatite to irregular, foliation‐parallel bodies of nebulitic migmatite within the eastern part of the Gföhl Unit (Moldanubian domain, Bohemian Massif). The orthogneiss to nebulitic migmatite sequence is characterized by progressive destruction of well‐equilibrated banded microstructure by crystallization of new interstitial phases (Kfs, Pl and Qtz) along feldspar boundaries and by resorption of relict feldspar and biotite. The grain size of all felsic phases decreases continuously, whereas the population density of new phases increases. The new phases preferentially nucleate along high‐energy like–like boundaries causing the development of a regular distribution of individual phases. This evolutionary trend is accompanied by a decrease in grain shape preferred orientation of all felsic phases. To explain these data, a new petrogenetic model is proposed for the origin of felsic migmatites by melt infiltration from an external source into banded orthogneiss during deformation. In this model, infiltrating melt passes pervasively along grain boundaries through the whole‐rock volume and changes completely its macro‐ and microscopic appearance. It is suggested that the individual migmatite types represent different degrees of equilibration between the host rock and migrating melt during exhumation. The melt topology mimicked by feldspar in banded orthogneiss forms elongate pockets oriented at a high angle to the compositional banding, indicating that the melt distribution was controlled by the deformation of the solid framework. The microstructure exhibits features compatible with a combination of dislocation creep and grain boundary sliding deformation mechanisms. The migmatite microstructures developed by granular flow accompanied by melt‐enhanced diffusion and/or melt flow. However, an AMS study and quartz microfabrics suggest that the amount of melt present did not exceed a critical threshold during the deformation to allow free movements of grains.  相似文献   

7.
Melt must transfer through the lower crust, yet the field signatures and mechanisms involved in such transfer zones (excluding dykes) are still poorly understood. We report field and microstructural evidence of a deformation‐assisted melt transfer zone that developed in the lower crustal magmatic arc environment of Fiordland, New Zealand. A 30–40 m wide hornblende‐rich body comprising hornblende ± clinozoisite and/or garnet exhibits 'igneous‐like' features and is hosted within a metamorphic, two‐pyroxene–pargasite gabbroic gneiss (GG). Previous studies have interpreted the hornblende‐rich body as an igneous cumulate or a mass transfer zone. We present field and microstructural characteristics supporting the later and indicating the body has formed by deformation‐assisted, channelized, reactive porous melt flow. The host granulite facies GG contains distinctive rectilinear dykes and garnet reaction zones (GRZ) from earlier in the geological history; these form important reaction and strain markers. Field observations show that the mineral assemblages and microstructures of the GG and GRZ are progressively modified with proximity to the hornblende‐rich body. At the same time, GRZ bend systematically into the hornblende‐rich body on each side of the unit, showing apparent sinistral shearing. Within the hornblende‐rich body itself, microstructures and electron back‐scatter diffraction mapping show evidence of the former presence of melt including observations consistent with melt crystallization within pore spaces, elongate pseudomorphs of melt films along grain boundaries, minerals with low dihedral angles as small as <10° and up to <60°, and interconnected 3D melt pseudomorph networks. Reaction microstructures with highly irregular contact boundaries are observed at the field and thin‐section scale in remnant islands of original rock and replaced grains, respectively. We infer that the hornblende‐rich body was formed by modification of the host GG in situ due to reaction between an externally derived, reactive, hydrous gabbroic to intermediate melt percolating via porous melt flow through an actively deforming zone. Extensive melt–rock interaction and metasomatism occurred via coupled dissolution–precipitation, triggered by chemical disequilibrium between the host rock and the fluxing melt. As a result, the host plagioclase and pyroxene became unstable and were reacted and dissolved into the melt, while hornblende and to a lesser extent clinozoisite and garnet grew replacing the unstable phases. Our study shows that hornblendite rocks commonly observed within deep crustal sections, and attributed to cumulate fractionation processes, may instead delineate areas of deformation‐assisted, channelized reactive porous melt flow formed by melt‐mediated coupled dissolution–precipitation replacement reactions.  相似文献   

8.
Field, petrographic, microstructural and isotopic studies of mylonitic gneisses and associated pegmatites along the Hope Valley shear zone in southern Rhode Island indicate that late Palaeozoic deformation (c. 275 Ma) in this zone occurred at very high temperatures (>650 °C). High‐energy cuspate/lobate phase boundary microstructures, a predominance of equant to sub‐equant grains with low internal lattice strain, and mixed phase distributions indicate that diffusion creep was an important and possibly predominant deformation mechanism. Field and petrographic evidence are consistent with the presence of an intergranular melt phase during deformation, some of which collected into syntectonic pegmatites. Rb/Sr isotopic analyses of tightly sampled pegmatites and wall rocks confirm that the pegmatites were derived as partial melts of the immediately adjacent, isotopically heterogeneous mylonitic gneisses. The presence of syntectonic interstitial melts is inferred to have permitted a switch from dislocation creep to melt‐enhanced diffusion creep as the dominant mechanism in these relatively coarse‐grained mylonitic gneisses (200–500 µm syn‐deformational grain size). A switch to diffusion creep would lead to significant weakening, and may explain why the Hope Valley shear zone evolved into a major regional tectonic boundary. This work identifies conditions under which diffusion creep operates in naturally deformed granitic rocks and illuminates the deformation processes involved in the development of a tectonic boundary between two distinct Late Proterozoic (Avalonian) basement terranes.  相似文献   

9.
Schlieren are trains of platy or blocky minerals, typically the ferromagnesian minerals and accessory phases, that occur in granites and melt‐rich migmatites, such as diatexites. They have been considered as: (1) unmelted residue from xenoliths or the source region; (2) mineral accumulations formed during magma flow; (3) compositional layering; and (4) sites of melt loss. In order to help identify schlieren‐forming processes in the diatexites at St Malo, differences in the size, shape, orientation, distribution and composition of the biotite from schlieren and from their hosts have been investigated. Small biotite grains are much less abundant in the schlieren than in their hosts. Schlieren biotite grains are generally larger, have greater aspect ratios and have, except in hosts with low (< 10%) biotite contents, a much stronger shape preferred orientation than host biotite. The compositional ranges of host and schlieren biotite are similar, but schlieren biotite defines tighter, sharper peaks on composition‐frequency plots. Hosts show magmatic textures such as imbricated (tiled), unstrained plagioclase. Some schlieren show only magmatic textures (tiled biotite, no crystal‐plastic strain features), but many have textures indicating submagmatic and subsolidus deformation (e.g. kinked grains) and these schlieren show the most extensive evidence for recrystallization. Magmas at St Malo initially contained a significant fraction of residual biotite and plagioclase crystals; smaller biotite grains were separated from the larger plagioclase crystals during magma flow. Since plagioclase was also the major, early crystallizing phase, the plagioclase‐rich domains developed rapidly and reached the rigid percolation threshold first, forcing further magma flow to be concentrated into narrowing melt‐rich zones where the biotite had accumulated, hence increasing shear strain and the degree of shape preferred orientation in these domains. Schlieren formed in these domains as a result of grain contacts and tiling in the grain inertia‐regime. Final amalgamation of the biotite aggregates into schlieren involved volume loss as melt trapped between grains was expelled after the rigid percolation threshold was reached in the biotite‐rich layers.  相似文献   

10.
Melt infiltration into quartzite took place due to generation and migration of partial melts within the high‐grade metamorphic rocks of the Big Cottonwood (BC) formation in the Little Cottonwood contact aureole (UT, USA). Melt was produced by muscovite and biotite dehydration melting reactions in the BC formation, which contains pelite and quartzite interlayered on a centimetre to decimetre scale. In the migmatite zone, melt extraction from the pelites resulted in restitic schollen surrounded by K‐feldspar‐enriched quartzite. Melt accumulation occurred in extensional or transpressional domains such as boudin necks, veins and ductile shear zones, during intrusion‐related deformation in the contact aureole. The transition between the quartzofeldspathic segregations and quartzite shows a gradual change in texture. Here, thin K‐feldspar rims surround single, round quartz grains. The textures are interpreted as melt infiltration texture. Pervasive melt infiltration into the quartzite induced widening of the quartz–quartz grain boundaries, and led to progressive isolation of quartz grains. First as clusters of grains, and with increasing infiltration as single quartz grains in the K‐feldspar‐rich matrix of the melt segregation. A 3D–μCT reconstruction showed that melt formed an interconnected network in the quartzites. Despite abundant macroscopic evidence for deformation in the migmatite zone, individual quartz grains found in quartzofeldspathic segregations have a rounded crystal shape and lack quartz crystallographic orientation, as documented with electron backscatter diffraction (EBSD). Water‐rich melts, similar to pegmatitic melts documented in this field study, were able to infiltrate the quartz network and disaggregate grain coherency of the quartzites. The proposed mechanism can serve as a model to explain abundant xenocrysts found in magmatic systems.  相似文献   

11.
We use quantitative microstructural analysis including misorientation analysis based on electron backscatter diffraction (EBSD) data to investigate deformation mechanisms of naturally deformed plagioclase in an amphibolite gabbro mylonite. The sample is from lower oceanic crust exposed near the Southwest Indian Ridge, and it has a high ratio of recrystallized matrix grains to porphyroclasts. Microstructures preserved in porphyroclasts suggest that early deformation was achieved principally by dislocation creep with subgrain rotation recrystallization; recrystallized grain (average diameter ∼8 μm) microstructures indicate that subsequent grain boundary sliding (GBS) was active in the continued deformation of the recrystallized matrix. The recrystallized matrix shows four-grain junctions, randomized misorientation axes, and a shift towards higher angles for neighbor-pair misorientations, all indicative of GBS. The matrix grains also exhibit a shape preferred orientation, a weak lattice preferred orientation consistent with slip on multiple slip systems, and intragrain microstructures indicative of dislocation movement. The combination of these microstructures suggest deformation by dislocation-accommodated GBS (DisGBS). Strain localization within the recrystallized matrix was promoted by a transition from grain size insensitive dislocation creep to grain size sensitive GBS, and sustained by the maintenance of a small grain size during superplasticity.  相似文献   

12.
Microstructural analyses were used to investigate the formation of a macroscale‐massive till at Knud Strand in Denmark. More than 100 thin sections were examined and microstructures mapped and counted for quantitative comparison and interpretation. Microstructures indicative of both brittle (grain lineations, edge‐to‐edge crushed grains) and ductile (turbate structures) deformation are evenly distributed in vertical profiles through the till, suggesting that strain contributed to its formation. Discrete shears (grain lineations and plasmic fabric) probably accommodated most deformation, whereas rotational deformation was less prominent. The microshear geometry fits the predicted Coulomb–Mohr failure criterion, indicating that till behaves as a plastic material. Strain estimate of ca. 101 from micromorphological proxies is two–three orders of magnitude lower than expected if the till was subjected to pervasive deformation. A hybrid of lodgement and time‐transgressive deformation is envisaged as the till‐forming processes. Our data suggest that even abundant evidence of microscale deformation at continuing high levels of strain may only record the latest process of deposition and deformation and therefore not fully reflect the complexity of till genesis. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
In an extensional shear zone in the Talea Ori, Crete, quartz veins occur in high-pressure low-temperature metamorphic sediments at sites of dilation along shear band boundaries, kink band boundaries and boudin necks. Bent elongate grains grown epitactically from the host rock with abundant fluid inclusion trails parallel to the vein wall indicate vein formation by crack-seal increments during dissolutionprecipitation creep of the host rock. The presence of sutured high-angle grain boundaries and subgrains shows that temperatures were sufficiently high for recovery and strain-induced grain boundary migration, i.e. higher than 300 -350℃, close to peak metamorphic conditions. The generally low amount of strain accumulated by dislocation creep in quartz of the host rock and most veins indicates low bulk stress conditions of a few tens of MPa on a long term. The time scale of stress-loading to cause cyclic cracking and sealing is assumed to be lower than the Maxwell relaxation time of the metasediments undergoing dissolution-precipitation creep at high strain rates(10-10 s-1 to 10-9 s-1), which is on the order of hundred years. In contrast, some veins discordant or concordant to the foliation show heterogeneous quartz microstructures with micro-shear zones, sub-basal deformation lamellae, shortwavelength undulatory extinction and recrystallized grains restricted to high strain zones. These microstructures indicate dislocation glide-controlled crystal-plastic deformation(low-temperature plasticity) at transient high stresses of a few hundred MPa with subsequent recovery and strain-induced grain boundary migration at relaxing stresses and temperatures of at least 300 -350℃. High differential stresses in rocks at greenschist-facies conditions that relieve stress by creep on the long term, requires fast stress-loading rates, presumably by seismic activity in the overlying upper crust. The time scale for stress loading is controlled by the duration of the slip event along a fault, i.e. a few seconds to minutes.This study demonstrates that microstructures can distinguish between deformation at internal low stress-loading rates(to tens of MPa on a time scale of hundred years) and high(coseismic) stress-loading rates to a few hundred MPa on a time scale of minutes.  相似文献   

14.
内蒙古大青山高级变质岩中熔体线理特征   总被引:1,自引:0,他引:1       下载免费PDF全文
熔体线理由浅色部分熔融物质形成长的集合体或杆状体沿着应变椭球体X轴方向定向排列构成,是高级变质岩特有的一种线状构造.熔体线理发育在深部构造层次韧性变形带中,与矿物拉伸线理一样具有运动方向指向意义.熔体线理形成于伸展构造环境中,是变形作用、变质作用和部分熔融作用共同作用的结果.伸展构造变形导致岩石部分熔融,是熔体线理形成...  相似文献   

15.
 Plagioclase recrystallization microstructures and petrofabrics in the unmetamorphosed, 1.43 Ga Poe Mountain anorthosite, Wyoming, are indicative of very high-temperature deformation and recrystallization during the emplacement of the anorthosite body. The Poe Mountain anorthosite consists of a core of recrystallized, massive anorthosite transitional with a series of layered anorthositic cumulates at the margin of the intrusion. Irregular grain boundaries and dissected grain microstructures in the massive core and transitional anorthosites suggest that the anorthositic rocks recrystallized by “fast” grain boundary migration and possibly subgrain rotation recrystallization, at very high temperatures (≈1050°C) during emplacement of the intrusion in the mid-crust (3 kbar). The deformation and recrystallization of the Poe Mountain anorthosite was continuous from subliquidus to subsolidus temperature conditions during the emplacement of the intrusion. Anorthosites with the lowest modal percentages of ferromagnesian minerals and Fe-Ti oxides are always the most recrystallized. This suggests that melt interstitial to the plagioclase-crystal framework was removed during deformation and recrystallization of the intrusion. Bulging of plagioclase grain boundaries around Fe-Ti oxides together with deformed oikocrystic ferromagnesian minerals and plagioclase chadacrysts indicate that the deformation and recrystallization of the intrusion continued after the crystallization of the interstitial melt minerals. Received: 28 February 1995/Accepted: 20 July 1995  相似文献   

16.
We investigate a low‐strain outcrop of the lower crust, the Pembroke Granulite, exposed in northern Fiordland, New Zealand, which exhibits localized partial melting. Migmatite and associated tschermakite–clinozoisite (TC) gneiss form irregular, elongate bodies that cut a two‐pyroxene–pargasite (PP) gneiss. Gradational boundaries between rock types, and the progressive nature of changes in mineral assemblage, microstructure and chemistry are consistent with the TC gneiss and migmatite representing modified versions of the PP gneiss. Modification is essentially isochemical, where partial modification involves hydration of the assemblage and mineral chemistry changes, and complete modification involves additional recrystallization and in situ partial melt production. Microstructures of quartz and plagioclase, including small dihedral angles, string of beads textures and films surrounding amphibole and garnet grains are consistent with the former presence of melt in modified rock types. The documented rock modification is attributed to melt–rock interaction occurring during porous melt flow of a dominantly externally derived, hydrous silicate melt. Microstructures indicate melt flow occurred along grain boundaries and field relationships show it was focused into channels tens of metres wide, with preference for following the pre‐existing foliation. Melt–rock interaction at the grain scale resulted in hydration and modification of the host PP gneiss, which resulted in localized partial melting. These relationships indicate prograde hydration during localized melt–rock interaction drove migmatization of the lower crust.  相似文献   

17.
Granulite facies gabbroic and dioritic gneisses in the Pembroke Valley, Milford Sound, New Zealand, are cut by vertical and planar garnet reaction zones in rectilinear patterns. In gabbroic gneiss, narrow dykes of anorthositic leucosome are surrounded by fine‐grained garnet granulite that replaced the host two‐pyroxene hornblende granulite at conditions of 750 °C and 14 kbar. Major and trace element whole‐rock geochemical data indicate that recrystallization was mostly isochemical. The anorthositic veins cut contacts between gabbroic gneiss and dioritic gneiss, but change in morphology at the contacts, from the anorthositic vein surrounded by a garnet granulite reaction zone in the gabbroic gneiss, to zones with a septum of coarse‐grained garnet surrounded by anorthositic leucosome in the dioritic gneiss. The dioritic gneiss also contains isolated garnet grains enclosed by leucosome, and short planar trains of garnet grains linked by leucosome. Partial melting of the dioritic gneiss, mostly controlled by hornblende breakdown at water‐undersaturated conditions, is inferred to have generated the leucosomes. The form of the leucosomes is consistent with melt segregation and transport aided by fracture propagation; limited retrogression suggests considerable melt escape. Dyking and melt escape from the dioritic gneiss are inferred to have propagated fractures into the gabbroic gneiss. The migrating melt scavenged water from the surrounding gabbroic gneiss and induced the limited replacement by garnet granulite.  相似文献   

18.
Abstract

The deformation behavior of fine grained limestones from the Monte Sirino area (Lucania region) of the southern Apennines has been analysed by constraining microstructural observations and crystallographic fabrics with data on the metamorphic conditions of deformation. X-ray and infrared analysis of clay minerals, together with illite ‘crystallinity’ data, suggest that the studied rocks underwent very low grade metamorphism in the deep diagenetic zone. The limestones consist of very fine grained (<10 μm) aggregates of micrite. Elliptically-shaped radiolarians, preserved as moulds with coarser (>20 μm) crystalline fillings, provide common strain markers. Optical microstructures and strain analysis indicate heterogeneous intracrystalline strain in the coarser (>50 μm) calcite. On the other hand, SEM and TEM observations, and crystallographic fabrics determined by X-ray texture goniometry, indicate a deformation involving not only intracrystalline slip, but also an important component of grain boundary sliding in the fine grained matrix. The inferred microscopic deformation mechanisms are compared with constitutive flow laws derived from experimental studies. For the maximum inferred temperature of deformation of 250 °C and geologic strain rates of 10?13?10?15 s?1, deformation mechanism maps for calcite suggest twinning and other glide mechanisms to be active in grains larger than about 5?10 μm. Smaller grains would be mostly deformed by grain size sensitive creep mechanisms, which include both diffusion mass transfer processes and grain boundary sliding. Deformation features observed in the study limestones are compatible with the prediction of such temperature-dependent mechanism maps. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

19.
The calcite mylonites in the Xar Moron-Changchun shear zone show a significance dextral shearing characteristics. The asymmetric(σ-structure) calcite/quartz grains or aggregates, asymmetry of calcite c-axes fabric diagrams and the oblique foliation of recrystallized calcite grains correspond to a top-to-E shearing. Mineral deformation behaviors, twin morphology, C-axis EBSD fabrics, and quartz grain size-frequency diagrams demonstrate that the ductile shear zone was developed under conditions of greenschist facies, with the range of deformation temperatures from 200 to 300°C. These subgrains of host grains and surrounding recrystallized grains, strong undulose extinction, and slightly curved grain boundaries are probably results of intracrystalline deformation and dynamic recrystallization implying that the deformation took place within the dislocation-creep regime at shallow crustal levels. The calculated paleo-strain rates are between 10~(–7.87)s~(–1) and 10~(–11.49)s~(–1) with differential stresses of 32.63–63.94 MPa lying at the higher bound of typical strain rates in shear zones at crustal levels, and may indicate a relatively rapid deformation. The S-L-calcite tectonites have undergone a component of uplift which led to subhorizontal lifting in an already non-coaxial compressional deformation regime with a bulk pure shear-dominated general shear. This E-W large-scale dextral strike-slip movement is a consequence of the eastward extrusion of the Xing'an-Mongolian Orogenic Belt, and results from far-field forces associated with Late Triassic convergence domains after the final closure of the Paleo-Asian Ocean.  相似文献   

20.
Optical, cathodoluminescence and transmission electron microscope (TEM) analyses were conducted on four groups of calcite fault rocks, a cataclastic limestone, cataclastic coarse-grained marbles from two fault zones, and a fractured mylonite. These fault rocks show similar microstructural characteristics and give clues to similar processes of rock deformation. They are characterized by the structural contrast between macroscopic cataclastic (brittle) and microscopic mylonitic (ductile) microstructures. Intragranular deformation microstructures (i.e. deformation twins, kink bands and microfractures) are well preserved in the deformed grains in clasts or in primary rocks. The matrix materials are of extremely fine grains with diffusive features. Dislocation microstructures for co-existing brittle deformation and crystalline plasticity were revealed using TEM. Tangled dislocations are often preserved at the cores of highly deformed clasts, while dislocation walls form in the transitions to the fine-grained  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号