首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
太湖流域某地区浅层地下水有机污染特征   总被引:1,自引:0,他引:1  
对太湖流域某地区浅层地下水有机污染特征进行了总结,并就污染来源、污染途径和典型污染源附近浅层地下水有机污染特征等问题进行了研究。研究结果表明,该地区浅层地下水中各组分的检出率较高,但检出浓度较低,除苯在个别采样点处超出美国环保局(EPA)饮用水标准外,其余卤代烃和单环芳烃组分均没有超标;平面分布上,卤代烃和单环芳烃各组分的浓度高值点大都集中于该地区东南部的工业区内,这种空间分布特征与工业区的分布具有明显的一致性;垂向上有浅部地下水的污染程度相对较重、深部地下水较轻的特点;典型污染源周边浅层地下水的污染程度较重,但随着采样点远离污染源,地下水中各有机污染组分的浓度迅速衰减。  相似文献   

2.
The Lower Nam Kam River Basin lies in the vicinity of the Mekong River and is located in the eastern section of the Nakhon Panom Province in northeastern Thailand. Drought, particularly in the winter and summer seasons, is the main environmental challenge in this area. In addition, soil becomes saline and groundwater is brackish in some locations. This problem worsens the drought crisis in the area. Groundwater is known to closely relate to the soil salinity distribution. To successfully manage highly saline areas, saline groundwater and soil properties must be evaluated together. Therefore, the main objective was to study the shallow groundwater physical and chemical properties in conjunction with surface soil salinity. Soil samples were collected and measured for physical and chemical properties. Shallow groundwater was measured for depth from ground surface and sampled from the sites in the study area. The water samples were measured for pH, total dissolved solids, electrical conductivity, and salinity. Results were interpolated and displayed via a geographic information system and further analyzed by simple linear regressions between surface soil salinity and the other factors. The results show that the topsoil contaminated with salinity is typically situated in relatively low areas with shallow groundwater levels and low head gradient of groundwater. This is due to the characteristics of the soil profile and groundwater depth.  相似文献   

3.
Massive oil fires in Kuwait were the aftermath of the Gulf War. This resulted in the pollution of air, water, and soil, the magnitude of which is unparalleled in the history of mankind. Oil fires damaged several oil well heads, resulting in the flow of oil, forming large oil lakes. Products of combustion from oil well fires deposited over large areas. Infiltrating rainwater, leaching out contaminants from oil lakes and products of combustion at ground surface, can reach the water table and contaminate the groundwater. Field investigations, supported by laboratory studies and mathematical models, show that infiltration of oil from oil lakes will be limited to a depth of about 2 m from ground surface. Preliminary mathematical models showed that contaminated rainwater can infiltrate and reach the water table within a period of three to four days, particularly at the Raudhatain and Umm Al-Aish regions. These are the only regions in Kuwait where fresh groundwater exists. After reaching the water table, the lateral movement of contaminants is expected to be very slow under prevailing hydraulic gradients. Groundwater monitoring at the above regions during 1992 showed minor levels of vanadium, nickel, and total hydrocarbons at certain wells. Since average annual rainfall in the region is only 120 mm/yr, groundwater contamination due to the infiltration of contaminated rainwater is expected to be a long-term one.  相似文献   

4.
. Geophysical, geochemical, and hydrogeological parameters, for example longitudinal unit conductance (S), transverse unit resistance (T), total dissolved solids (TDS) and thickness of the weathered zone (Wz), have been compared for 25 sites of Navalgund taluk in Dharwar District of Karnataka State, India. Interrelation among these parameters has been analyzed quantitatively by the standard statistical technique leading to a suitable mathematical model. The contrasting geophysical, geochemical, and hydrogeological characteristics of the fresh water pockets in the regionally brackish aquifers are compared and illustrated. The study explains the significant bearing of these parameters on exploration, development, and exploitation of fresh groundwater sources in the areas affected by the occurrence of a brackish water aquifer. The importance of such a comparison in raising the confidence to identify a fresh groundwater aquifer in the brackish terrain by quantitative interpretation of resistivity data has been demonstrated.  相似文献   

5.
 Subsidence due to longwall underground coal mining changes the hydraulic properties, heads, yields, and in some cases the groundwater chemistry of overlying bedrock aquifers. A 7-year study of a sandstone aquifer overlying an active longwall mine in Illinois has supported a comprehensive model of these impacts. Subsidence caused increases in permeability and storativity over the longwall panel. These changes initially caused a major decline in water levels in the sandstone, but the aquifer recovered slightly within a few months and fully within several years after mining. The enhanced hydraulic properties combined with potentiometric recovery resulted in a zone of greater well yield. However, at sites with very poor transmissivity and inadequate recharge pathways, recovery may not occur. Also, at the study site, the physical enhancement was accompanied by a deterioration in groundwater quality from slightly brackish, sodium bicarbonate water to more brackish water with increased sulfate levels. Received: 17 March 1997 · Accepted: 9 September 1997  相似文献   

6.
In the Jakarta area (Indonesia), excessive groundwater pumping due to the rapidly increasing population has caused groundwater-related problems such as brackish water contamination in coastal areas and land subsidence. In this study, we adopted multiple hydrogeochemical techniques to demonstrate the groundwater flow system in the Jakarta area. Although almost all groundwater existing in the Jakarta basin is recharged at similar elevations, the water quality and residence time demonstrates a clear difference between the shallow and deep aquifers. Due to the rapid decrease in the groundwater potential in urban areas, we found that the seawater intrusion and the shallow and deep groundwaters are mixing, a conclusion confirmed by major ions, Br?:Cl? ratios, and chlorofluorocarbon (CFC)-12 analysis. Spring water and groundwater samples collected from the southern mountainside area show younger age characteristics with high concentrations of 14C and Ca–HCO3 type water chemistry. We estimated the residence times of these groundwaters within 45 years under piston flow conditions by tritium analysis. Also, these groundwater ages can be limited to 20–30 years with piston flow evaluated by CFCs. Moreover, due to the magnitude of the CFC-12 concentration, we can use a pseudo age indicator in this field study, because we found a positive correlation between the major type of water chemistry and the CFC-12 concentration.  相似文献   

7.
The present work studies the environmental isotopes assess groundwater characteristics of the different parts of the main aquifer in the northeast Missan Province in south of Iraq.Water samples of groundwater and surface water were collected for two dry and wet seasons during the water year of 2011–2012.The study shows that most of the groundwater in the aquifer falls above the global meteoric water line,and all the samples fall below the Mediterranean meteoric water line,indicating that these samples are a mixture of two water types.The tritium content of these samples supports this conclusion.The overall conclusion of this study indicates that there are two sources of groundwater recharge in the studied area:the ephemeral streams(Teeb and Dewerge) and major precipitation sources.According to the tritium levels at or below one tritium unit(TU) obtained from the water,supply wells are highly confined or "not vulnerable".Overall,the 3H results imply that recent recharge has taken place during the last four to five decades.In the recharge area,the high tritium content in the southern part of the Teeb area suggests that the recharge originates from rapid infiltration of surface runoff.Therefore,the groundwater resources in the study area should be protected from contamination,because it will influence the aquifer in a relatively short period of time if any contamination enters the recharge areas of the aquifer.  相似文献   

8.
El Alamein-El-Dabaa area lies in the western Mediterranean coastal zone of Egypt with about 50 km long. The aims of the present study are the shallow groundwater aquifer determination and calculate the electric parameters of the overburden to achieve the easiest way for detecting groundwater contamination and considered it during the planning of new development project(s). To attain this target, 44 vertical resistivity soundings using Schlumberger array of the maximum AB/2?=?1000 m in the form of four profiles were carried out. From the interpretation results, six geoelectrical layers have been established in the area, and iso-resistivity, depth to water, and isopach contour maps are presented. Four geoelectrical cross-sections (two geoelectrical cross-sections are parallel to the Mediterranean shoreline and the other two are normal to the Mediterranean shoreline) have been constructed. According to this work, the upper part of the Oolitic Limestone represents the shallow groundwater aquifer in this area and can be distinguished into two zones. The upper zone is brackish, whereas the lower one is saline. The geoelectrical succession reveals that the aquifer is free type. The depth to water ranges between 20 and 63 m; therefore, it is the choice as the best sites for groundwater exploitation. In the area under study, the depth to water and the thickness of the brackish increase towards the south side as well as the depth to the brackish water. The Dar-Zarrouk parameters clarified that there are some parts that may contaminate pathways and other parts are not.  相似文献   

9.
Arsenic contamination in groundwater affecting West Bengal (India) and Bangladesh is a serious environmental problem. Contamination is extensive in the low-lying areas of Bhagirathi–Ganga delta, located mainly to the east of the Bhagirathi River. A few isolated As-contaminated areas occur west of the Bhagirathi River and over the lower parts of the Damodar river fan-delta. The Damodar being a Peninsular Indian river, the arsenic problem is not restricted to Himalayan rivers alone. Arsenic contamination in the Bengal Delta is confined to the Holocene Younger Delta Plain and the alluvium that was deposited around 10,000–7,000 years bp, under combined influence of the Holocene sea-level rise and rapid erosion in the Himalaya. Further, contaminated areas are often located close to distribution of abandoned or existing channels, swamps, which are areas of surface water and biomass accumulation. Extensive extraction of groundwater mainly from shallow aquifers cause recharge from nearby surface water bodies. Infiltration of recharge water enriched in dissolved organic matter derived either from recently accumulated biomass and/or from sediment organic matter enhanced reductive dissolution of hydrated iron oxide that are present mainly as sediment grain coatings in the aquifers enhancing release of sorbed arsenic to groundwater.  相似文献   

10.
Karst aquifers in semi-arid regions are particularly threatened by surface contamination, especially during winter seasons when extremely variable rainfall of high intensities prevails. An additional challenge is posed when managed recharge of storm water is applied, since karst aquifers display a high spatial variability of hydraulic properties. In these cases, adapted protection concepts are required to address the interaction of surface water and groundwater. In this study a combined protection approach for the surface catchment of the managed aquifer recharge site at the Wala reservoir in Jordan and the downstream Hidan wellfield, which are both subject to frequent bacteriological contamination, is developed. The variability of groundwater quality was evaluated by correlating contamination events to rainfall, and to recharge from the reservoir. Both trigger increased wadi flow downstream of the reservoir by surface runoff generation and groundwater seepage, respectively. A tracer test verified the major pathway of the surface flow into the underground by infiltrating from pools along Wadi Wala. An intrinsic karst vulnerability and risk map was adapted to the regional characteristics and developed to account for the catchment separation by the Wala Dam and the interaction of surface water and groundwater. Implementation of the proposed protection zones for the wellfield and the reservoir is highly recommended, since the results suggest an extreme contamination risk resulting from livestock farming, arable agriculture and human occupation along the wadi. The applied methods can be transferred to other managed aquifer recharge sites in similar karstic environments of semi-arid regions.  相似文献   

11.
冬小麦田咸水灌溉与土壤盐分调控试验   总被引:6,自引:0,他引:6  
利用浅层咸水灌溉,可使浅层咸水分布区无效降水转化为有效水资源,缓解北方水资源紧缺的矛盾;通过王瞳试验场进行的咸水灌溉与土壤盐分调控试验表明,利用3g/L左右的微咸水连续灌溉5a,根层土壤溶液浓度未超过小麦的耐盐能力,且作物增产;多年盐分变化趋势为:1994-1997年1m深度内土壤总含盐量在一定范围内波动,总体变化不大,连续干旱的1997-1998年略呈上升趋势;麦秸覆盖和施有机肥能减少根层土壤盐分,对土壤盐分具有有利的调控作用,具有增产效果。  相似文献   

12.
One hundred forty-eight groundwater samples were collected from the lower part of Wadi Siham catchment area for hydrogeochemical investigations to understand the hydrogeochemical processes affecting groundwater chemistry and their relation with groundwater quality. Groundwater in the study area is abstracted from different aquifers. The study area is characterized by arid climate and extremely high relative humidity. The results indicate that groundwater in the study area is fresh to brackish in nature. The abundance of the major ions is as follows: Na+1?>?Ca+2?>?Mg+2?≥?K+1 and Cl?1?>?HCO 3 ?1 ?>?SO 4 ?2 ?>?NO 3 ?1 . Various graphical and ionic ration plots, statistical analyses, and saturation indices calculations have been carried out using chemical data to deduce a hydrochemical evaluation of the study area. The prevailing hydrogeochemical processes operating in the study area are dissolution, mixing, evaporation, ion exchange, and weathering of silicate minerals in the eastern part (recharge areas). The reverse ion exchange and seawater intrusion control the groundwater chemistry along the Red Sea coast areas and few parts of the study area. Deterioration in groundwater quality from anthropogenic activities has resulted from saltwater intrusion along the coastal areas due to groundwater overpumping and extensive use of fertilizers and infiltration of sewage water. Salinity and nitrate contamination are the two major problems in the area, which is alarming considering the use of this water for drinking.  相似文献   

13.

Karst aquifers in subtropical regions are characterized by high variability of water availability and quality due to changes associated with rainy and dry seasons. An additional challenge for water management is the combination of surface-water and karst groundwater systems since high spatiotemporal dynamics cause high variability of water quality. In these cases, adapted protection strategies are required. In this study, a protection approach for the catchment of a river-water diversion point in a rural area in northern Vietnam is developed. The variability of water quality was evaluated by rainy and dry season synoptic surveys of suspended particles and microbial contamination at 49 sites and time series at three sets of paired sites under constant hydraulic conditions. The anthropogenic land-use activities in the catchment were mapped to identify potential contamination sources and to highlight the challenging combination of surface-water and karst groundwater management. The analyzed data indicate differences in water quality between the dry and rainy seasons and a higher influence on water quality from land use than from hydrologic conditions. Furthermore, the results suggest a high risk of contamination resulting from residential areas, agriculture, and livestock farming, and reveal the necessity of implementation of appropriate measures such as restricted farming and the hook-up of buildings to municipal sewage disposal. Finally, the data show that water quality can be improved by adjusting water withdrawals by the time of day. The applied methods can be transferred to other surface-water and karst groundwater systems in similar subtropical environments.

  相似文献   

14.
The risk of groundwater contamination following the infiltration of waste surface water, is of great interest, particularly in areas experiencing water shortage. In this study, the distribution characteristics of contaminants along the Cihe River, in the piedimont plain of the Taihang Mountains, China, was investigated by measuring the soil and water samples. The main organic contaminants detected in different media include hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, and pesticides. The main contaminants found in different media are mostly derived from the river water, which can be seen from the results of waste water from the river and groundwater, from the soil samples from different depth and distance of the profiles along the river. The distribution characteristics showed that there has been a natural attenuation of the contaminants from the river during their transportation through the soils and groundwater. The sorption of organic compounds to soil organic matter is thought to be a main mechanism of natural attenuation.  相似文献   

15.
西北内陆河流域地下水循环特征与地下水资源评价   总被引:1,自引:0,他引:1       下载免费PDF全文
在系统梳理前人调查研究成果基础上,总结了西北内陆河流域主要的含水层特点,对山区、平原区和沙漠区的地下水循环特点进行了分析,着重对平原区地下水水流系统进行了讨论。由于西北内陆河流域地下水与地表水关系密切,形成了具有密切水力联系的含水层-河流系统,不论是上游开发地表水还是地下水,都会引起整个流域内地下水资源的强烈变化。地下水资源评价表明,西北内陆河流域地下水资源量为783亿m~3/a,其中平原区的地下水资源量为487亿m~3/a,山区与平原区的地下水资源重复量为199亿m~3/a,现状开采量为128亿m~3/a。地下水开发潜力分析表明,除柴达木盆地、塔里木盆地南缘等地区外,其他地区的地下水开采潜力有限,应通过提高水资源的利用效率来提高其承载能力。今后应加大(微)咸水资源化、地下水水库的调查研究,加强地下水的生态功能和生态需水量评价,为地下水资源的合理开发利用提供技术支撑。  相似文献   

16.
A three-dimensional groundwater model was used to improve water resource management for a study area in north-west Switzerland, where drinking-water production is close to former landfills and industrial areas. To avoid drinking-water contamination, artificial groundwater recharge with surface water is used to create a hydraulic barrier between the contaminated sites and drinking-water extraction wells. The model was used for simulating existing and proposed water management strategies as a tool to ensure the utmost security for drinking water. A systematic evaluation of the flow direction between existing observation points using a developed three-point estimation method for a large number of scenarios was carried out. It is demonstrated that systematically applying the developed methodology helps to identify vulnerable locations which are sensitive to changing boundary conditions such as those arising from changes to artificial groundwater recharge rates. At these locations, additional investigations and protection are required. The presented integrated approach, using the groundwater flow direction between observation points, can be easily transferred to a variety of hydrological settings to systematically evaluate groundwater modelling scenarios.  相似文献   

17.
The Gavbast karstic aquifer located in southern Iran is in direct contact with an exposed salt diapir. To assess the influence of the diapir on the quality of groundwater in the karstic aquifer, electrical conductivity, total dissolved solids, flow rate, temperature and major ion concentrations were measured at 57 sampling sites, including springs, surface waters and wells. A conceptual model of groundwater flow is proposed for the Gavbast karstic aquifer based on the geological setting, water budget, local base of erosion, and hydrochemistry of the sampling sites. The model suggests two subbasins in the Gavbast Anticline draining into two distinct discharging alluvial sections. Unexpectedly, groundwater discharging from the carbonate Gavbast aquifer is saline or brackish and water is of chloride type. The study indicates that the source of salinity of the Gavbast aquifers is infiltration of surface diapir-derived brine into the aquifer. The contribution of the diapir brine in the Gavbast karst aquifer is calculated about 4 L/s, using chloride mass balance. Construction of salt basins to evaporate brine discharging from the diapir springs is proposed to reduce the salinity of karst water. A row of strategically placed wells in the Gavbast karst aquifer would potentially exploit large volumes of fresh groundwater before it is contaminated by the salt. Such low-cost remediation should allow the agricultural exploitation of 40 km2 of currently barren land.  相似文献   

18.
Integrated geoelectric and geochemical investigation were carried out in the Canning and adjoining areas to assess the prevailing groundwater conditions and chemical quality of groundwater. Geologically, the area is constituted of alluvial sediments of Quaternary age. Vertical electrical soundings (VES) in the area of investigation mostly show six layers consisting of top soil, saline water, clay layer, brackish water, clay layer and fresh-water bearing zone of appreciable thicknesses at depths of 137 to 182 meter at six locations and from 370 to 430 meter for other two locations under confined conditions. The result of VES studies significantly correspond with the borehole litholog and well log data. A litho-resistivity relationship is established for this area of investigation A Fence diagram is constructed to show the spatial variation of the sub-surface lithology and hydrological characteristics. Chemically the ground water is fresh and mixed cation and anion type as revealed from Piper-Trilinear diagram with TDS ranging from 699 to 1547 mg/l. The geochemical parameters like Total hardness (TH), Sodium absorption ratio (SAR), Soluble sodium percentage (SSP), Percentage of sodium (PS), Kelley’s ratio (KR), Residual sodium carbonate (RSC), Corrosivity ratio (CR), Gibbs ratios (GR), Chloro alkaline indices (CAI), Sea water contamination (SWC) are also calculated for examining the quality of groundwater in the area. The depth of occurrences of freshwater bearing ground water zones for drinking and irrigation purposes are occurring at depths from 137 meter to 430 meter in this area.  相似文献   

19.
This paper discusses in situ permeability testing performed at two sites in bore holes drilled in an extensive hydrogeological exploration program in Kuwait. The testing program, comprising packer, falling and rising head tests, was carried out in calcareous and variedly textured cemented sand formed during post-depositional diagenetic processes with the colloquial name ‘Gatch’. The program was undertaken to assist in the design and construction of a pilot drainage scheme aimed at lowering of the groundwater table in Kuwait City and suburbs.

The results indicated that ‘Gatch’ is an almost impermeable soil. However, the hydraulic conductivity of the subsoils at the investigated sites is significantly influenced by the distribution and volume of macropores. These permeable zones act as preferential pathways for the movement of water bypassing the fine matrix and, thereby, improve markedly the overall drainage characteristics of the sites.

Various in situ test methods, including packer, compare results satisfactorily, to give the sites a variable hydraulic conductivity rating that straddles between very low and medium. The packer device, by faring well against other routine in situ tests, shows promises for use as a tool in the assessment of drainage parameters of cemented soils. Laboratory tests, performed in parallel, proved inadequate to characterize the permeability properties of the subsoils in Kuwait.  相似文献   


20.
A logistic regression model for the probability of arsenic exceeding the drinking water guidelines (10 μg/L) in bedrock groundwater was developed for a selected county in Korea, where arsenic occurrence and release reactions have been investigated. Arsenic was enriched naturally by the oxidation of sulfide minerals in metasedimentary rocks and mineralized zones, and due to high mobility in alkaline pH conditions, concentrations were high in groundwater of the county. When considering these reactions of arsenic release and water quality characteristics, several geological and geochemical factors were selected as influencing variables in the model. In the final logistic regression model, geological units of limestone and metasedimentary rocks, the concentrations of nitrate and sulfate, and distances to closed mines and adjacent granite were retained as statistically significant variables. Predicted areas of high probability agreed well with known spatial contamination patterns in the county. The model was also applied to an adjacent county, where the groundwater has not previously been tested for the presence of arsenic, and a probability map for arsenic contamination was then produced. Through the analysis of arsenic concentrations at the wells of high probability, it was determined that the applied model accurately indicated the arsenic contamination of groundwater. The logistic regression approach of this study can be applied to predict arsenic contamination in areas of similar geological and geochemical conditions to the county used in this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号