首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesozoic and Cenozoic collisional structures of the southern Great Altai   总被引:1,自引:0,他引:1  
We suggest a model of the continental collisional framework of the southern Great Altai (Central Asia) produced by the convergence of the Tuva-Mongolia and Jonggaria terranes (microplates) during the latest Permian-Mesozoic and Cenozoic tectonic activity. The collisional structures in the region classified on the basis of their geometry and deformation style, dynamic metamorphism, and compositions of tectonites are of three main types: (i) mosaic terranes made up of large weakly deformed Paleozoic blocks separated by younger shear zones, (ii) collisional deformation systems involving post-Paleozoic structures, parallel faults oriented along collisional deformation systems, and relict lenses of Paleozoic orogenic complexes, and (iii) isolated zones of dynamic metamorphism composed mostly of collisional tectonites.  相似文献   

2.
The present kinematic and dynamic analysis of large-scale strike-slip faults, which enabled the formation of a collage of Altai terranes as a result of two collisional events. The Late Devonian–Early Carboniferous collision of the Gondwana-derived Altai-Mongolian terrane and the Siberian continent resulted in the formation of the Charysh–Terekta system of dextral strike-slip faults and later the Kurai and Kuznetsk–Teletsk–Bashkauss sinistral strike-slip faults. The Late Carboniferous–Permian collision of the Siberian and Kazakhstan continents resulted in the formation of the Chara, Irtysh and North-East sinistral strike-slip zones. The age of deformation of both collisional events becomes younger toward the inner areas of the Siberian continent. In the same direction the amount of displacement of strike-slip faulting decreases from several thousand to several hundred kilometers. The width of the Late Paleozoic zone of deformation reaches 1500 km. These events deformed the accretion-collision continental margins and their primary paleogeographic pattern.  相似文献   

3.
《Gondwana Research》2014,25(1):170-189
The Lhasa terrane in southern Tibet is composed of Precambrian crystalline basement, Paleozoic to Mesozoic sedimentary strata and Paleozoic to Cenozoic magmatic rocks. This terrane has long been accepted as the last crustal block to be accreted with Eurasia prior to its collision with the northward drifting Indian continent in the Cenozoic. Thus, the Lhasa terrane is the key for revealing the origin and evolutionary history of the Himalayan–Tibetan orogen. Although previous models on the tectonic development of the orogen have much evidence from the Lhasa terrane, the metamorphic history of this terrane was rarely considered. This paper provides an overview of the temporal and spatial characteristics of metamorphism in the Lhasa terrane based mostly on the recent results from our group, and evaluates the geodynamic settings and tectonic significance. The Lhasa terrane experienced multistage metamorphism, including the Neoproterozoic and Late Paleozoic HP metamorphism in the oceanic subduction realm, the Early Paleozoic and Early Mesozoic MP metamorphism in the continent–continent collisional zone, the Late Cretaceous HT/MP metamorphism in the mid-oceanic ridge subduction zone, and two stages of Cenozoic MP metamorphism in the thickened crust above the continental subduction zone. These metamorphic and associated magmatic events reveal that the Lhasa terrane experienced a complex tectonic evolution from the Neoproterozoic to Cenozoic. The main conclusions arising from our synthesis are as follows: (1) The Lhasa block consists of the North and South Lhasa terranes, separated by the Paleo-Tethys Ocean and the subsequent Late Paleozoic suture zone. (2) The crystalline basement of the North Lhasa terrane includes Neoproterozoic oceanic crustal rocks, representing probably the remnants of the Mozambique Ocean derived from the break-up of the Rodinia supercontinent. (3) The oceanic crustal basement of North Lhasa witnessed a Late Cryogenian (~ 650 Ma) HP metamorphism and an Early Paleozoic (~ 485 Ma) MP metamorphism in the subduction realm associated with the closure of the Mozambique Ocean and the final amalgamation of Eastern and Western Gondwana, suggesting that the North Lhasa terrane might have been partly derived from the northern segment of the East African Orogen. (4) The northern margin of Indian continent, including the North and South Lhasa, and Qiangtang terranes, experienced Early Paleozoic magmatism, indicating an Andean-type orogeny that resulted from the subduction of the Proto-Tethys Ocean after the final amalgamation of Gondwana. (5) The Lhasa and Qiangtang terranes witnessed Middle Paleozoic (~ 360 Ma) magmatism, suggesting an Andean-type orogeny derived from the subduction of the Paleo-Tethys Ocean. (6) The closure of Paleo-Tethys Ocean between the North and South Lhasa terranes and subsequent terrane collision resulted in the formation of Late Permian (~ 260 Ma) HP metamorphic belt and Triassic (220 Ma) MP metamorphic belt. (7) The South Lhasa terrane experienced Late Cretaceous (~ 90 Ma) Andean-type orogeny, characterized by the regional HT/MP metamorphism and coeval intrusion of the voluminous Gangdese batholith during the northward subduction of the Neo-Tethyan Ocean. (8) During the Early Cenozoic (55–45 Ma), the continent–continent collisional orogeny has led to the thickened crust of the South Lhasa terrane experiencing MP amphibolite-facies metamorphism and syn-collisional magmatism. (9) Following the continuous continent convergence, the South Lhasa terrane also experienced MP metamorphism during Late Eocene (40–30 Ma). (10) During Mesozoic and Cenozoic, two different stages of paired metamorphic belts were formed in the oceanic or continental subduction zones and the middle and lower crust of the hanging wall of the subduction zone. The tectonic imprints from the Lhasa terrane provide excellent examples for understanding metamorphic processes and geodynamics at convergent plate boundaries.  相似文献   

4.
青藏高原南部拉萨地体的变质作用与动力学   总被引:3,自引:0,他引:3  
董昕  张泽明  向华  贺振宇 《地球学报》2013,34(3):257-262
拉萨地体位于欧亚板块的最南缘,它在新生代与印度大陆的碰撞形成了青藏高原和喜马拉雅造山带。因此,拉萨地体是揭示青藏高原形成与演化历史的关键之一。拉萨地体中的中、高级变质岩以前被认为是拉萨地体的前寒武纪变质基底。但新近的研究表明,拉萨地体经历了多期和不同类型的变质作用,包括在洋壳俯冲构造体制下发生的新元古代和晚古生代高压变质作用,在陆-陆碰撞环境下发生的早古生代和早中生代中压型变质作用,在洋中脊俯冲过程中发生的晚白垩纪高温/中压变质作用,以及在大陆俯冲带上盘加厚大陆地壳深部发生的两期新生代中压型变质作用。这些变质作用和伴生的岩浆作用表明,拉萨地体经历了从新元古代至新生代的复杂演化过程。(1)北拉萨地体的结晶基底包括新元古代的洋壳岩石,它们很可能是在Rodinia超大陆裂解过程中形成的莫桑比克洋的残余。(2)随着莫桑比克洋的俯冲和东、西冈瓦纳大陆的汇聚,拉萨地体洋壳基底经历了晚新元古代的(~650Ma)的高压变质作用和早古代的(~485Ma)中压型变质作用。这很可能表明北拉萨地体起源于东非造山带的北端。(3)在古特提斯洋向冈瓦纳大陆北缘的俯冲过程中,拉萨地体和羌塘地体经历了中古生代的(~360Ma)岩浆作用。(4)古特提斯洋盆的闭合和南、北拉萨地体的碰撞,导致了晚二叠纪(~260Ma)高压变质带和三叠纪(~220Ma)中压变质带的形成。(5)在新特提斯洋中脊向北的俯冲过程中,拉萨地体经历了晚白垩纪(~90Ma)安第斯型造山作用,形成了高温/中压型变质带和高温的紫苏花岗岩。(6)在早新生代(55~45Ma),印度与欧亚板块的碰撞,导致拉萨地体地壳加厚,形成了中压角闪岩相变质作用和同碰撞岩浆作用。(7)在晚始新世(40~30Ma),随着大陆的继续汇聚,南拉萨地体经历了另一期角闪岩相至麻粒岩相变质作用和深熔作用。拉萨地体的构造演化过程是研究汇聚板块边缘变质作用与动力学的最佳实例。  相似文献   

5.
As a result of structural–geological and metallogenic studies and taking into account earlier works, it is established that the Oka ore district formed mainly in the Neoproterozoic–Early Paleozoic under conditions of tectonomagmatic reworking of cratonic terranes and allochtonous oceanic (ophiolitic) terranes over them. The reworking was initiated by island-arc, accretionary–collisional, and plume-related igneous complexes, which arose due to opening and subsequent closure of marginal structures pertaining to the Paleoasian Ocean. Active Middle and Late Paleozoic volcanic and plutonic processes gave rise to the redistribution of ore matter and formation of new mineral deposits.  相似文献   

6.
The wedge‐shaped Moornambool Metamorphic Complex is bounded by the Coongee Fault to the east and the Moyston Fault to the west. This complex was juxtaposed between stable Delamerian crust to the west and the eastward migrating deformation that occurred in the western Lachlan Fold Belt during the Ordovician and Silurian. The complex comprises Cambrian turbidites and mafic volcanics and is subdivided into a lower greenschist eastern zone and a higher grade amphibolite facies western zone, with sub‐greenschist rocks occurring on either side of the complex. The boundary between the two zones is defined by steeply dipping L‐S tectonites of the Mt Ararat ductile high‐strain zone. Deformation reflects marked structural thickening that produced garnet‐bearing amphibolites followed by exhumation via ductile shearing and brittle faulting. Pressure‐temperature estimates on garnet‐bearing amphibolites in the western zone suggest metamorphic pressures of ~0.7–0.8 GPa and temperatures of ~540–590°C. Metamorphic grade variations suggest that between 15 and 20 km of vertical offset occurs across the east‐dipping Moyston Fault. Bounding fault structures show evidence for early ductile deformation followed by later brittle deformation/reactivation. Ductile deformation within the complex is initially marked by early bedding‐parallel cleavages. Later deformation produced tight to isoclinal D2 folds and steeply dipping ductile high‐strain zones. The S2 foliation is the dominant fabric in the complex and is shallowly west‐dipping to flat‐lying in the western zone and steeply west‐dipping in the eastern zone. Peak metamorphism is pre‐ to syn‐D2. Later ductile deformation reoriented the S2 foliation, produced S3 crenulation cleavages across both zones and localised S4 fabrics. The transition to brittle deformation is defined by the development of east‐ and west‐dipping reverse faults that produce a neutral vergence and not the predominant east‐vergent transport observed throughout the rest of the western Lachlan Fold Belt. Later north‐dipping thrusts overprint these fault structures. The majority of fault transport along ductile and brittle structures occurred prior to the intrusion of the Early Devonian Ararat Granodiorite. Late west‐ and east‐dipping faults represent the final stages of major brittle deformation: these are post plutonism.  相似文献   

7.
The paper reviews previous and recently obtained geological, stratigraphic and geochronological data on the Russian-Kazakh Altai orogen, which is located in the western Central Asian Orogenic Belt (CAOB), between the Kazakhstan and Siberian continental blocks. The Russian-Kazakh Altai is a typical Pacific-type orogen, which represents a collage of oceanic, accretionary, fore-arc, island-arc and continental margin terranes of different ages separated by strike-slip faults and thrusts. Evidence for this comes from key indicative rock associations, such as boninite- and turbidite (graywacke)-bearing volcanogenic-sedimentary units, accreted pelagic chert, oceanic islands and plateaus, MORB-OIB-protolith blueschists. The three major tectonic domains of the Russian-Kazakh Altai are: (1) Altai-Mongolian terrane (AMT); (2) subduction-accretionary (Rudny Altai, Gorny Altai) and collisional (Kalba-Narym) terranes; (3) Kurai, Charysh-Terekta, North-East, Irtysh and Char suture-shear zones (SSZ). The evolution of this orogen proceeded in five major stages: (i) late Neoproterozoic-early Paleozoic subduction-accretion in the Paleo-Asian Ocean; (ii) Ordovician-Silurian passive margin; (iii) Devonian-Carboniferous active margin and collision of AMT with the Siberian conti- nent; (iv) late Paleozoic closure of the PAO and coeval collisional magmatism; (v) Mesozoic post-collisional deformation and anarogenic magmatism, which created the modern structural collage of the Russian- Kazakh Altai orogen. The major still unsolved problem of Altai geology is origin of the Altai-Mongolian terrane (continental versus active margin), age of Altai basement, proportion of juvenile and recycled crust and origin of the middle Paleozoic units of the Gorny Altai and Rudny Altai terranes.  相似文献   

8.
Abstract Dating of zircon cores and rims from granulites developed in a shear zone provides insights into the complex relationship between magmatism and metamorphism in the deep roots of arc environments. The granulites belong to the uppermost allochthonous terrane of the NW Iberian Massif, which forms part of a Cambro‐Ordovician magmatic arc developed in the peri‐Gondwanan realm. The obtained zircon ages confirm that voluminous calc‐alkaline magmatism peaked around 500 Ma and was shortly followed by granulite facies metamorphism accompanied by deformation at c. 480 Ma, giving a time framework for crustal heating, regional metamorphism, deformation and partial melting, the main processes that control the tectonothermal evolution of arc systems. Traces of this arc can be discontinuously followed in different massifs throughout the European Variscan Belt, and we propose that the uppermost allochthonous units of the NW Iberian Massif, together with the related terranes in Europe, constitute an independent and coherent terrane that drifted away from northern Gondwana prior to the Variscan collisional orogenesis.  相似文献   

9.
新疆北部古生代大陆增生构造   总被引:35,自引:2,他引:35  
古生代亚洲中部是一幅两陆夹一洋、洋中多地体的构造图案,大地构造框架与现代西南太平洋格局十分相似。中亚造山带是晚古生代复杂地体的拼贴带。新疆北部古生代存在4类成因的8个地体构造。它们以裂解陆块地层块体、海山和火山弧的形式散布在中蒙大洋中,诸地体间是一系列的小洋盆。晚古生代,这些地体开始彼此拼贴并导致强烈推覆作用。石炭纪末-二叠纪初,中蒙大洋闭合,散布其中的诸地体分别增生到塔里木大陆北缘和西伯利亚大陆南缘。北天山-准噶尔地区6条蛇绿岩带记录了诸地体间碰撞事件。  相似文献   

10.
The Junggar Immature Continental Crust Province and Its Mineralization   总被引:22,自引:4,他引:18  
According to the study on the peripheral orogenic belts of the Junggar basin and combined with the interpretation of geophysical data, this paper points out that there is an Early Paleozoic basement of immature continental crust in the Junggar area, which is mainly composed of Neoproterozoic-Ordovician oceanic crust and weakly metamorphosed covering sedimentary rocks. The Late Paleozoic tectonism and mineralization were developed on the basement of the Early Paleozoic immature continental crust. The Junggar metallogenic province is dominated by Cr, Cu, Ni and Au mineralization. Those large and medium-scale deposits are mainly distributed along the deep faults and particularly near the ophiolitic melange zones, and formed in the Late Paleozoic with the peak of mineralization occurring in the Carboniferous-Permian post-collisional stage. The intrusions related to Cu, Ni and Au mineralization generally have low Is, and positive εNd(t) values. The δ34S values of the ore deposits are mostly near zero, and t  相似文献   

11.
桐柏-大别造山带随县群变质变形作用研究   总被引:1,自引:0,他引:1  
中新元古代随县群分布于秦岭—大别造山带南部,是一套形成于大陆裂谷环境中的砂页岩—流纹英安质火山碎屑岩建造,并在拉张环境中受到了辉长辉绿岩墙侵入.从新元古代末开始经历了多期变质和变形作用改造,记录了华北与扬子两大陆块及其造山作用的复杂演化历史.以现代变质地质学理论为指导,结合岩石学与构造学,宏观与微观研究,确立了随县群的地质事件序列.其主要有3个变形和变质演化阶段:晋宁期伸展滑脱固态流变,低绿片岩相变质;印支期韧性剪切,绿帘—蓝片岩相变质;早燕山期逆冲推覆,低绿片岩相变质  相似文献   

12.
New geological. geochronological, and Nd isotopic data are reported for the rocks occurring at the interfluve of the Barguzin, Nomama, and Katera rivers, where the main structural elements of the Early Paleozoic collisional system have been established. The strike-slip and thrust Tompuda-Nomama and Barguzin boundary sutures separate the Svetlaya and the Katera zones of the Baikal-Muya Belt from the Barguzin terrigenous-carbonate terrane. The age estimates of syntectonic (prebatholithic) gneissic granite and gabbrodiorite intrusive bodies (469 ± 4 and 468 ± 8 Ma, respectively) coincide with the age of collisional events in the Ol’khon, Southwest Baikal, and Sayan regions (480–470 Ma). A linear zone with zonal metamorphism and granite-gneiss domes dated at 470 Ma is revealed in the allochthonous fold-nappe packet of the Upper Riphean Barguzin Formation. This zone of Caledonian remobilization marks the collisional front between the Riphean structural units of the Barguzin Terrane consolidated 0.60–0.55 Ga ago and the Baikal-Muya Belt. New data allow us to recognize this zone as the northeastern flank of the Baikal Collisional Belt. The Nd isotopic data for the reference igneous complexes of the collisional zone indicate that the Late Riphean juvenile crust was involved in the Ordovician remobilization in the zone of conjugation of the consolidated Baikalian structural elements at the northeastern flank of the Baikal Belt and likely was a basement of the entire Barguzin Terrane or, at least, its frontal portion. The lateral displacements of the terranes to the northeast during the Early Ordovician collision were constrained by the rigid structural framework of the Baikalides in the Muya segment of the Baikal-Muya Belt, where the Riphean blocks were involved in strike-slip faulting and the Vendian-Cambrian superimposed basin underwent deformation. Finally, it may be concluded that the Early Ordovician was an epoch of collision, complex in kinematics, between heterogeneous blocks of the continental crust: the Baikalides of the Baikal-Muya Belt and polycyclic Barguzin-Vitim Superterrane.  相似文献   

13.
兴蒙陆内造山带   总被引:21,自引:9,他引:12  
徐备  王志伟  张立杨  王智慧  杨振宁  贺跃 《岩石学报》2018,34(10):2819-2844
本文提出了"兴蒙陆内造山带"的新概念(Xing-Meng Intracontinent Orogenic Belt,XMIOB),从大地构造、沉积建造、岩浆作用和变质作用等方面论述了XMIOB从晚古生代到中生代初的陆内伸展及陆内造山过程,为探讨晚古生代构造演化提供了新模式。根据对内蒙古中西部晚古生代构造格局的总体认识,可将XMIOB划分为五个构造单元即:早石炭世二连-贺根山裂谷带、晚石炭世陆表海盆地、早二叠世艾力格庙-二连伸展构造带、早-中二叠世盆岭构造带和晚二叠世索伦山-乌兰沟伸展构造带。晚石炭世末-二叠纪在兴蒙造山带基底上发育三期伸展构造:第一期见于内蒙古北部二连-艾力格庙地区,形成陆内裂谷盆地及其盆缘三角洲沉积,发育时代为302~298Ma;第二期在内蒙古中西部广泛分布,以隆起与凹陷相间分布的盆岭构造为特征,发育时代为290~260Ma;第三期见于内蒙古南部索伦山到温都尔庙乌兰沟一带,形成主动裂谷背景下的红海型小洋盆,发育时代为260~250Ma。晚古生代与伸展过程有关的岩浆活动可分四期:1)早石炭世贺根山期:以蛇绿岩为主,发育于具有前寒武纪古老基底和早古生代造山带年轻基底的陆壳伸展区; 2)晚石炭世达青牧场期:主要沿北造山带分布,以基性和酸性岩浆构成的双峰式侵火成岩为特征; 3)早二叠世大石寨期:形成的岩石种类多样,分布广泛,包括双峰式火山岩、双峰式侵入岩和碱性岩; 4)二叠纪末-三叠纪初索伦山期:形成陆缘型蛇绿岩或基性岩-超基性岩组合,产生于软流圈上涌造成的主动裂谷背景。兴蒙陆内造山带的构造变形可分为两期,第一期为晚古生代地层大范围褶皱变形,造成盆-岭构造带的缩短;第二期为沿盆-岭构造的边界强烈剪切变形,产生向东逃逸的挤出构造,其构造背景是北部蒙古-鄂霍茨克造山带和南部大别-秦岭中央造山带的远距离效应引起的被动闭合作用。兴蒙陆内造山带的变质作用分为两个阶段,早期变质作用主要表现为石炭纪期间与陆内伸展有关的低压高温变质,晚期为二叠纪末到三叠纪初区域大面积的低压绿片岩相变质以及沿构造边界的局部中-低压型低温变质。  相似文献   

14.
Structures of dynamic metamorphism have been traditionally studied proceeding from their similarity with faults, according to stratigraphic criteria and with reconstructions of predeformation settings. Using the example of the Kedrovyi–Butachikha shear zone in Rudny Altai, we suggest to distinguish zones with abundant dynamic metamorphic rocks (tectonites) as a special class of structures. Their diagnostic features are (i) dense fault populations, with mostly strike slip geometry of motion and intense mechanic failure and rework of the substrate; (ii) generally coordinated orientations (anisotropy) of structural elements at all hierarchic levels; and (iii) ordered patterns of laminar and turbulent flow. Complexes of tectonites in the Kedrovyi–Butachikha shear zone have been classified into dynamic clastics, tectonic schists, tectonic mixtites, and mechanic metasomatites according to their lithological and structural features. The new classification is used to image the architecture of the dynamic metamorphic zone in a map model which shows the pattern of tectonite complexes with their substrate unevenly reworked by shear-induced metamorphism.  相似文献   

15.
The general structure of the Chinese Altai has been traditionally regarded as being formed by five tectono-stratigraphic ‘terranes’ bounded by large-scale faults. However, numerous detrital zircon studies of the Paleozoic volcano-sedimentary sequences shown that the variably metamorphosed Cambro-Ordovician sequence, known as the Habahe Group, is present at least in four ‘terranes’. It structurally represents deepest rocks unconformably covered by Devonian and Carboniferous sedimentary and volcanic rocks. Calc-alkaline, mostly Devonian, granitoids that intruded all the terranes revealed their syn-subduction related setting. Geochemistry and isotope features of the syn-subduction granitoids have shown that they originated mainly from the melting of youthful sediments derived from an eroded Ordovician arc further north. In contrast, Permian alkaline granitoids, mostly located in the southern part of the Chinese Altai, reflect a post-subduction intraplate setting. The metamorphic evolution of the metasedimentary sequences shows an early MP-MT Barrovian event, followed by two Buchan events: LP-HT mid-Devonian (ca. 400–380 Ma) and UHT-HT Permian (ca. 300–270 Ma) cycles. The Barrovian metamorphism is linked to the formation of a regional sub-horizontal possibly Early Devonian fabric and the burial of the Cambro-Ordovician sequence. The Middle Devonian Buchan type event is related to intrusions of the syn-subduction granitoids during an extensional setting and followed by Late Devonian-Early Carboniferous NE-SW trending upright folding and crustal scale doming during a general NW-SE shortening, responsible for the exhumation of the hot lower crust. The last Permian deformation formed NW-SE trending upright folds and vertical zones of deformation related to the extrusion of migmatites, anatectic granitoids and granulite rocks, and to the intrusions of gabbros and granites along the southern border of the Chinese Altai. Finally, the Permo-Triassic cooling and thrust systems affected the whole mountain range from ca. 265 to 230 Ma. In conclusion, the Chinese Altai represents different crustal levels of the lower, middle and upper orogenic crust of a single Cambro-Ordovician accretionary wedge, heterogeneously affected by the Devonian polyphase metamorphism and deformation followed by the Permian tectono-thermal reworking event related to the collision with the Junggar arc. It is the interference of Devonian and Permian upright folding events that formed vertical boundaries surrounding the variously exhumed and eroded crustal segments. Consequently, these crustal segments should not be regarded as individual suspect terranes.  相似文献   

16.
This work presents the results of studying zones bounded by the Archean and Early Proterozoic Taratash block, which breaks the meridional structure of the Urals, pinching its structural zones at the latitude of the town of Miass. The mesostructures of rupture zones, microtextures of tectonites, anisotropy of the magnetic susceptibility, and seismic-wave propagation rate in blastomylonites were studied. The kinematic history of the Taratash block consists of two phases: (1) exhumation in the Middle Riphean under conditions of crustal extension; and (2) the formation of an indenter in the Late Paleozoic under conditions of compression.  相似文献   

17.
The metamorphic complex of the North Golpayegan is part of the Sanandaj-Sirjan Zone. There are at least three distinct stages of deformation in this complex. Throughout the first stage, Paleozoic and Mesozoic sedimentary rocks have experienced regional metamorphism during Late Jurassic tectonic events related to the subduction of the Neo-Tethys oceanic lithosphere under the Iranian microcontinent. During the second deformation stage in the Late Cretaceous-Paleocene, the rocks have been mylonitized. The third stage of deformation in the region has led to folding and faulting superimposed on previous structures, and to exhumation of the metamorphic complex. This stage has determined the current morphology and N70E strike of the complex. The mylonitic zones of the second stage of deformation have been formed along the dextral transpressional faults. During the third stage of deformation and exhumation of the metamorphic complex, the mylonitic zones have been uplifted to the surface. The granitoids in the metamorphic complex have been injected along the extensional shear fractures related to the dextral transpressional displacements. The granitoids have been transformed into mylonites within the synthetic or antithetic shear zones. These granitoids are recognized as syncollision type (CCG) and have been formed at the end of orogenic events synchronous to the collision between the Arabian and the Iranian plates at the Late Cretaceous-Paleocene.  相似文献   

18.
Likhanov  I. I.  Kozlov  P. S.  Ivanov  K. S.  Zinoviev  S. V. 《Doklady Earth Sciences》2018,483(2):1495-1498

The occurrences of high-pressure tectonites localized in the tectonic suture zone of the Cis-Yenisei regional shear zone (CYRSZ) separated the cratonic and oceanic island-arc terranes were distinguished for the first time at the western margin of the Siberian Craton. Tectonites are characterized by high pressures (up to 15 kbar), which exceed significantly the background PT parameters of regional metamorphism. The generation of tectonic overpressure is induced by rapid deformations along ductile shear zones, which is consistent with the numerical simulation results and thermodynamic calculations. These data confirm the important role of tectonic stress as an effective thermodynamic factor of metamorphic transformations in suture zones of the lithospheric crust.

  相似文献   

19.
The massive Fe-Zn-Pb sulphide sheets constituting the Angel Zone ore body of the Black Angel Mine, show evidence of three phases of deformation at greenschist facies metamorphic grade. During an early phase an originally layered sulphide ore type was isoclinally folded. Subsequent thrusting parallel to the ore body transformed the layered ore into massive and porphyroclastic ore tectonites. Late, open folds refolded the earlier structures and caused localized differential mobilization of the sulphides. The microstructures of the layered ore tectonite indicate a period with static grain growth, interpreted as the result of prograde metamorphism, followed by a dynamic recrystallization under low stress and at low strain rates, which is correlated with the early isoclinal folding. The microstructures of the massive and the porphyroclastic ore tectonites indicate syntectonic recrystallization under high stress and at high strain rates, corresponding to the thrusting of the ore bodies. The microstructures of the mobilized sulphides show evidence of repeated plastic/cataclastic deformation and recrystallization, corresponding to highly variable strain and strain rate conditions during the mobilization. Post-deformational annealing took place at elevated temperature and was largely controlled by inhibition-dependent grain growth and to a minor extent by orientation-dependent grain growth.  相似文献   

20.
Shangyi-Longhua regional fault was EW distributed near northern Hebei Province, which was first active in the Late Neoarchean (Late Fuping) and still active in the Holocene and even today. Therefore, exploring its formation and evolutionary history is of great significance to study its geological structure, mineral distribution and the influence of Neotectonic movement on human beings in northern Hebei Province. The regional faults in Shangyi-Longhua are strong complex deformation zones through the census of the tectonic rocks and all kinds of directional structures in the fault zone. The ductile deformation and brittle deformation are alternating with characters of chronicity, multiphase activity, propensity and nature variation. Shangyi-Longhua regional fault is one of the important dividing lines of tectonic units of different levels in different periods in northern Hebei Province, which plays an important role in controlling the development and evolution of geological history on both sides. The authors redefined the structure superposition transformation relation and the development period, according to the superimposed relationship of the sturcture, the corresponding relationship between metamorphic degree of mylonites and the regional metamorphism, and the corresponding relationship between the movement model reflected by the shear-pointed fabric and the principal stress of the regional tectonic movement. Combined with the metamorphic mineral age of the predecessor tectonites, the authors divided the fault structure into two construction phases and nine tectonic active periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号